Manual for RSiena

Ruth M. Ripley
Tom A.B. Snijders
Zsofia Boda
Andras Voros

Paulina Preciado

University of Oxford: Department of Statistics; Nuffield College

January 30, 2016

Abstract

SIENA (for Simulation Investigation for Empirical Network Analysis) is a computer pro-
gram that carries out the statistical estimation of models for the evolution of social
networks according to the dynamic actor-oriented model of Snijders (2001, 2005),
Snijders et al. (2007), and Snijders et al. (2010a). This is the manual for RSiena, a
contributed package to the statistical system R. It complements, but does not replace
the help pages for the RSiena functions! It also contains contributions written earlier,
for the manual for SIENA version 3, by Mark Huisman, Michael Schweinberger, and
Christian Steglich.

This manual is frequently updated, mostly only in a minor way. This version was
renewed for RSiena version 1.1-290.

Contents

1 General information

I Minimal Intro
1.1 Giving referenceso L e

2 Getting started with SIENA
2.1 The logic of Stochastic Actor-Oriented Models
2.1.1 Types of Stochastic Actor-Oriented Models
2.1.2 Data, variables and effects
2.1.3 Outline of estimation procedure
2.1.4 Further useful options in RSiena
2.2 Installing R and SIENA o o
2.3 Using SIENA within R
2.4 Example R scripts for getting started L.
2.5 Steps for looking at results: Executing SIENA..
2.6 Getting help with problems Lo

IT Users’ manual
3 Steps of modelling

4 Input data
4.1 Datatypes o e e e e e
4.1.1 Network data e
4.1.2 Transformation between matrix and edge list formats
4.1.3 Behavioral data Lo
4.1.4 Individual covariates e
4.1.5 Dyadic covariates Lo
4.2 Internal data treatment oL L
4.2.1 Interactions and dyadic transformations of covariates
4.2.2 Centering o i e e
4.2.3 Monotonic dependent variables L 0o oL oL
4.3 Further data specification options 0oL
4.3.1 Structurally determined values Lo Lo
4.3.2 Missing data L e
4.3.3 Composition change: joiners and leavers

5 Model specification
5.1 Definition of the model L
5.1.1 Elementary effects
5.1.2 Specification in SIENA
5.1.3 Mathematical specification 0oL
5.2 Important structural effects for network dynamics:
one-mode networks Lo Lo Lo Lo e
5.3 Important structural effects for network dynamics:
two-mode networks Lo Lo

10
11
15
16
16
17
19
19
20

22
22

23
23
23
25
26
26
27
28
28
28
30
30
30
32
33

5.4 Effects for network dynamics associated with covariates
5.5 Cross-network effects for dynamics of multiple networks
5.6 Effects on behavior evolution L oL
5.7 Model Type: non-directed networks L.
5.8 Additional interaction effectso

5.8.1 Interaction effects for network dynamics

5.8.2 Interaction effects for behavior dynamics
5.9 Time heterogeneity in model parameters
5.10 Limiting the maximum outdegreeo L oo
5.11 Goodness of fit with auxiliary statistics L 0L

5.11.1 Treatment of missing data and structural values in sienaGOF

Estimation
6.1 The estimation function siena07o
6.1.1 Imitial Values L
6.1.2 Convergence Check L
6.1.3 Continued estimation to obtain convergence
6.2 What to do if there are convergence problems
6.3 Some important components of the sienaFit object
6.4 Algorithm
6.5 Output e
6.5.1 Convergence check L
6.5.2 Parameter values and standard errors oL
6.5.3 Collinearity check
6.6 Other estimation procedures e e
6.7 Generalized Method of Moments estimation
6.8 Maximum Likelihood and Bayesian estimation
6.9 Other remarks about the estimation algorithm
6.9.1 Conditional and unconditional estimation
6.9.2 Fixing parameters Lo Lo
6.9.3 Automatic fixing of parameterso Lo
6.9.4 Required changes from conditional to unconditional estimation
6.10 Using multiple processes L L oo

Standard errors
7.1 Multicollinearity
7.2 Precision of the finite differences method

Tests
8.1 Wald-type tests o
8.1.1 Standard errors of linear combinations
8.2 Score-type tests
8.3 Example: one-sided tests, two-sided tests, and one-step estimates
8.3.1 Multi-parameter testso
8.4 Alternative application: convergence problems.
8.5 Testing differences between independent groups oL L.
8.6 Testing time heterogeneity in parameters

54
54
56
o7
o8
60
62
63
64
65
65
66
68
68
69
70
70
71
72
72
72

74
74
75

9 Simulation
9.1 Accessing the generated networks L oo
9.2 Conditional and unconditional simulation

10 Getting started
10.1 Model choice 0 e e e e e e

11 Multilevel network analysis
11.1 Multi-group Siena analysis L L
11.2 Meta-analysis of Siena results L Lo
11.2.1 Meta-analysis directed at the mean and variance of the parameters
11.2.2 Meta-analysis directed at testing the parameters
11.2.3 Contrast between the two kinds of meta-analysis
11.3 Random coefficient multilevel Siena analysis
11.3.1 Which data sets to use for sienaBayes
11.3.2 Model specification L
11.3.3 How to enter your data in sienaBayes
11.3.4 How to choose the parameter settings for sienaBayes
11.3.5 Prior distributions L
11.3.6 Operation of sienaBayes() o o
11.3.7 Assessing COnvergence oo v v v i e e e
11.3.8 Interpreting results of sienaBayes L.

12 Formulas for effects
12.1 Network evolution e e
12.1.1 Network evaluation function
12.1.2 Multiple network effectso
12.1.3 Network creation and endowment functions
12.1.4 Network rate function
12.2 Behavioral evolution
12.2.1 Behavioral evaluation function
12.2.2 Behavioral creation function 0.,
12.2.3 Behavioral endowment function L.
12.2.4 Behavioral rate function L o o
12.3 Effects for estimation by Generalized Method of Moments

13 Parameter interpretation
13.1 Networks o . oL e
13.2 Behavior Lo e
13.3 Ego — alter selection tables Lo o
13.4 Ego — alter influence tables

14 Error messages
14.1 During estimation L L L e e
14.2 As result of a score-type test (including time test)
14.3 In sienaGOF oL e

IIT Programmers’ manual

85
86
87

88
89

90
91
92
93
95
96
96
97
98
98
99
99
101
101
102

104
104
105
123
133
134
135
135
144
144
145
146

147
147
148
149
155

159
159
160
161

162

15 Get the source code
16 Other tools you need
17 Building, installing and checking the package

18 Understanding and adding an effect
18.1 Example: adding the truncated out-degree effect
18.2 Notes on effectGroups and two-mode networks

A List of Functions in Order of Execution
B Changes compared to earlier versions

C References

162

162

163

164
166
170

172

183

208

1 General information

SIENA', shorthand for Simulation Investigation for Empirical Network Analysis, is a set of
methods implemented in a computer program that carries out the statistical estimation of
models for repeated measures of social networks according to the Stochastic Actor-oriented
Model (‘SAOM’) of Snijders and van Duijn (1997), Snijders (2001), Snijders et al. (2007),
Snijders et al. (2010a), and Greenan (2015); also see Steglich et al. (2010). A tutorial for
these models is in Snijders et al. (2010b).

A website for SIENA is maintained at http://www.stats.ox.ac.uk/~snijders/siena/ .
At this website (‘publications’ tab) you shall also find references to introductions in vari-
ous other languages, as well as the file Siena_algorithms.pdf which gives a sketch of the
main algorithms used in RSiena. The website further contains references to many pub-
lished examples, example scripts illustrating various possibilities of the package, course
announcements, etc.

This is a manual for RSiena, which also may be called SIENA version 4.0; the manual
is provisional in the sense that it is continually being updated, taking account of updates
in the package. RSiena is a contributed package for the R statistical system which can
be downloaded from http://cran.r-project.org. For the operation of R, the reader is
referred to the corresponding literature and help pages.

RSiena was originally programmed by Ruth Ripley and Krists Boitmanis, in collab-
oration with Tom Snijders. Since May 2012 the maintainer is Tom Snijders. Further
contributions were made by Josh Lospinoso, Charlotte Greenan, Christian Steglich, Jo-
han Koskinen, Mark Ortmann, Nynke Niezink, and Robert Hellpap.

In addition to the ‘official’ R distribution of RSiena, there is an additional distribution
at R-Forge, which is a central platform for the development of R packages offering facilities
for source code management. It is quite usual that later versions of RSiena are available at
http://r-forge.r-project.org/R/?group_id=461 before being incorporated into the R
package that can be downloaded from CRAN. In addition, at R-Forge there is a package
RSienaTest which may include additional options that are still in the testing stage. Some
of the options described in this manual may apply to RSienaTest only, with the plan to
transfer this to RSiena in the future.

!This program was first presented at the International Conference for Computer Simulation and the
Social Sciences, Cortona (Italy), September 1997, which originally was scheduled to be held in Siena. See
Snijders and van Duijn (1997).

http://www.stats.ox.ac.uk/~snijders/siena/
http://cran.r-project.org
http://r-forge.r-project.org/R/?group_id=461

We are grateful to NIH (National Institutes of Health, USA) for their funding of
programming RSiena. This was done as part of the project Adolescent Peer Social Network
Dynamics and Problem Behavior, funded by NIH (Grant Number 1R01HD052887-01A2),
Principal Investigator John M. Light (Oregon Research Institute).

For earlier work on SIENA, we are grateful to NWO (Netherlands Organisation for
Scientific Research) for their support to the project Models for the Evolution of Networks
and Behavior (project number 461-05-690), the integrated research program The dynamics
of networks and behavior (project number 401-01-550), the project Statistical methods for
the joint development of individual behavior and peer networks (project number 575-28-
012), the project An open software system for the statistical analysis of social networks
(project number 405-20-20), and to the foundation ProGAMMA, which all contributed to
the work on SIENA.

Part 1
Minimal Intro

1.1 Giving references

When using SIENA, it is appreciated that you refer to this manual and to one or more
relevant references of the methods implemented in the program. The reference to this
manual is the following.

Ruth M. Ripley, Tom A.B. Snijders, Zséfia Boda, Andras Voros, and Paulina Preciado,
2015. Manual for SIENA version 4.0 (version January 30, 2016). Oxford: University of
Oxford, Department of Statistics; Nuffield College. http://www.stats.ox.ac.uk/siena/

A tutorial is Snijders et al. (2010b). A basic reference for the network dynamics model
is Snijders (2001) or Snijders (2005). Basic references for the model of network-behavior
co-evolution are Snijders et al. (2007) and Steglich et al. (2010). A basic reference for
the Bayesian estimation is Koskinen and Snijders (2007) and for the maximum likelihood
estimation Snijders et al. (2010a).

More specific references are Schweinberger (2012) for the score-type goodness of fit
tests and Schweinberger and Snijders (2007b) for the calculation of standard errors of the
Method of Moments estimators. For the model for diffusion of innovations in dynamic
networks, please refer to Greenan (2015). For assessing and correcting time heterogene-
ity, and goodness of fit assement and associated model selection considerations, refer to
Lospinoso et al. (2011) and Lospinoso (2012).

2 Getting started with SIENA

There may be various strategies for getting acquainted with RSiena. In any case, it is a
good idea to study the tutorial Snijders et al. (2010b). Two recommended options for
learning the ‘how to’ are the following;:

1. One excellent option is to read the User’s Manual from start to finish (leaving aside
the Programmer’s Manual).

2. A second option is to read this Minimal Introduction, to get a sense of the rest by
looking at the table of contents, and then follow the references to specific sections of
your interest. The searchable pdf file makes it easy to look for the relevant words.

This Minimal Introduction explains the basics of Stochastic Actor-Oriented Models and
gives practical information on running RSiena. We start with section 2.1 which gives a
brief and non-technical introduction to the types of Stochastic Actor-Oriented Models, to
the most important concepts related to them, to the data required to apply SIENA, and to
further features of the program. In Section 2.2 we explain how to install and run SIENA as
the package RSiena from within R. Section 2.4 and Section 2.5 provide example R scripts
and guidance for understanding the results. If you are looking for help with a specific
problem, read Section 2.6.

2.1 The logic of Stochastic Actor-Oriented Models

SIENA (Simulation Investigation for Empirical Network Analysis) is a statistical tool de-
veloped for the analysis of longitudinal network data, collected in a network panel study
with two or more ‘waves’ of observations. It incorporates different variants of a dynamic
network model family: the Stochastic Actor-Oriented Model (SAOM). In this section, we
give a very concise introduction to how these models work in principle and what type of
data they are suitable to analyze. For sake of simplicity, SAOMs implemented in SIENA
are often referred to as ‘SIENA models’. In this subsection, we only consider the case of
network evolution; see below for the more complex cases of coevolution. For a further in-
troduction, consult Snijders et al. (2010b). An introduction for applications in the context
of adolescent development is Veenstra et al. (2013).

The defining characteristic of Stochastic Actor-Oriented Models is their ‘actor-oriented’
nature which means that they model change from the perspective of the actors (nodes).
That is, Stochastic Actor-Oriented Models always “imagine” network evolution as indi-
vidual actors creating, maintaining or terminating ties to other actors. When thinking
about network dynamics, researchers usually assume that these decisions (conscious or
subconscious) of actors are influenced by the structure of the network itself and the char-
acteristics and behaviors of the focal actor (ego) who is making a decision and those of
other actors in the network (alters). Stochastic Actor-Oriented Models provide a means to
quantify the ways, the extent and the uncertainty with which these factors are associated
with network evolution between observations.

The Stochastic Actor-Oriented Modelcan be regarded as an agent-based (‘actor-based’)
simulation model of the network evolution; where all network changes are decomposed

into very small steps, so-called ministeps, in which one actor creates or terminates one
outgoing tie. These ministeps are probabilistic and made sequentially. The transition
from the observation at one wave to the next is done by means of normally a large number
of ministeps. The actors respond to the network in the sense that the probabilities of
these changes depend on the current (unobserved) state of the network. Each further
ministep changes the network state and therefore the actors are each others’ ever changing
context (Zeggelink, 1994). This allows the model to represent the feedback process that is
typical for network dynamics. These changes are not individually observed, but they are
simulated; what is observed is the state obtained at the next observation wave.

This simulation model implements the statistical model for the network dynamics.
The statistical procedures utilize a large number of repeated simulations of the network
evolution from each wave to the next. They estimate and test the parameters producing a
probabilistic network evolution that ‘could have’ brought these observations to follow one
another.

To avoid misunderstandings, two notes have to be made about the meaning of actor
“decisions” and the role of Stochastic Actor-Oriented Models in causal inference. First,
the fact that SIENA models are actor-oriented does not imply the assumption that the
actors take decisions in any real sense. It means that the changes in the network are
organized, so to say, by the nodes in the network. This aligns very well with a substan-
tive standpoint where the nodes have agency (Snijders, 1996) but it does not necessarily
reflect a commitment to or belief in any particular theory of action elaborated in the
scientific disciplines. In fact, the purpose of SIENA in this matter is to assist substan-
tive researchers in further developing their theories of action by e.g. exploring the relative
importance of individual, contextual, and social factors in network change. The second,
and related, point is that, like other generalized regression models, SIENA does not by
itself solve all causal questions. When inferring causality from model results, one has to
face difficulties very similar to those with other statistical methods; see, e.g., Lomi et al.
(2011) and Goldthorpe (2001). In any case, causal interpretations should be supported
by further results from the discipline the explanations originate in. However, Stochastic
Actor-Oriented Models do allow research to profit from a longitudinal design — therefore,
they may be helpful in tackling some issues related to causality, like the selection-influence
problem (Steglich et al., 2010; Lomi et al., 2011).

2.1.1 Types of Stochastic Actor-Oriented Models:
evolution of one-mode networks, two-mode networks and behaviors

So far, we have mostly talked about SIENA as a tool to analyze the evolution of a single
network. However, there are different variants of Stochastic Actor-Oriented Models that
can be applied to more complex data structures. The availability of these options depends
on the research question and the quantity and type of data one has. In this section,
we briefly discuss the currently implemented model types, which will help researchers
determine what kind of analyses they are able to carry out with Stochastic Actor-Oriented
Models given the data at hand.

A minimal dataset suitable for analysis with SIENA consists of two observations of a

10

single network defined on the same set of nodes. In this case, one is able to test how
the structure of the network contributes to its own evolution. However, depending on the
data available, further modeling options may be applicable. Currently, the implemented
Stochastic Actor-Oriented Models are suitable for the analysis of

1. the evolution of a directed or undirected one-mode network (e.g., friendships in a
classroom) (Snijders, 2001);

2. the evolution of a two-mode network (e.g., club memberships in a classroom: the
first mode is constituted by the students, the second mode by the clubs) (Koskinen
and Edling, 2012);

3. the evolution of an individual behavior (e.g., smoking), and

4. the co-evolution of one-mode networks, two-mode networks and individual behaviors
(e.g., the joint evolution friendship and smoking; or of friendship and club member-
ship) (Steglich et al., 2010; Snijders et al., 2013).

In all these cases, the data can also include covariates: observed variables that influence
the dynamics, but of which the values are not themselves modeled.

In the first two cases, one can assess with SIENA the ways and the extent to which
changes in a given one- or two-mode network depend on the network structure itself and
on covariates. The third option, modeling changes in an individual behavior on its own,
without reference to its embeddedness in a network, is rarely used. For this type of data
numerous alternative longitudinal modeling techniques exist.

Accordingly, the fourth model type has been becoming widely used. Analyzing the
joint evolution of networks and behavior allows researchers to address questions related
to selection and influence processes, for example, whether smokers tend to become friends
with each other or friends tend to become similar in their smoking habits. The strength
of the SIENA co-evolution models is that one can simultaneously take into account the
impact of network structure on network evolution, the actual level of a behavior on be-
havior change, the network structure on behavior change, and the actual level of behavior
on network evolution. Besides network and behavior co-evolution, this class of Stochastic
Actor-Oriented Models also allow for the joint analysis of multiple networks (e.g. friend-
ship and advice, friendship and dislike, or all three of them), and the analysis of ordered
multiple networks (where the presence of a tie in one network presumes the existence of a
tie in the other network, like in the case of friendships and best friend relations).

2.1.2 Data, variables and effects

Now that we have discussed some core features of Stochastic Actor-Oriented Models and
introduced the different implemented model types, we turn our attention, still just pre-
senting an outline, to data types and the specification of a model. In general, the number
of waves must be at least two in order to analyze a data set with Stochastic Actor-Oriented
Models. In case of modeling evolution across more than two observations in time, esti-
mated parameter values are assumed to be equal in all periods (unless time heterogeneity
is specifically represented by changing parameters — see Section 5.9 for further details).

11

This section focuses on three related topics: the type of network and behavioral data
SIENA works with, the meaning of explanatory variables, or so called effects, in Stochastic
Actor-Oriented Models, and the different dependent variables with which SIENA captures
network and behavior evolution.

Network data

Stochastic Actor-Oriented Models operate on binary networks, that is, on relations on
a given set of actors, where tie variables between actors have two states: existent (1) or
non-existent (0). Weighted networks are not allowed, but as mentioned above, it is possi-
ble to define multiple networks representing discrete levels of relationships. It is possible
to specify that some ties in the network are impossible (”structural zeros”) or necessary
(“structural ones”) (see Section 4.3.1 for more details). For the network evolution, Stochas-
tic Actor-Oriented Models how ties are being created, maintained or terminated by actors.

Behavioral data

Behavioral variables in Stochastic Actor-Oriented Models can be thought of as indi-
cating the presence or intensity of a behavior. For example, behavioral data can represent
whether an actor is a smoker or not, as well as a number of ordered categories express-
ing the number of cigarettes usually smoked. The term “behavior” should not be taken
literally here, it is possible to model changes in attitudes or other actor attributes. In
the models, behavioral variables can be binary or ordinal discrete (the extension for con-
tinuous behavioral data is currently being developed). The number of categories should
be small (mostly 2 to 5; larger ranges are possible). In the case of behaviors, Stochastic
Actor-Oriented Models express how actors increase, decrease, or maintain the level of their
behavior.

A special case of the fourth type is the diffusion of innovations in dynamic networks
(Greenan, 2015): here the behavior variable representing having adopted the innovation
is binary, coded 0 or 1, and once an actor has the value 1 s/he is stuck with it. The only
possible transitions are 0 = 1, representing that the actor adopts the innovation. See
Section 12.2.4.

Covariates

In every model type, it is possible to define and use covariates, which are variables
that are exogenous in the sense that their values are not modeled, but used to explain
network or behavior change. Covariates can be dummy variables (e.g., sex) or continu-
ous (e.g., attitudes or age). Also, they may have constant values across all observations
or their value may change across time periods — this is the distinction between constant
and varying covariates (e.g., sex and salary). Finally, there are individual (monadic) and
dyadic covariates that refer, respectively, to characteristics of individual actors (e.g., sex)
and to attributes of pairs of actors (e.g., living in the same neighborhood or kinship).

12

Missing data and composition change

Stochastic Actor-Oriented Models distinguish between two types of missing values: ab-
sence of actors from the network and random missingness. The first case refers to changing
composition: it is possible to specify that some actors leave or join the network between
two observations (during the simulation process). This then applies to all dependent
variables (networks, behaviors) simultaneously (see Section 4.3.3 for more details). In the
second case, missing values are treated as randomly missing (see Section 4.3.2 for more de-
tails). Stochastic Actor-Oriented Models can deal with some, but not too much, randomly
missing data (as a rule of thumb, more than 20% is considered to be too much). With too
many missing values, the simulation can become unstable, and also the estimated param-
eters may not be substantively reliable anymore. And of course, missing data are likely
to are caused by processes that are not totally random, and therefore risk to bias the resuls.

Explanatory variables: the effects

When defining Stochastic Actor-Oriented Models, we have to specify the exact ways
in which current network structure or covariates may affect network or behavior change.
This is defined by combinations of configurations (or situations) which are called “effects”
in Stochastic Actor-Oriented Models. Effects can be treated as the explanatory variables
of the models. Effects can be structural (depending on the network structure itself, also
called endogenous), or covariate-related; also various combinations between structure and
covariates are possible. Some examples for effects:

o structural effects: reciprocity, transitivity;

e covariate effects: sex of the tie sender, sex of the receiver, same sex, similarity in
salary;

e combinations: average level of smoking of friends, interaction between sex of the
sender and reciprocity.

Dependent variables: network evaluation, creation and endowment functions

As we discussed earlier, SIENA is capable of analyzing and modeling the evolution of
networks and behavior, jointly or separately. Consequently, a model may have more than
one dependent variable. Here we introduce the ways network and behavior dependent
variables can be defined in Stochastic Actor-Oriented Models. We start with network
evolution.

Given two observations of a binary network, a single network tie variable can follow
four patterns, as shown in Table 1. In Stochastic Actor-Oriented Models, however, tie
change can be defined in three ways: we can model the creation of previously not exist-
ing ties (creation), the maintenance of existing ties (endowment), or the presence of ties

13

Table 1: Possible tie change patterns for two observations (¢; and t2)

tt |t |
i j | 1— 7 | creation of a tie
1 — j | ¢ — j | maintenance of a tie
i1— 7 | ¢ j | termination of a tie
i j|¢ j | maintenance of a 'no-tie’

regardless of whether they were newly created or maintained (evaluation). These are the
three possible values of the change in tie variables, constituting the dependent variables of
the network evolution model. The effects model the odds (more precisely: they are com-
ponents of the linear predictor for the log-odds) for the creation, maintenance or presence
of network ties. Table 2 helps to imagine what the odds refer to in each case: we compare
the probability of green cases to that of blue cases.

Table 2: Tie changes considered by the evaluation, creation and endowment functions

a) evaluation b) creation ¢) endowment
t to

According to this distinction, network evolution may be modeled in SIENA by three
functions: the evaluation, creation and endowment functions. Effects can appear as com-
ponents of one or two of these functions in a single model, but never in all three (this
would lead to perfect collinearity). Using only the evaluation effect assumes that the cre-
ation and endowment effects are equal (and equal to the evaluation effect). The estimated
parameters for each effect should be interpreted as log-odds ratios. From a practical point
of view, it is meaningful to start modeling with evaluation effects, unless one has a clear
idea about how tie creation and endowment may be different in the analyzed data set.
Separating the contribution of an effect into two functions requires more of the data, and
if a given effect is similarly strong for the creation and maintenance of ties the statisti-
cal power will decrease by this split. For these reasons, most SIENA studies limit their
attention to evaluation effects. However, if there is enough data, the distinction between
creation and maintenance of ties can produce powerful insights (e.g., Cheadle et al., 2013).

Dependent variables: behavior evaluation, creation and endowment functions

The distinction between the different behavior evolution functions follows a logic sim-
ilar to the case of network evolution. The three possibilities for change in behavior are

14

increasing or decreasing the level of behavior by one unit, or maintaining its actual level.
In case of the evaluation function, the model does not distinguish between upward and
downward changes, only looks at the resulting level of behavior. By using the creation
and endowment functions, we can obtain separate parameters (and assess the different
impact) of effects for the increase and the decrease of behavior.

2.1.3 Outline of estimation procedure

SIENA estimates parameters by the function siena07() and (alternatively) sienacpp(), using
the following procedure:

1. Certain statistics are used that reflect the parameter values;
the finally obtained parameters should be such that the expected values of the statis-
tics are equal to the observed values.
Expected values are approximated as the averages over a lot of simulated networks.
Observed values are calculated from the data set. These are also called the target
values.

2. To find these parameter values, an iterative stochastic simulation algorithm is ap-
plied. This works as follows:

(a)
(b)

In Phase 1, the sensitivity of the statistics to the parameters is roughly deter-
mined.

In Phase 2, provisional parameter values are updated iteratively:

this is done by simulating a network according to the provisional parameter
values, calculating the statistics and the deviations between these simulated
statistics and the target values, and making a little change (the ‘update’) in
the parameter values that hopefully goes into the right direction. A lot of such
updating steps are taken, each using the parameter that was produced in the
preceding step.

(Only a ‘hopefully’ good update is possible, because the simulated network is
only a random draw from the distribution of networks, and not the expected
value itself.)

In Phase 3, the final result of Phase 2 is used, and it is checked if the average
statistics of many simulated networks are indeed close to the target values. This
is reflected in the so-called overall maximum convergence ratio and the t
statistics for deviations from targets. If some of these are too high
(a threshold of 0.25 is used for the overall maximum convergence ratio, and a
threshold of 0.1 for the absolute value of the t statistics for deviations from
targets), the estimation must be repeated. Standard errors for the parameters
are also estimated in this phase.

If the estimation has to be repeated, this can be done by employing the ar-
gument prevAns in the call of siena07() (or sienacpp()). See the help page for
siena07().

15

2.1.4 Further useful options in RSiena

e Checking for time heterogeneity (Sections 5.9 and 8.6)
e Goodness of fit (Section 5.11)
e Meta-analysis of SIENA results (Section 11.2)

e Simulation without estimation (Section 9)

2.2 Installing R and SIENA

This and the next section give an overview of steps one needs to go through from installing
R to running models in RSiena. Installing needs to be done only once (but should be
repeated when next versions of the software appear).

1. Install R.
This can be done from http://cran.r-project.org/ .
Many users prefer some kind of additional environment, such as RStudio, or the
combination of Notepad++ with NppToR.

2. Install the package RSiena or RSienaTest, with dependencies. The other packages
used are tcltk, parallel and tools (all included in the basic R distribution); Matrix,
MASS, lattice, codetools (‘recommended’ packages included in most R distributions);
and network and xtable. For goodness of fit testing it will be useful also to install
sna and igraph.

You can just install RSiena and the other packages in the regular way from CRAN.
However, it is advisable to have the latest version of RSiena or RSienaTest from R-
Forge or the SIENA website. You can go to
http://r-forge.r-project.org/R/?group_id=461

or to

http://www.stats.ox.ac.uk/~snijders/siena/siena_downloads.htm

and there download the appropriate version of the package appropriate for your
operation system (Windows, Mac, Unix).

Installation can be done in various ways — by the function install.packages() in
R, via the drop-down menu in the R console, or in command mode which for Mac
is the ‘terminal’. If a binary file is available (.zip for Windows, .tgz for Mac),
then using the binary is recommended. Installation from binary is much faster than
installation from source.

Installation from the R-Forge repository can be done as follows. In these commands,
RSienaTest can be replaced by RSiena.
e for Windows:
install.packages("RSienaTest", repos="http://R-Forge.R-project.org")

e for Mac the binary file code is not available on R-Forge, but the source code
may also work:

16

http://cran.r-project.org/
http://r-forge.r-project.org/R/?group_id=461
http://www.stats.ox.ac.uk/~snijders/siena/siena_downloads.htm

install.packages("RSienaTest", repos="http://R-Forge.R-project.org",
type = "source")
If this does not work, try one of the following methods.

Installation from a downloaded file can be done as follows, assuming the root name
of the file is RSienaTest_1.1-290, and filling in the correct path name. It will be
convenient to first navigate to the directory containing the RSiena binary or source
file so that this is the current directory. Then the pathname consists only of the
filename.

e In R from binary:
for Windows:

install.packages("pathname to RSienaTest_1.1-290.zip", repos = NULL,
type="binary")

for Mac:

install.packages("pathname to RSienaTest_1.1-290.tgz", repos = NULL,

type="binary")

e In R from source:
install.packages("RSienaTest_1.1-290.tar.gz", repos = NULL, type="source")

e In command.com or in batch mode (Windows) from binary:
R CMD INSTALL RSienaTest_1.1-290.zip

e In the terminal (Mac) from binary:
R CMD INSTALL RSienaTest_1.1-290.tgz

e In command.com or in batch mode (Windows) or in the terminal (Mac) from
source:
R CMD INSTALL RSienaTest_1.1-290.tar.gz

e In drop-down menu in R:
for Windows: go to Packages — Install package(s) from local zip file
for Mac: go to Packages & Data — Package Installer

e In RStudio:
go to Tools — Install packages — Install From: Package archive file (zip; tar.gz)

2.3 Using SIENA within R

1. Load data (networks, behavior, covariates) into R (see Section 4.1):

(a) Network data should be in objects of class matrix or sparse matrix (edgelist);
(b) Behavioral data should be in objects of class matrix;

(¢) Individual constant covariates should be in objects of class vector or should be
in columns or rows of a matrix;

(d) Individual varying covariates should be in objects of class matrix;

(e) Dyadic covariates should be in objects of class matrix.

17

2.

3.

10.

11.

All missing data should be set to NA (see Section 4.3.2).
Check whether your data objects meet the following criteria:

(a) Each object contains the same nodes/actors;

(b) Nodes are in the same order in each object;

(c) Nodes are in the same order in rows and columns of matrix objects (in case of
one-mode networks)®.

If a two-mode network is studied, then of course there will be two node sets.

Create SIENA objects for each data object using the appropriate functions (see Sec-
tion 4.1):

(a) sienaDependent() for networks and behavior variables;

(b) only for two-mode networks, sienaNodeSet() for defining nodesets;

(c) coCovar() and varCovar() for constant and changing/varying individual covari-
ates respectively;

(d) coDyadCovar() and varDyadCovar() for constant and changing/varying dyadic
covariates respectively;

(e) In case of two-mode networks, for each object it should be specified which
nodeset it is defined on, using the nodeSets argument in the above functions.

Create a SIENA data object containing all the SIENA objects specified above using
the function sienaDataCreate() (see Section 4.1).

Use getEffects() to create an effects object. This already gives a very simple model
specification containing the outdegree and a reciprocity effects (see Section 5.2 - for
two-mode networks see Section 5.3).

Use sienaAlgorithmCreate() to create an algorithm object (see Section 5).

Use printO1Report() to produce an output file presenting some descriptive statistics
for the objects included in the model.

Use functions includeEffects(), setEffect() and includelnteraction() to further specify
the model (see Sections 5.2 — 5.6).

Use siena07() or sienacpp() to run the estimation procedure.’

Basic output is written to a log file in the actual working directory. The filename is
the project name specified in the sienaAlgorithmCreate() function. Results can also
be inspected in R using various functions.

2For directions on how to handle composition change, see Section 4.3.3
3The use of multiple processes can speed up the estimation. For directions on how to utilize multiple
processors, see Section 6.10.

18

2.4 Example R scripts for getting started

The following scripts on the RSiena website go through the steps outlined in the previous
section, providing additional details and options:

e basicRSiena.r: a minimal example of a basic sequence of commands for estimating a
model by function siena07() of RSiena.

e RscriptOlDataFormat.R: gives a brief overview of R functions and data formats that
are essential for using RSiena.

e Rscript02SienaVariableFormat.R: shows how to prepare data for a SIENA analysis,
including the creation of RSiena objects; and how to specify effects for RSiena models.

e Rscript03SienaRunModel.R: shows how to carry out the estimation and look at the
results;

e Rscript04SienaBehaviour.R: illustrates how to specify models for dynamics of networks
and behaviour.

The website contains a lot of other scripts illustrating other functionalities of RSiena.

2.5 Steps for looking at results: Executing SIENA.

1. Look at the start of the output file obtained from printO1Report() for general data
description (degrees, etc.), to check your data input and get a general overview of
the data set.

In this file, there is a section “Change in networks” which contains some basic
descriptives. Some of these refer to the periods: these are the combinations of
two successive waves. For example, a two-wave data set has one period, and a three-
wave data sets has periods 1 = 2 and 2 = 3. The Distance mentioned there is
the Hamming distance between successively observed networks, i.e., the number of
tie variables that differ. The Jaccard index is the Jaccard distance between the
successive networks:

N1t
No1 + Nig+ Nyp

where Ny, is the number of tie variables with value A in one wave and value k in
the next wave. The Jaccard index is a measure for stability; see Snijders et al.
(2010b). Both for the Hamming distance and the Jaccard index, only those cells in
the adjacency matrix are counted that have available data in the wave at the start
and the wave at the end of the period concerned.

If Jaccard indices are very low while the average degree is not strongly increasing,
this indicates that the turnover in the network may be too high to consider the data
as an evolving network, and perhaps the SIENA method is not suitable for the data

19

set. For networks of the type that are mostly used for this method (sparse but not
too sparse, with average degrees not too different from wave to wave and between 2
and 15 for all waves), Jaccard values of .3 and higher are good; values lower than .2
indicate that there might be difficulties in estimation; values lower than .1 are quite
low indeed. Using the SIENA method for two waves with an extremely low Jaccard
index and average degrees that remain more or less constant will mean that the first
wave hardly plays a role in the results, and for non-conditional estimation it will be
close to treating the second wave as a sample from the stationary distribution of the
network dynamics.

If Jaccard indices are low because the network is mainly increasing (creation of new
ties) or decreasing (termination of ties), this is no problem for the SIENA method.
Very sparse networks (with most degrees less than 2) also may have lower Jaccard
values without negative consequences for estimation.

2. When parameters have been estimated, first look at the overall maximum
convergence ratio and the t statistics for deviations from targets. We
say that the algorithm has converged if the former is less than 0.25, and the latter
all are smaller than 0.1 in absolute value; and that it has nearly converged if the
former is less than 0.35, and the latter are all smaller than 0.15. Results obtained
for non-converged estimation runs may be misleading. (Very small deviations from
these values are of course immaterial.) See Section 6.1.2.

3. In rare circumstances, when the data set leads to instability of the algorithm, the
following may be of use. The Initial value of the gain parameter determines the step
sizes in the parameter updates in the iterative algorithm. This is the parameter
called firstg in function sienaAlgorithmCreate. A too low value implies that it takes
very long to attain a reasonable parameter estimate when starting from an initial
parameter value that is far from the ‘true’ parameter estimate. A too high value
implies that the algorithm will be unstable, and may be thrown off course into
a region of unreasonable (e.g., hopelessly large) parameter values. It usually is
unnecessary to change this, but in some cases it may be useful.

4. If all this is to no avail, then the conclusion may be that the model specification is
incorrect for the given data set.

5. Further help in interpreting output is in Section 6.5 of this manual.

2.6 Getting help with problems

For methodological help, consult the tutorial Snijders et al. (2010b) or this manual. The
website, http://www.stats.ox.ac.uk/~snijders/siena/ , contains various further publica-
tions (also in other languages than English) that may be helpful, as well as example scripts.
There is a users’ group for SIENA to exchange information and seek technical advice; the
address is http://groups.yahoo.com/groups/stocnet/ .

For technical problems running RSiena, follow the following points.

20

http://www.stats.ox.ac.uk/~snijders/siena/
http://groups.yahoo.com/groups/stocnet/

Help pages Study the R help page for the function you are using and that seems to give
the problems. This manual complements the help pages, but does not replace them!

Check your version of RSiena The ‘News’ page of the SIENA website gives information
about new versions of RSiena. Details of the latest version available can be found at
http://r-forge.r-project.org/R/7group_id=461. The version is identified by a
version number (e.g. 1.1-290) and an R-Forge revision number. You can find both
numbers of your current installed version by opening R , and typing
packageDescription("RSiena"). The version is near the top, the revision number
near the end. Both are also displayed at the start of SIENA output files produced
by printO1Report().

Check your version of R When there is a new version or revision of RSiena it will only
be available to you automatically if you are running the most recent major version
of R. (You can force an installation if necessary by downloading the tarball or binary
and installing from that, but it is better to update your R.)

Check both repositories We have two repositories in use for RSiena: CRAN and R-
Forge. The latest version will always be available from R-Forge. (Frequent updates
are discouraged on CRAN, so bug-fixes are likely to appear first on R-Forge.)

Installation When using the repository at R-Forge, install the package rather than up-
dating it. Then check the version and revision numbers.

Users’ group Consult the archives of the Users’ Group mentioned above, or post a mes-
sage to the Users’ Group. In your message, please tell which operating system, which
version of R, and which version of RSiena you are using.

R-Forge help list If you are a programmer, then for technical questions about the RSiena
code (as distinct from the methodology), you can send an email to rsiena-help@lists.r-
forge.r-project.org, or post in the help forum for RSiena in R-Forge. You need to
be a registered member of R-Forge (and possibly of RSiena) to post to a forum, but
anyone can send emails (at present!). In your message, please tell us which operating
system, which version of R, and which version of RSiena you are using.

21

http://r-forge.r-project.org/R/?group_id=461

Part 11
Users’ manual

3 Steps of modelling

The operation of the SIENA program is comprised of five main parts:
1. input of basic data description (see Section 4),
2. model specification (see Section 5),
3. estimation of parameter values using stochastic simulation (see Section 6),
4. testing parameters and assessing goodness of fit (see Sections 7 and 8),
5. simulation of the model with given and fixed parameter values (see Section 9).

The normal operation is to start with data input, then specify a model and estimate
its parameters, assess goodness of fit and the significance of the parameters, and then
possibly continue with new model specifications followed by estimation or simulation.

The main output of the estimation procedure is written to a text file named pname.out,
where pname is the name specified in the call of sienaAlgorithmCreate().

22

4 Input data

SIENA is a program for the statistical analysis of repeated measures of social networks,
and requires, at the very least, network data collected at two or more time points. It is
also possible to include other types of variables in the models — these are discussed in
Section 4.1. Section 4.2 describes the most commonly occuring data transformations that
are done internally by SIENA. Finally, Section 4.3 shows further options for users to define
their data.

4.1 Data types

As we discussed in Section 2.1.2, dependent variables in Stochastic Actor-Oriented Models
are defined from network or behavioral data. Independent variables (effects) are defined
from individual or dyadic covariate data, which can be constant or varying. SIENA requires
each of these data types to have a specific format — this is presented in the current section.

In general, data specification in RSiena consists of two steps. First, the role of each
variable to be used must be defined using the functions sienaDependent(), coCovar(), varCo-
var(), coDyadCovar(), varDyadCovar(), or sienaCompositionChange(). Second, the variables
must be combined into one RSiena data set by the function sienaDataCreate(). This func-
tion puts together the data set and carries out some preliminary calculations.

It is advisable to use names of variables consisting of at most 12 characters. This is
because they are used as parts of the names of effects which can be included in the model,
and the effect names should not be too long.

RSiena does not work with case numbers. The correspondence between cases in the
different components of the data set is by the order of the rows in the data matrices. For
a data set with n actors, each data matrix should have n rows and always the i’th row
should correspond to the ¢’th actor.

It is also useful to note here that in case of co-evolution models (those with more
than one dependent networks and/or behaviors), data for all dependent variables must be
available for the same set of time points.

4.1.1 Network data

For data specification by the sienaDependent function, the network must be specified as a
matrix or array or list of sparse matrix of triples.

For data specification by the graphical interface siena01Gui (documented separately)
or by the function sienaDataCreateFromSession, edge list formats are also allowed. This
can be either the format of the Pajek program, or a raw edge list, here called Siena format.
For large number of nodes (say, larger than 100), the edge list format is more efficient in
use of computer memory.

Sparse matrices, which can be used by input via sienaDependent(), have the same
efficiency as Pajek or Siena format. The three possible formats for digraph input are as
follows.

23

1. Adjacency matrices.

These can be used in sienaDependent and in sienaDataCreateFromSession.

In the usual case of a one-mode network the adjacency matrix is given in a matrix of n
rows and n columns containing integer numbers. The diagonal values are meaningless
but must be present. In the case of a two-mode network (which is a network with
two node sets, and all ties are between the first and the second node set) the matrix
does not have to be square, as usually the number of nodes in the first set will not
be equal to the number of nodes in the second set; and if it would be square, the
diagonal still would be meaningful.

Although this section talks only about digraphs (directed graphs), for one-mode
networks it is also possible that all observed adjacency matrices are symmetric.
This will be automatically detected by SIENA, and the program will then utilize
methods for non-directed networks.

The values of the ties must be 0, 1, or NA (not available = missing); or 10 or 11 for
structurally determined values (see below).

The help file for sienaDependent shows by examples how the specification can be
given by sparse matrices.

2. Pajek format.

These can be used in sienaDataCreateFromSession.

If the digraph data file has extension name .net, then the program assumes that the
data file has Pajek format. The file should relate to one observation only, and should
contain a list of vertices (using the keyword *Vertices, together with (currently) a
list of arcs, using the keyword *Arcs followed by data lines according to the Pajek
rules. These keywords must be in lines that contain no further characters. An
example of such input files is given in the s50 data set that is distributed in the
examples directory of the source code.

3. Siena format.
These can be used in sienaDataCreateFromSession.
An edge list is a matrix containing three or four columns: from, to, value, wave
(optional).
Like the Pajek format, this has the advantage that absent ties (tie variables with the
value 0) do not need to be mentioned in the data matrix. By specifying the waves
in the fourth column in the Siena format, one matrix can be used to contain data
for all the waves.

Missing values must be indicated in the way usual for R, by NA. For data specification by
the graphical interface sienaO1Gui or by the function sienaDataCreateFromSession, instead
of NA any numerical code can be used given that this is indicated to be a missing value
code.

If the data set is such that it is never observed that ties are terminated, then the
network dynamics is automatically specified internally in such a way that termination of
ties is impossible. (In other words, in the simulations of the actor-based model the actors

24

have only the option to create new ties or to retain the status quo, not to delete existing
ties.) Similarly if ties never are created (but only terminated), then this will be respected
in the simulations. See Section 4.2.3 and note the possibility of using allowOnly=TRUE.

4.1.2 Transformation between matrix and edge list formats

The following R commands can be used for transforming an adjacency matrix to an edge
list, and back again. If a is an adjacency matrix, then the following commands can be
used to create the corresponding edge list, called edges here.

create indicator matrix of non-zero entries of a

ones <- !a %inj, O

create empty edge list of desired length

edges <- matrix(0, sum(ones), 3)

£fill the columns of the edge list

edges[, 1] <- row(a) [ones]

edges[, 2] <- col(a) [ones]

edges[, 3] <- alones]

if desired, order edge list by senders and then receivers
edges <- edges[order(edges[, 1], edges[, 21),]

Some notes on the commands used here:
These commands can be used not only if the adjacency matrix contains only 0 and 1
entries, but also if it contains values NA, 10, or 11. The possibility of NA entries requires
special attention; %in% does just what we need, as it quietly says that NA’s are not %in%
anything, returning FALSE, which is transformed to TRUE by the ! function. The edge list
is created having all 0 values and at the end should have no 0 values at all.

It is more efficient, however, to work with sparse matrices; this also is done internally
in RSiena. Using the Matrix package for sparse matrix manipulations, the same results
can be obtained as follows.

library(Matrix)
tmp <- as(a, "dgTMatrix")
edges2 <- cbind(tmp@i + 1, tmp@j + 1, tmp@x)

Conversely, if edges is an edge list, then the following commands can be used to create
the corresponding adjacency matrix, called adj, with n nodes. (For a bipartite network
the two dimensions will normally be distinct numbers.)

create empty adjacency matrix

adj <- matrix(0, n, n)

put edge values in desired places
adjledges[, 1:2]] <- edges[, 3]

Note that this starts with a matrix having all 0 entries, and results in a matrix with no 0
entries at all. To check the results, after doing these two operations, the command

25

length(which(a != adj))

should return the value 0.

Note that the basic edge list, edges, lacks information as to the size of the adjacency
matrix. tmp above is a sparse matrix which is in edge list format but includes information
on the size of the adjacency matrix, and can be used in a similar way to the original matrix
a while saving memory space.

4.1.3 Behavioral data

SIENA also allows dependent behavior variables. This can be used in studies of the co-
evolution of networks and behavior, as described in Snijders et al. (2007) and Steglich et al.
(2010). These behavior (or ‘action’) variables represent the actors’ behavior, attitudes,
beliefs, etc. The difference between dependent behavior variables and changing actor
covariates (see below) is that the latter have values determined by the input data and are
assumed to change exogenously, i.e., according to mechanisms not included in the model,
while the dependent action variables change endogenously, i.e., depending on their own
values and on the changing network. Unlike the changing individual covariates, the values
of dependent action variables are not assumed to be constant between observations.

Dependent behavioral variables must have nonnegative integer values; e.g., 0 and 1,
or a range of integers like 0,1,2 or 1,2,3,4,5. The number of different values should not be
too high: ten values is on the high side. Each dependent action variable must be given in
one matrix, containing k = M columns, corresponding to the M observation moments.

If any values are not integers, a warning will be printed on the initial report given by
printO1Report() and the values will be truncated towards zero.

A special case of behavioral data can be used for diffusion of innovations (Greenan,
2015): here the behavior variable representing having adopted the innovation is binary,
coded 0 or 1, and changes 1 = 0 are impossible. Model specifications that are especially
useful for this data type are presented in Section 12.2.4.

4.1.4 Individual covariates

Individual (i.e., actor-bound, or monadic) variables are defined by the functions coCovar
in the case they are constant over time, and varCovar if they are changing over time.

Each constant actor covariate has one value per actor valid for all observation moments,
and has the role of an independent variable.

Changing variables can change between observation moments; then they are called
‘changing individual covariates’, and have the role of independent variables.

Changing individual covariates are assumed to have constant values from one observa-
tion moment to the next. If observation moments for the network are t1,to,...,t5s, then
the changing covariates should refer to the M — 1 moments t; through t5;_1, and the
m-th value of the changing covariates is assumed to be valid for the period from moment
t;, to moment t,, 1. The value at tjs, the last moment, does not play a role. Changing
covariates, as independent variables, are meaningful only if there are 3 or more observa-

26

tion moments, because for 2 observation moments the distinction between constant and
changing covariates is not meaningful.

Each changing individual covariate must be specified in a separate call of varCovar,
using for input an n x (M — 1) matrix where the columns correspond to the M — 1 periods
between observations.

The mean is always subtracted from the covariates. See Section 4.2.2 on centering.

When an actor covariate is constant within waves, i.e., within each wave it has the same
value for all actors; or, more generally, when within each wave it has the same value for all
actors within components separated by structural zeros (which means that ties between
such components are not allowed), then only the ego effect of the actor covariate is made
available. This is because the other effects then are meaningless. This may cause problems
for combining several data sets in a multi-group project (see Section 11). If at least one
case is missing (i.e., has the missing value data code), then the other covariate effects are
made available. When analysing multiple data sets in parallel, for which the same set of
effects is desired to be included, it is therefore advisable to give data sets in which a given
covariate has the same value for all actors one missing value in this covariate; purely to
make the total list of effects independent of the observed data.

4.1.5 Dyadic covariates

Like the digraph data, also each measurement of a dyadic covariate must be contained
in a separate matrix. For one-mode data this is a square data matrix, and the diagonal
values are meaningless.

A distinction is made between constant and changing dyadic covariates, where change
refers to changes over time. Each constant covariate has one value for each pair of actors,
which is valid for all observation moments, and has the role of an independent variable.
Changing covariates, on the other hand, have one such value for each period between
measurement points. If there are M waves (i.e., observation moments) of network data,
this covers M —1 periods, and accordingly, for specifying a single changing dyadic covariate,
an xnx (M—1) array is needed.

Like is the case for monadic covariates, changing dyadic covariates are assumed to
have constant values from one observation moment to the next. If observation moments
for the network are t1, t9, ..., tjs, then the changing covariates refer to the M — 1 moments
t1 through ¢3;_1, and the m-th value of the changing covariates is assumed to be valid for
the period from moment ¢, to moment t,,11. The value at t;;, the last moment, does
not play a role.

Constant dyadic covariates are specified using function coDyadCovar, and changing
dyadic covariates by varDyadCovar.

The mean is always subtracted from the covariates. See Section 4.2.2 on centering.

27

4.2 Internal data treatment
4.2.1 Interactions and dyadic transformations of covariates

For actor covariates (also called monadic covariates), two kinds of transformations to
dyadic covariates are made internally in SIENA. Denote the actor covariate by v;, and
the two actors in the dyad by ¢ and j. Suppose that the range of v; (i.e., the difference
between the highest and the lowest values) is given by ry. The two transformations are
the following:

1. dyadic similarity, defined by 1 — (Jv; — v;]/rv), and centered so the mean of this
similarity variable becomes 0;
note that before centering, the similarity variable is 1 if the two actors have the
same value, and 0 if one has the highest and the other the lowest possible value; the
mean of the similarity variable is calculated by function sienaDataCreate and stored
as the simMean attribute of mydata$cCovars$myvar, where mydata is the name of
the object created by sienaDataCreate, and myvar is the name of the variable used
as the argument for sienaDataCreate, while the name cCovars applies for constant
monadic covariates, and is to be replaced by vCovars for changing (varying) monadic
covariates;
for centering issues, further see Section 4.2.2.

2. same V, defined by 1 if v; = vj, and 0 otherwise (not centered) (V' is the name of
the variable). This can also be referred to as dyadic identity with respect to V.

Dyadic similarity is relevant for variables that can be treated as interval-level variables;
dyadic identity is relevant for categorical variables.

In addition, SIENA offers the possibility of user-defined two- and three-variable inter-
actions between covariates; see Section 5.8.

4.2.2 Centering

Individual as well as dyadic covariates are centered by the program in the following way.

For individual covariates, the mean value is subtracted by function SienaDataCreate.
The centered values then are stored (see below), and all calculations use these centered
variables. For the changing covariates, the mean value used is the global mean (averaged
over all periods). The values of these subtracted means are reported in the output of
printO1Report(). For the multi-group option (section 11.1), the subtracted values are the
global means across all groups.

Centering of covariates can be turned off by specifying centered=FALSE in the call of
coCovar(), varCovar(), coDyadCovar(), or varDyadCovar(), respectively.

For the dyadic covariates and the similarity variables derived from the individual co-
variates, the grand mean is calculated and stored by function SienaDataCreate(); the stored
values of the variables are not centered, but the means are subtracted during the program
calculations. (Thus, dyadic covariates are treated internally by the program differently
than individual covariates in the sense that the mean is subtracted at a different moment,

28

but the effect is the same; except for multi-group projects, see below.) Unlike the ‘covariate
similarity’ effect, the ‘same covariate’ effect is not centered but keeps its 0-1 values.

For the multi-group option (section 11.1), dyadic covariates are treated differently from
individual covariates: for dyadic covariates in multi-group projects, centering is done by
the within-group mean; actor covariates in multi-group projects are centered by the overall
mean.

For dependent behavioral variables, the effects are defined in Section 12.2 as functions
of centered variables.

The means of covariates are stored as attributes on the object created by SienaData-
Create. If you wish to access them, the following steps can show where these means can
be found. For example, suppose that the command given was

mydata <- sienaDataCreate(friendship, smokel, alcohol)
The structure of this object is obtained by requesting
str (mydata, 1)
Looking at the response, you will see that this object contains (among other things):
1. the constant actor covariates as mydata$cCovars
2. the varying actor covariates as mydata$vCovars
3. the constant dyadic covariates as mydata$dycCovars
4. the varying dyadic covariates as mydata$dyvCovars

Since smokel is a constant covariate and alcohol a changing covariate, their means can
be requested by

attr (mydata$cCovars$smokel, "mean")
attr (mydata$vCovars$alcohol, "mean")

and the centered values for, e.g, the variable alcohol by
mydata$vCovars$alcohol

The mean of the similarity variable is stored as the simMean attribute, and is obtained by,
e.g.,
attr (mydata$cCovars$smokel, "simMean")

The formula for balance is a kind of dissimilarity between rows of the adjacency matrix.
The mean dissimilarity is subtracted in this formula, having been calculated according to
a formula given in Chapter 12. It is also reported in the output and available — for the first

dependent variable — as attr (mydata$depvars[[1]], "balmean"). Instead of [[1]] you
can request a different number or the name of the variable.

29

4.2.3 Monotonic dependent variables

In some data sets, a dependent variable only increases, or only decreases. For a network,
this means that ties can be created but not terminated, or the other way around. This
may be the case for all periods (a period is defined by the two consecutive observation
waves at its start and end points) or just in some of the periods. RSiena will note when
a dependent variable only increases or only decreases in any given period, and mention
this in the output file generated by printO1Report. This constraint then is also respected
in the simulations, in the periods where it is observed. This is represented internally by
a variable called uponly indicating that the dependent variable cannot decrease, and a
variable downonly indicating that the dependent variable cannot increase. The constraints
signaled by the uponly and downonly variables can be lifted by using allowOnly = FALSE
in the call of sienaDependent (see the help file for this function).

If a dependent variable is only increasing or only decreasing for all periods and siena-
Dependent was called with allowOnly=TRUE (the default), then two basic effects are not
identified. These are the outdegree effect for a dependent network variable, and the linear
shape effect for a dependent behavior variable; these effects define the balance between
the probabilities of going up and going down. These effects then are dropped automat-
ically from the effects object. If this is not desired, this can be prevented by calling
sienaDependent with allowOnly=FALSE.

4.3 Further data specification options
4.3.1 Structurally determined values

It is allowed that some of the values in the digraph are structurally determined, i.e.,
deterministic rather than random. This is analogous to the phenomenon of ‘structural
zeros’ in contingency tables, but in SIENA not only structural zeros but also structural
ones are allowed. A structural zero means that it is certain that there is no tie from actor
1 to actor j; a structural one means that it is certain that there is a tie. This can be, e.g.,
because the tie is impossible or formally imposed, respectively.

Structural zeros provide an easy way to deal with actors leaving or joining the network
between the start and the end of the observations: specify all their incoming and outgoing
tie variables, at the moment that they are not present, as structural zeros. Note that actors
having all values specified as structural zeros in this way take part of the simulations only
starting at the observation moment where they are not totally structurally zero; therefore,
this way of representing partially absent actors is not meaningful for actors who are present
only at the very last wave. In particular, this includes the case where there are two waves
only for actors who join the network after the first wave.

Another way (more complicated but more flexible, because it gives possibilities to
represent actors entering or leaving at specified moments between observations) is the
method of joiners and leavers, described in Section 4.3.3. For actors present only at the
last wave, the method of joiners and leavers is preferable.

When endowment or creation effects are to be included in the model specification,
changing structural values should not be used, and the method of joiners and leavers then

30

also is preferable.

Structurally determined values are defined by reserved codes in the input data: the
value 10 indicates a structural zero, the value 11 indicates a structural one. Structurally
determined values can be different for the different time points. (The diagonal of the data
matrix for a one-mode network always is composed of structural zeros, but this does not
have to be indicated in the data matrix by special codes.) The correct definition of the
structurally determined values can be checked from the brief report of this in the output
file of print01Report.

If there are a lot of structurally determined values then unconditional estimation (see
Section 6.9.1) is preferable.

Structural zeros offer the possibility of analyzing several networks simultaneously under
the assumption that the parameters are identical. However, a preferable option to do
this is given in Section 11. E.g., if there are three networks with 12, 20 and 15 actors,
respectively, then these can be integrated into one network of 12 + 20 4+ 15 = 47 actors,
by specifying that ties between actors in different networks are structurally impossible.
This means that the three adjacency matrices are combined in one 47 x 47 data matrix,
with values 10 for all entries that refer to the tie from an actor in one network to an
actor in a different network. In other words, the adjacency matrices will be composed
of three diagonal blocks, and the off-diagonal blocks will have all entries equal to 10. In
this example, the number of actors per network (12 to 20) is rather small to obtain good
parameter estimates, but if the additional assumption of identical parameter values for
the three networks is reasonable, then the combined analysis may give good estimates.

In such a case where K networks (in the preceding paragraph, the example had K = 3)
are combined artificially into one bigger network, it will often be helpful to define K — 1
dummy variables at the actor level to distinguish between the K components. These
dummy variables can be given effects in the rate function and in the evaluation function
(for “ego”), which then will represent that the rate of change and the out-degree effect are
different between the components, while all other parameters are the same.

It will be automatically discovered by SIENA when monadic covariates depend only on
these components defined by structural zeros, between which tie values are not allowed.
For such variables, only the ego effects are defined and not the other effects defined for the
regular actor covariates and described in Section 5.4. This is because the other effects
then are meaningless. If at least one case is missing, then the other covariate effects are
made available.

When SIENA simulates networks including some structurally determined values, if
these values are constant across all observations then the simulated tie values are likewise
constant. If the structural fixation varies over time, the situation is more complicated.
Consider the case of two consecutive observations m and m+ 1, and let X f]‘m be the simu-
lated value at the end of the period from t,,, to t,,41. If the tie variable X;; is structurally
fixed at time ¢,, at a value z;;(t,,), then Xisji»]fn also is equal to z;;(ty,), independently of
whether this tie variable is structurally fixed at time t,,.1 at the same or a different value
or not at all. This is the direct consequence of the structural fixation. On the other hand,
the following rule is also used. If Xj; is not structurally fixed at time ¢,, but it is struc-
turally fixed at time ¢,,41 at some value x;;(tm+1), then in the course of the simulation

31

process from t,, to t,,+1 this tie variable can be changed as part of the process in the
usual way, but after the simulation is over and before the statistics are calculated it will
be fixed to the value ;;(tm+1)-

The target values for the algorithm of the Method of Moments estimation procedure
are calculated for all observed digraphs x(ty,+1). However, for tie variables X;; that are
structurally fixed at time t,,, the observed value z;; (tm+1) is replaced by the structurally
fixed value z;;(t,,). This gives the best possible correspondence between target values and
simulated values in the case of changing structural fixation.

4.3.2 Missing data

SIENA allows that there are some missing data on network variables, on covariates, and
on dependent action variables. Missing data must be indicated by the usual missing data
code for R, NA.

Missingness of data is treated as non-informative. One should be aware that having
many missing data can seriously impair the analyses: technically, because estimation will
be less stable; substantively, because the assumption of non-informative missingness often
is not quite justified. Up to 10% missing data will usually not give many difficulties or
distortions, provided missingness is indeed non-informative (Huisman and Steglich, 2008).
When one has more than 20% missing data on any variable, however, one may expect
problems in getting good estimates.

In the current implementation of SIENA, missing data are treated in a simple way,
trying to minimize their influence on the estimation results.

The basic idea is the following.

A brief sketch of the procedure is that missing values are imputed to allow meaningful
simulations; for the calculation of the target statistics in the Method of Moments, tie
variables and actor variables with missings are not used. More in detail, the procedure is
as follows.

The simulations are carried out over all variables, as if they were complete. To enable
this, missing data are imputed. In the initial observation, missing entries in the adjacency
matrix are set to 0, i.e., it is assumed that there is no tie; this is done because normally
data are sparse, so ‘no tie’ almost always is the modal value of the tie variable. In the
further observations, for any variable, if there is an earlier observed value of this variable
then the last observed value is used to impute the current value (the ‘last observation carry
forward’ option, cf. Lepkowski (1989)); if there is no earlier observed value, the value 0 is
imputed. For the dependent behavior variables the same principle is used: if there is a
previous observation of the same variable then this value is imputed, if there is none then
the observationwise mode of the variable is imputed. Missing covariate data are replaced
by the variable’s global mean. In the course of the simulations, however, the imputed
values of the dependent behavior variables and of the network variables are allowed to
change.

In order to ensure a minimal impact of missing data treatment on the results of param-
eter estimation (Method of Moments estimation) and/or simulation runs, the calculation

32

of the target statistics used for estimation by the Method of Moments, and reporting in
these procedures uses only non-missing data. When for an actor in a given period, any
variable is missing that is required for calculating a contribution to such a statistic, this
actor in this period does not contribute to the statistic in question. For network and
dependent behavior variables, the tie variable or the actor variable, respectively, must
provide valid data both at the beginning and at the end of a period for being counted in
the respective statistics.

By using the argument imputationValues in coCovar() and varCovar(), other values
(i.e., values different from the mean that is used by default for imputation) can be given
for imputation of missings in monadic covariates. These are then used for the simulations;
since they were indicated as missings (NA) in the data themselves, they will not be used
for the calculation of target statistics in the Method of Moments.

4.3.3 Composition change: joiners and leavers

SIENA can also be used to analyze networks of which the composition changes over time,
because actors join or leave the network between the observations. This can be done in two
ways: using the method of Huisman and Snijders (2003), or using structural zeros. (For the
maximum likelihood estimation option, the Huisman-Snijders method is not implemented,
and only the structural zeros method can be used.) Structural zeros can specified for all
elements of the tie variables toward and from actors who are absent at a given observation
moment. How to do this is described in subsection 4.3.1. This is straightforward and
not further explained here. This subsection explains the method of Huisman and Snijders
(2003), also called the method of joiners and leavers, which uses the information about
composition change in a somewhat more efficient way.

Network composition change, due to actors joining or leaving the network, is handled
separately from the treatment of missing data. The data matrices must contain all actors
who are part of the network at any observation time. If adjacency matrices are used as
data input, they must therefore all have the same number of n rows, each actor having a
separate (and fixed) line in these matrices, even for observation times where the actor is
not a part of the network (e.g., when the actor did not yet join or the actor already left
the network).

The times of composition change can be given either in a data file or in a list available
in the R session. For networks with constant composition (no entering or leaving actors),
this file or list is omitted and the current subsection can be disregarded.

If there is composition change, estimation by the Method of Moments is forced to be
unconditional (see Section 6.9.1).

For these waves, where the actor is not in the network, the entries of the adjacency
matrix can be specified in two ways. First as missing values using missing value code
NA. In the estimation procedure, these missing values of the joiners before they joined the
network are regarded as 0 entries, and the missing entries of the leavers after they left the
network are fixed at the last observed values. This is different from the regular missing
data treatment. Note that in the initial data description the missing values of the joiners

33

and leavers are treated as regular missing observations. This will increase the fractions of
missing data and influence the initial values of the density parameter.

A second way is by giving the entries a regular observed code, representing the absence
or presence of a tie (as if the actor was a part of the network). In this case, additional
information on relations between joiners and other actors in the network before joining,
or leavers and other actors after leaving can be used if available. Note that this second
option of specifying entries always supersedes the first specification: if a valid code number
is specified this will always be used.

The functions used to specify the times actors join or leave the network (i.e., the times
of composition change) are sienaCompositionChangeFromFile() in case a file is used, and
sienaCompositionChange() in case a list is used. How to use a separate input file, called the
exogenous events file, is described in the help page for sienaCompositionChangeFromFile().

In the second case, a list must be given of length n, where n is the number of actors in
the node set. The i’th element of this list must be a vector of numbers (characters are also
allowed), composed of an even number of elements, indicating the intervals during which
actor ¢ was present. For example, 1 4 indicates that the actor was present from wave 1
to wave 4 (end points included) and 1 3.2 5.01 7 indicates that the actor was present
from wave 1 to 20% of the time between waves 3 and 4, and then again from just after
wave 5 to wave 7.

As an example, suppose we have 50 actors and 6 waves; almost all actors were present
all the time, but actor 11 was present from wave 3 onward, actor 20 was present until
wave 4, and actor 33 was present from mid-way between waves 1 and 2 until wave 3, and
then again from just after wave 4 to wave 6. Then the list can be created by the following
commands.

comp <- rep(list(c(1,6)), 50)
comp[[11]] <- c(3,6)

comp[[20]] <- c(1,4)

comp[[33]] <- ¢(1.5,3, 4.01,6)

changes <- sienaCompositionChange (comp)

(The use of blanks in the line for comp[[33]] is only for visually keeping the pairs of
start-end times together.)

The first line, creating a list with the (default) first and last end point for everybody,
could also be replaced by

comp <- vector("list", 50)
comp[] <- list(c(1,6))

Here it may be noted that [] keeps structures etc. unchanged while replicating the ex-
pression to fit.

The object changes created by the functions sienaCompositionChangeFromFile or siena-
CompositionChange is of class compositionChange and can be used in the function siena-
DataCreate.

The method of joiners and leavers for representing composition change does not com-
bine properly with the sienaGOF function (Section 5.11).

34

5 Model specification

5.1 Definition of the model

After defining the data, the next step is to specify a model. The model specification
consists of a selection of ‘effects’ for the evolution of each dependent variable (network or
behavior). To understand this, first a brief review of the definition of the actor-oriented
model is given (for further explanations see Snijders, 2001, 2005; Snijders et al., 2007,
2010b).

The model is based on four functions, which first are explained in an intuitive way.
They are defined specifically for all dependent variables (network, behavior, or more of
these if included in the model). These functions depend on the actor (hence the name
‘actor-oriented’) and on the state of the network, behavior, and covariates. All these func-
tions are constituted by a weighted sum of so-called effects, which define the characteristics
of the network (and behavior, if this is included as a dependent variable) that determine
the probabilities of changes.

e rate function

The rate function models the speed by which the dependent variable changes; more
precisely: the speed by which each network actor gets an opportunity for changing
her score on the dependent variable.

Advice: in most cases, start modeling with a constant rate function without addi-
tional rate function effects. (When there are important size or activity differences
between actors, it is possible that different advice must be given, and it may be
necessary to let the rate function depend on the individual covariate that indicates
this size; or on the out-degree.)

e cvaluation function

The evaluation function” is the primary determinant of the probabilities of changes.
Probabilities are higher for moving towards states with a higher value of the evalu-
ation function. One way of representing this is that the evaluation function models
the actor’s ‘satisfaction” with her/his local network neighborhood configuration. It
is assumed that actors change their scores on the dependent variable such that they
improve their total satisfaction — with a random element to represent the limited
predictability of behavior. In contrast to the creation and endowment functions
(described below), the evaluation function evaluates only the local network neigh-
borhood configuration that results from the change under consideration, without
considering ‘where you come from’. In most applications, the evaluation function
will be the main focus of model selection.

“The evaluation function was called objective function in Snijders (2001).
>The term ‘satisfaction’ should be interpreted here in a very loose sense; the satisfaction interpretation
is not necessary at all, but it does give a convenient intuitive way of thinking about the model.

35

e creation function
The creation function® distinguishes between new and old network ties (when eval-
uating possible network changes) and between increasing or decreasing behavioral
scores (when evaluating possible behavioral changes). It is a component of the prob-
abilities of change only for changes in an upward direction: creation of new ties,
augmentation of values of the behavior dependent variable. Creation effects can be
the creation parts of an evaluation effect, or elementary effects (see below).

In the interpretation using satisfaction, the creation function models the gain in
satisfaction incurred when network ties are created or behavioral scores are increased.

e cendowment or maintenance function
The endowment function’, which also may be called maintenance function, also
distinguishes between new and old network ties (when evaluating possible network
changes) and between increasing or decreasing behavioral scores (when evaluating
possible behavioral changes). It is a component of the probabilities of change only
for changes in a downward direction: maintenance vs. termination of existing ties,
decrease of values of the behavior dependent variable.

Again, endowment effects can be the maintenance parts of an evaluation effect, or
elementary effects (see below).

In the interpretation using satisfaction, the endowment function models the loss
in satisfaction incurred when network ties are dissolved or behavioral scores are
decreased (hence the label ‘endowment’).

Leaving aside the rate effects, a given effect can normally be included in the model in
any of the three ‘types’ or ‘roles’ of evaluation, creation, or endowment effect. In almost
all cases, the advice is to start modeling without any creation or endowment effects, and
add them perhaps at a later stage. For example, if the network dynamics in a given data
set is such that ties mainly are created, and they are dissolved rather rarely, then the data
will contain little information about the question whether creating ties follows different
rules than dissolving ties, and if one would try to include creation or endowment effects
for effects already included in the evaluation function, this would lead to large standard
errors. Creation and endowment effects for behavior for behavior variables with more than
2 values are still under investigation, and their interpretation for practical research still is
uncertain.

A model specification with only evaluation effects and without creation and endowment
effects leads to exactly the same network dynamics as a specification where these effects
are turned into creation and endowment effects, with the same parameters. For any given
effect, normally it makes no sense to include the effect in all three roles: evaluation,
creation, endowment. If one wishes to go beyond evaluation effects, then the user has to
choose between adding an effect in either the creation or the endowment role.

A special case of the gratification function in Snijders (2001).
"The endowment function also is a special case of the gratification function in Snijders (2001).

36

5.1.1 Elementary effects

Not all contributions to the probability of change can be written as the change in some
basic function (evaluation function). Therefore we sometimes need to directly represent
contributions to a tie change or behavior change, without invoking an evaluation func-
tion. This can be done by using elementary effects. (In Snijders (2001) this was called a
gratification function; as a more neutral term, we now use the word ‘elementary effects’.)

The basic example here is transitive closure, which can be represented by
the tendency toward forming closed triplets as in this figure. When the h
focal actor is i, ties that lead to the closure are ¢ — j and i — h; but the °
first of these ties means the closing of a two-path ¢ — h — j, while the / \
second means forming a tie to an actor h who made the same outgoing o

choice to the third actor j, a sign of structural equivalence; so these are .

distinct processes. The evaluation effect corresponding to the tendency
toward forming closed triples is the transTrip effect, which is composed
of the two distinct elementary effects transTripl, contributing to cre-
ating or maintaining the ¢ — j tie, and transTrip2, contributing to the
i — h tie; see Section 12.

An elementary effect is a contribution to the creation or maintenance of a tie, defined
directly, i.e., without expressing it based on the change in some evaluation function. This
means that elementary effects are more general than evaluation effects, and all effects
could be represented as elementary effects. For the sake of interpretation, however, the
evaluation function formulation is used whenever possible.

Elementary effects can apply similarly to the creation and maintenance of a tie; or
they can apply exclusively to tie creation, or exclusively to tie maintenance. In RSiena
the difference between elementary effects and evaluation effects is only in the internal
programming code, and the possible values of the type of effect as specified in the effects
object and the functions includeEffects() and setEffect() are only eval, creat, and endow.
In Chapter 12 almost all effects are evaluation effects, and the effects that are elementary
(and not evaluation) effects are mentioned as such.

[)
i J

5.1.2 Specification in SIENA

The model specification is defined in SIENA by the so-called effects object, which formally
is an object of class sienaEffects or, for multiple groups as discussed in Chapter 11 of
class sienaGroupEffects. This object is originally created by the function getEffects and
subsequently modified by the functions includeEffects and/or setEffects. The scripts on the
SIENA website give examples. An important ingredient here is the so-called shortName of
each effect, which is used to identify it; effects of covariates need, in addition, the name
of the covariate because the shortName does not specify the covariate. If there are several
dependent variables (networks and/or behavioral variables), the variable name (name)
also is required to specify the effect. The shortNames are part of the effects object. For
the practical use of SIENA, the shortNames are important. A list of effects with their
shortNames can be displayed in a browser by using the function:

37

effectsDocumentation()

For example, the command
cbind(myeff$effectName, myeff$type, myeff$shortName) [1:20,]
gives a list of the first 20 effects in the myeff object. As another example,
cbind (myeff$effectName, myeff$type, myeff$shortName) [myeff$type=="eval",]

lists all evaluation effects in myeff.

5.1.3 Mathematical specification

To attach precise meaning to the intuitive explanations above, the mathematical definition
of the model is given as follows. To keep notation simple, we leave all statistical parameters
out of the formulae. To keep the section short, we do not give a lot of explanation, but
refer to the mentioned literature for that purpose.

As explained in Snijders et al. (2010b), the model is a continuous-time Markov chain,
and represents how the network (and behavior) has changed in small steps (the so-called
ministeps) from one observed to a later observed value. Each ministep entails a change in
only one tie value, or one behavioral variable, and is modeled as follows.

First consider the network dynamics. At any given moment, let the network be denoted
2. The rate function for actor i is denoted \;(z); the evaluation function is f;(z); the
creation function is ¢;(x); and the endowment function is e;(z).

At any given moment, let the current network be denoted x°. The time duration until
the next opportunity of change is exponentially distributed with parameter

A (20) = Z)\i(xo) .

This means that the expected time duration is
1
At (20)
The probability that actor ¢ will be the next to have an opportunity for change is
)\7; (1‘0)
A (20)

Now suppose that actor i is the one who has the next opportunity for change; one could
say, this is the focal actor. Actor ¢ then has the possibility to change one network tie, or
to keep the network as it is. Denote by C the set of all networks that can be obtained as a
result. Then the probability of the network obtained from this step depends on something
called the objective function u;(2°, x) which will be defined in a moment. The probability
that the next network is x is given by

exp(u; (Y, x))
> wecexp (ui(20, 7))

(1)

38

The numerator is required to make all probabilities for this step sum to 1.

The objective function is defined as follows. If there is only an evaluation function
(mathematically, this means that the creation and endowment functions are 0), then the
objective function is equal to the evaluation function for the new state,

ui(x07x> = fz(‘r) .

Because of the properties of the exponential function one can just as well define the
objective function as the gain in evaluation function,

wi(a®,x) = fi(x) — fia?) .

To define the general case, note that if 2% and z are not the same, then they differ in only
one tie variable x;;. Define A* (20, z) = 1 if x has one tie more than 2%, meaning that a tie
is created by this change, and At (2", z) = 0 otherwise. Similarly, define A~ (2%, z) = 1 if
x has one tie less than 2°, meaning that a tie is dissolved by this change, and A~ (2%, 2) = 0
otherwise. Then the general definition of the objective function is

ui(a?,x) = (fi(x) - fi(a?)) (2)
+ At (20, 2) (ci(z) — Ci(l‘o)) + A~ (20, 2) (ei(z) — ei(:vo)) .

This shows that the change in creation function plays a role only if a tie is created
(A*(z%,2) = 1), and the change in endowment function plays a role only if a tie is
dissolved (A~ (20, z) = 1).

If also elementary effects are included, then denote the linear combination for a tie
variable z;; for general (evaluation-type) elementary effects by fiejl(m), for creation elemen-
tary effects by cfjl (z), and for endowment elementary effects by efjl- (z). To the objective
function u; (2%, x) we then still have to add

f@) + A* (0, 2) §i(x) + A7 (2% 2) efj(x) -

For behavior dynamics the definitions are analogous. Here a basic assumption is that,
when there is an opportunity for change, the possible new values for the behavior variable
are the current value, this value + 1, and this value —1, as long as these changes do not

take the value out of the permitted range. More elaborate explanations are in (Snijders
et al., 2007, 2010b; Steglich et al., 2010; Veenstra et al., 2013).

5.2 Important structural effects for network dynamics:
one-mode networks

For the structural part of the model for network dynamics, for one-mode (or unipartite)
networks, the most important effects are as follows. The mathematical formulae for these
and other effects are given in Chapter 12. Here we give a more qualitative description.

A default model choice could consist of (1) the out-degree and reciprocity effects; (2)
one network closure effect, e.g. transitive triplets, transitive ties, or gwesp; the transitive

39

reciprocated triplets effect and/or the 3-cycles effect; (3) the in-degree popularity effect
(raw or square root version); the out-degree activity effect (raw or square root version);
and either the in-degree activity effect or the out-degree popularity effect (raw or square
root function). The two effects (1) are so basic they cannot be left out. The effects selected
under (2) represent the dynamics in local (triadic) structure (also see Block, 2015, for the
transitive reciprocated triplets effect); and the three effects selected under (3) represent
the dynamics in in- and out-degrees (the first for the dispersion of in-degrees, the second
for the dispersion of out-degrees, and the third for the covariance between in- and out-
degrees) and also should offer some protection, albeit imperfect, for potential ego- and
alter-effects of omitted actor-level variables.
The basic list of these and other effects is as follows.

1. The out-degree effect which always must be included.

2. The reciprocity effect which practically always must be included.

3. There is a choice among several network closure effects. Usually it will be sufficient
to express the tendency to network closure by including one or two of these. They
can be selected by theoretical considerations and/or by their empirical statistical
significance. Some researchers may find the last effect (distances two) less appealing
because it expresses network closure inversely.

a.

The transitive triplets effect, which is the classical rep- h
resentation of network closure by the number of tran- S
sitive triplets. For this effect the contribution of the / \
tie ¢ — j is proportional to the total number of tran-

sitive triplets that it forms — which can be transitive i

triplets of the type {i — j — h; i — h} as well as
{i=>h—=yj;i—j}k

[]
i J

. The balance effect, which may also be called structural equivalence with respect

to outgoing ties. This expresses a preference of actors to have ties to those
other actors who have a similar set of outgoing ties as themselves. Whereas
the transitive triplets effect focuses on how many same choices are made by
ego (the focal actor) and alter (the other actor) — the number of h for which
i — h and j — h, ie., zj = x;, = 1 where 7 is ego and j is alter — , the
balance effect considers in addition how many the same non-choices are made
— Tjp = Tjp = 0.

. The transitive ties effect is similar to the transitive triplets effect, but instead

of considering for each other actor ;7 how many two-paths ¢ — h — j there
are, it is only considered whether there is at least one such indirect connection.
Thus, one indirect tie suffices for the network embeddedness.

The gwesp effect (see later in this manual).

. The number of actors at distance two effect expresses network closure inversely:

stronger network closure (when the total number of ties is fixed) will lead to

40

fewer geodesic distances equal to 2. When this effect has a negative parameter,
actors will have a preference for having few others at a geodesic distance of 2
(given their out-degree, which is the number of others at distance 1); this is
one of the ways for expressing network closure.

4. The three-cycles effect, which can be regarded as generalized h
reciprocity (in an exchange interpretation of the network) but S
also as the opposite of hierarchy (in a partial order interpreta- / \
tion of the network). A negative three-cycles effect, together
with a positive transitive triplets or transitive ties effect, may .
be interpreted as a tendency toward local hierarchy. The three-
cycles effect also contributes to network closure.

Block (2015) has argued convincingly that instead of the three-
cycles effect, it is often advisable to use the transitive recipro-
cated triplets effect.

In a non-directed network, the three-cycles effect is identical to
the transitive triplets effect.

[]
i J

5. Another triadic effect is the betweenness effect, which represents brokerage: the
tendency for actors to position themselves between not directly connected others,
i.e., a preference of i for ties ¢ — j to those j for which there are many h with h — i
and h 4 j.

(O The following eight degree-related effects may be important especially for networks
where degrees are theoretically important and represent social status or other fea-
tures important for network dynamics; and/or for networks with high dispersion in
in- or out-degrees (which may be an empirical reflection of the theoretical impor-
tance of the degrees). Include them if there are theoretical reasons for doing so, but
only in such cases.

6. The in-degree popularity effect (again, with or without ‘sqrt’, with the same consid-
erations applying) reflects tendencies to dispersion in in-degrees of the actors; or,
tendencies for actors with high in-degrees to attract extra incoming ties ‘because’ of
their high current in-degrees.

7. The out-degree popularity effect (again, with or without ‘sqrt’, with the same con-
siderations applying) reflects tendencies for actors with high out-degrees to attract
extra incoming ties ‘because’ of their high current out-degrees. This leads to a higher
correlation between in-degrees and out-degrees.

8. The in-degree activity effect (with or without ‘sqrt’) reflects tendencies for actors
with high in-degrees to send out extra outgoing ties ‘because’ of their high current
in-degrees. This leads to a higher correlation between in-degrees and out-degrees.
The in-degree activity and out-degree popularity effects are not distinguishable in
Method of Moments estimation; then the choice between them must be made on
theoretical grounds.

41

10.

11.

12.

13.

5.3

The out-degree activity effect (with or without ‘sqrt’) reflects tendencies for actors
with high out-degrees to send out extra outgoing ties ‘because’ of their high current
out-degrees. This also leads to dispersion in out-degrees of the actors.

The in-in degree assortativity effect (where parameter 2 is the same as the sqrt
version, while parameter 1 is the non-sqrt version) reflects tendencies for actors with
high in-degrees to preferably be tied to other actors with high in-degrees.

The in-out degree assortativity effect (with parameters 2 or 1 in similar roles) reflects
tendencies for actors with high in-degrees to preferably be tied to other actors with
high out-degrees.

The out-in degree assortativity effect (with parameters 2 or 1 in similar roles) reflects
tendencies for actors with high out-degrees to preferably be tied to other actors with
high in-degrees.

The out-out degree assortativity effect (with parameters 2 or 1 in similar roles) reflects
tendencies for actors with high out-degrees to preferably be tied to other actors with
high out-degrees.

Important structural effects for network dynamics:
two-mode networks

The Stochastic Actor-Oriented Model for two-mode (or bipartite) networks is treated
in Koskinen and Edling (2012). The co-evolution of one-mode and two-mode networks
is treated in Snijders et al. (2013). The most important effects are as follows. The
mathematical formulae for these and other effects are given in Chapter 12. Here we give
a more qualitative description.

1.

2.

The out-degree effect which always must be included.

Transitivity in two-mode networks is expressed in the T ——
first place by the number of four-cycles (Robins and

Alexander, 2004). This reflects the extent to which ac-

tors who make one choice in common also make other) .
choices in common. 2 ¢ ¢ 2
The following three degree-related effects may be important especially for networks
where degrees are theoretically important and represent social status or other fea-
tures important for network dynamics; and/or for networks with high dispersion in
in- or out-degrees (which may be an empirical reflection of the theoretical impor-
tance of the degrees). Include them if there are theoretical reasons for doing so, but
only in such cases.

The out-degree activity effect (with or without ‘sqrt’; often the sqrt version, which
transforms the degrees in the explanatory role by the square root, works better)
reflects tendencies to dispersion in out-degrees of the actors.

42

4. The in-degree popularity effect (again, with or without ‘sqrt’, with the same con-
siderations applying) reflects tendencies to dispersion in in-degrees of the column
units.

5. The out-in degree assortativity effect (where parameter 2 is the same as the sqrt
version, while parameter 1 is the non-sqrt version) reflects tendencies for actors with
high out-degrees to preferably be tied to column units with high in-degrees.

5.4 Effects for network dynamics associated with covariates

For each individual covariate, there are several effects which can be included in a model
specification, both in the network evolution part and in the behavioral evolution part
(should there be dependent behavior variables in the data). Of course for two-mode
networks, the covariates must be compatible with the network with respect to number of
units (rows/columns).

e network rate function

1.

the covariate’s effect on the rate of network change of the actor;

e network evaluation, creation, and endowment functions

1.

the covariate-similarity effect, which is suitable for variables measured on an
interval scale (or at least an ordinal scale where it is meaningful to use the
absolute difference between the numerical values to express dissimilarity); a
positive parameter implies that actors prefer ties to others with similar values on
this variable — thus contributing to the network-autocorrelation of this variable
not by changing the variable but by changing the network;

for categorical variables, see the ‘same covariate’ effect below;

. the effect on the actor’s activity (covariate-ego); a positive parameter will imply

the tendency that actors with higher values on this covariate increase their out-
degrees more rapidly;

. the effect on the actor’s popularity to other actors (covariate-alter); a positive

parameter will imply the tendency that the in-degrees of actors with higher
values on this covariate increase more rapidly;

. the effect of the squared variable on the actor’s popularity to other actors

(squared covariate-alter) (included only if the range of the variable is at least
2). This normally makes sense only if the covariate-alter effect itself also is
included in the model. A negative parameter implies a unimodal preference
function with respect to alters’ values on this covariate;

. the interaction between the value of the covariate of ego and of the other actor

(covariate ego x covariate alter); a positive effect here means, just like a positive
similarity effect, that actors with a higher value on the covariate will prefer
ties to others who likewise have a relatively high value; when used together
with the alter effect of the squared variable this effect is quite analogous to

43

the similarity effect, and for dichotomous covariates, in models where the ego
and alter effects are also included, it even is equivalent to the similarity effect
(although expressed differently), and then the squared alter effect is superfluous;

6. the ‘same covariate’, or covariate identity, effect, which expresses the tendency
of the actors to be tied to others with exactly the same value on the covariate;
whereas the preceding four effects are appropriate for interval scaled covari-
ates (and mostly also for ordinal variables), the identity effect is suitable for
categorical variables;

7. the interaction effect of covariate-similarity with reciprocity;

8. the effect of the covariate of those to whom the actor is indirectly connected,
i.e., through one intermediary but not with a direct tie; this value-at-a-distance
can represent effects of indirectly accessed social capital.

The usual order of importance of these covariate effects on network evolution is: evaluation
effects are most important, followed by creation, endowment and rate effects. Inside the
group of evaluation effects, for variables measured on an interval scale (or ordinal scale with
reasonable numerical values), it is the covariate-similarity effect that is most important,
followed by the effects of covariate-ego and covariate-alter.

When the network dynamics is not smooth over the observation waves — meaning
that the pattern of ties created and terminated, as reported in the initial part of the
output file under the heading Initial data description — Change in networks — Tie changes
between subsequent observations, is very irregular across the observation periods — it can
be important to include effects of time variables on the network. Time variables are
changing actor covariates that depend only on the observation number and not on the
actors. E.g., they could be dummy variables, being 1 for one or some observations, and 0
for the other observations.

For actor covariates that have the same value for all actors within observation waves,
or — in the case that there are structurally determined values — that are constant for all
actors within the same connected components, only the ego effects are defined, because
only those effects are meaningful. This exclusion of the alter, similarity and other effects
for such actor variables applies only to variables without any missing values.

For each dyadic covariate, the following network evaluation effects can be included in
the model for network evolution:

e network evaluation, creation, and endowment functions

1. main effect of the dyadic covariate;

2. the interaction effect of the dyadic covariate with reciprocity.

The main evaluation effect is usually the most important. In the current version of SIENA,
there are no effects of dyadic covariates on behavioral evolution.

44

5.5 Cross-network effects for dynamics of multiple networks

If there are multiple dependent network variables, these can be one-mode networks, two-
mode networks, or a combination of these. The co-evolution of one-mode and two-mode
networks is treated in Snijders et al. (2013), but this paper can also be used as an intro-
duction to the dynamics of multiple one-mode networks. For multiple dependent network
variables, the following effects may be important. This is explained here jointly for the case
of one-mode and two-mode networks. The number of columns is defined as the number of
actors for one-mode networks, and as the number of units/nodes/... in the second node
set for two-mode networks. For cross-network effects the network in the role of dependent
variable is denoted by X and the network in the role of explanatory variable by W; thus,
effects go from W to X. All these effects are regarded as effects determining the dynamics
of network X.

1. If both networks have the same number of columns, then the basic effect is the
entrainment of X by W, i.e., the extent to which the existence of a tie 4 W J

. . X
promotes the creation or maintenance of a tie i = j.

2. If both networks are one-mode, then a next effect is the reciprocity effect with W
on X, representing the extent to which the existence of a tie j Wi promotes the

creation or maintenance of a tie, in the reverse direction, i = j.

3. If both networks are one-mode, then a next effect is the mutuality effect with W on
X, representing the extent to which the existence of a mutual tie ¢ 1 j promotes

. . X
the creation or maintenance of a tie i = j.

4. The outdegree W activity effect (where parameter 2 is the sqrt version, while pa-
rameter 1 is the non-sqrt version — see above for explanations of this) reflects the
extent to which actors with high outdegrees on W will make more choices in the X
network.

(O Several mixed transitivity effects can be important.

5. If X is a one-mode network, the from W agreement effect rep-
resents the extent to which agreement between ¢ and j with
respect to outgoing W-ties promotes the creation or mainte- I/I/ \/V

nance of a tie i 2 j.
6. If W is a one-mode network, the W to agreement effect rep-

resents the extent to which a W tie i % h leads to agreement
between ¢ and h with respect to outgoing X-ties to others, i.e., I/I/ x(

X-ties to the same third actors 7, ¢ X j and h X j.

45

7. If X and W both are one-mode networks, the closure of W h

5.6

effect represents the tendency closure of W — W two-paths ®

W, W LX

it — h — j by an X tie i = j. I/I/*/V
@ —3= @
i X J

Effects on behavior evolution

For models with one or more dependent behavior variables, i.e., models for the co-evolution
of networks and behavior, the most important effects for the behavior dynamics are the
following; see Steglich et al. (2010). In these descriptions, with the ‘alters’ of an actor
we refer to the other actors to whom the focal actor has an outgoing tie. The dependent
behavior variable is referred to as Z.

1.

The shape effect, expressing the basic drive toward high values on Z. A zero value
for the shape will imply a drift toward the midpoint of the range of the behavior
variable.

. The effect of the behavior Z on itself, or quadratic shape effect, which is relevant

only if the number of behavioral categories is 3 or more. This can be interpreted as
giving a quadratic preference function for the behavior. When the coefficient for the
shape effect is 57 and for the effect of Z on itself, or quadratic shape effect, is 37,
then the contributions of these two effects are jointly 87 (z; —2) + B% (2;—2)%. With
a negative coeflicient ﬁQZ , this is a unimodal preference function, with the maximum
attained for z; = z — 237 /B%. (Of course additional effects will lead to a different
picture; but as long as the additional effects are linear in z; — which is not the case
for similarity effects! —, this will change the location of the maximum but not the
unimodal shape of the function.) This can also be regarded as negative feedback,
or a self-correcting mechanism: when z; increases, the further push toward higher
values of z; will become smaller and when z; decreases, the further push toward
lower values of z; will become smaller. On the other hand, when the coefficient BQZ
is positive, the feedback will be positive, so that changes in z; are self-reinforcing.
This can be an indication of addictive behavior.

The average similarity effect, expressing the preference of actors to being similar
with respect to Z to their alters, where the total influence of the alters is the same
regardless of the number of alters.

The total similarity effect, expressing the preference of actors to being similar to
their alters, where the total influence of the alters is proportional to the number of
alters.

The average alter effect, expressing that actors whose alters have a higher average
value of the behavior Z, also have themselves a stronger tendency toward high values
on the behavior.

46

6. The total alter effect, expressing that actors whose alters have a higher total value
of the behavior Z, also have themselves a stronger tendency toward high values on
the behavior.

7. The indegree effect, expressing that actors with a higher indegree (more ‘popular’
actors) have a stronger tendency toward high values on the behavior.

8. The outdegree effect, expressing that actors with a higher outdegree (more ‘active’
actors) have a stronger tendency toward high values on the behavior.

Effects 1 and 2 will practically always have to be included as control variables. (For
dependent behavior variables with 2 categories, this applies only to effect 1.) When the
behavior dynamics is not smooth over the observation waves — meaning that the pattern
of steps up and down, as reported in the initial part of the output file under the heading
Initial data description — Dependent actor variables — Changes, is very irregular across
the observation periods — it can be important to include effects of time variables on the
behavior. Time variables are changing actor covariates that depend only on the observation
number and not on the actors. E.g., they could be dummy variables, being 1 for one or
some observations, and 0 for the other observations.

The average similarity, total similarity, average alter, and total effects are different
specifications of social influence. The choice between them will be made on theoretical
grounds and/or on the basis of statistical significance. Do not include them all together
in one model, as this would most likely lead to multicollinearity and non-convergence.

For each actor-dependent covariate as well as for each of the other dependent behavior
variables, the effects on Z which can be included is the following.

1. The main effect: a positive value implies that actors with a higher value on the
covariate will have a stronger tendency toward high Z values.

2. Various effects of the combination of covariate values for members of the personal
network of the focal actor (outgoing ties, incoming ties, distance-two ties): search
in this manual for avXAlt, avXInAlt, avXAltDist2, avXInAltDist2 and their
manifold variations.

3. Interactions between two or three actor variables, see Section 5.8.

5.7 Model Type: non-directed networks

Non-directed networks are an undocumented option (there currently only is the presenta-
tion Snijders (2007).

SIENA detects automatically when the networks all are non-directed, and then employs
a model for this special case. For non-directed networks, the Model Type has five possible
values, as described in Snijders (2007). This is specified by the parameter modelType in
function sienaAlgorithmCreate. Value modelType = 1 is for directed networks, values 2-6
for non-directed networks.

47

1. Directed networks option modelType = 1 is not used for non-directed networks.

2. Forcing model, modelType = 2:
one actor takes the initiative and unilaterally imposes that a tie is created or dis-
solved.

3. Unilateral initiative and reciprocal confirmation, modelType = 3:
one actor takes the initiative and proposes a new tie or dissolves an existing tie;
if the actor proposes a new tie, the other has to confirm, otherwise the tie is not
created; for dissolution, confirmation is not required.

4. Pairwise disjunctive (forcing) model, modelType = 4:
a pair of actors is chosen and reconsider whether a tie will exist between them; the
tie will exist if at least one of them chooses for the tie, it will not exist if both do
not want it.

5. Pairwise conjunctive model, modelType = 5:
a pair of actors is chosen and reconsider whether a tie will exist between them; the
tie will exist if both agree, it will not exist if at least one does not choose for it.

6. Pairwise compensatory (additive) model, modelType = 6:
a pair of actors is chosen and reconsider whether a tie will exist between them; this
is based on the sum of their objective functions for the existence of this tie.

In the first two of these models, where the initiative is one-sided, the rate function is
comparable to the rate function in directed models. In the last three models, however,
the pair of actors is chosen at a rate which is the product of the rate functions A\; and A;
for the two actors. This means that opportunities for change of the single tie variable z;;
occur at the rate A; x A\;. The numerical interpretation is different from that in the first
two models.

5.8 Additional interaction effects

It is possible for the user to define additional interaction effects for the network and
the behavior. The basis is provided by the initial definition, by SIENA, of ‘unspecified
interaction effects’. The interaction is defined by the columns effectl and effect2,
and for three-way effects, effect3, in the effects object; they contain the effectNumber
(sequence number) of the effects that are interacting. The interaction effect must be
‘included’ to be part of the model, but the underlying effects need only be ‘included’ if
they are also required individually. (In most cases this is advisable.) The number of
possible user-defined interaction effects is limited, and is set in the call of getEffects().

Interactions can be specified by the function includelnteraction, explained in the fol-
lowing subsections.

All effects have a so-called interactionType, defined by the column interactionType
in the effects data frame. This interaction type defines what is allowed for definition of
interaction effects; an explanation of the background of this is given in section “Statistics

48

kb

for MoM” of Siena_Algorithms.pdf. For network effects, the interaction type is ”ego”,
"dyadic”, or 77 (blank); for behaviour effects, it is 7OK” or ””.

The information necessary for working with interaction effects — the interaction types,
short names, and sequence numbers of the effects — are contained in the document produced
for a given effects object, say myeff, by the function call

effectsDocumentation(myeff)

Further see the help page for the function effectsDocumentation(). Chapter 12 of this man-
ual also gives the short names of all effects. The short name of all unspecified interaction
effects is unspInt for network effects, and behUnspInt for behaviour effects.

5.8.1 Interaction effects for network dynamics

The following kinds of user-defined interactions are possible for network dynamics.
a. Ego effects of actor variables can interact with all effects.

b. Dyadic effects can interact with each other.

Whether an effect is an ego effect or a dyadic effect is defined by the column interactionType
in the effects data frame. This column is shown in the list of effects that is displayed in a
browser by using the function:

effectsDocumentation()

Thus a two-way interaction must be between two dyadic effects or between one ego
effect and another effect. A three-way interaction may be between three dyadic effects,
two dyadic effects and an ego effect, or two ego effects and another effect.

All effects used in interactions must be defined on the same network (in the role of
dependent variable): that for which the “unspecified interaction effects” is defined. And
all must be of the same type (evaluation, endowment, or creation effects).

Examples of the use of includelnteraction are as follows.

myeff <- includeInteraction(myeff, egoX, recip,

interactionl = c("smokel", ""))
myeff <- includeInteraction(myeff, egoX, egoX,
interactionl = c("smokel", "alcohol"))

Note the interactionl parameter; this parameter is used also when defining these effects
using includeEffects or setEffect. In this case, however, two effects are defined, and ac-
cordingly the interactionl parameter has two components, combined by the ¢ function.
For effects such as recip that have no interactionl parameter, the corresponding string
is just the empty string, "". (Note that the name interactionl does not itself refer to
interactions in the sense of this section.)

Interactions between three effects are defined similarly, but now the interactionl
parameter must combine three components.

The list of effects in Chapter 12 contains a variety of interaction effects that cannot
be created in this way; for example, those with short names transRecTrip, simRecipX,
avSimEgoX, and covNetNet (there are many more).

49

5.8.2 Interaction effects for behavior dynamics

For behavior dynamics, interaction effects can be defined by the user, for each dependent
behavior variable separately, as interactions of two or three actor variables, again using
the function includelnteraction. These are interactions on the ego level, in line with the
actor-oriented nature of the model.

There are some restrictions on what is permitted as interactions between behavior
effects. Of course, they should refer to the same dependent behavior variable. What is
permitted depends on the so-called interactionType of the effects, which for behavior
effects can be 0K® or blank. A further explanation is given under the heading ‘User-defined
interaction effects’ in Section 12.2. The interactionType of the effects is shown in the
list of effects displayed in a browser by using the function:

effectsDocumentation()

The behavioral effects with non-0K (i.e., blank) interactionType include, in particu-
lar, all effects of which the name includes the word “similarity”, or alternatively, the short
name includes the string “sim”.

The requirement for behavior interactions is that, of the interacting effects, all or all
but one have the value OK. Thus, for an interaction between two effects, one or both should
be OK; for a three-effect interaction, two or all three should be OK.

As an example, suppose that we have a data set with a dependent network variable
friendship and a dependent behavior variable drinkingbeh (drinking behavior), and
we are interested whether social influence, as represented by the ‘average alter’ effect,
differs between actors depending on whether currently they drink little or much. Then
the commands

myeff <- includeEffects(myeff, avAlt,
name="drinkingbeh", interactionl="friendship")
myeff <- includeInteraction(myeff, quad, avAlt,
name="drinkingbeh", interactionl=c("","friendship"))

define a model with the average alter effect (representing social influence) and an interac-
tion between this and the quadratic shape effect. Recall that the latter can be regarded
as the effect of drinking behavior on drinking behavior. Briefly, the interaction is between
current drinking behavior and the average drinking behavior of friends. By consulting
Section 12.2.1 on the mathematical definitions of the effects one can derive that this leads
to the following objective function; where it is assumed that also the linear and quadratic
shape effects are included in the model.
DM@, 2) = BTz + By + BE" L + Bz} 25 715 %

Z. S Y .
D Y DY

In addition, there are predefined interactions available between actor variables and
influence, as described in Section 12.2.1.

8The value is OK for the effects of which the formula as defined in Section 12.2.1 is given by z; multiplied
by something not dependent on z;.

50

5.9 Time heterogeneity in model parameters

When working with two or more periods, i.e., three or more waves, there is the question
whether parameters are constant across the periods. This can be tested by the sienaTime-
Test function, as explained in Section 8.6. To specify a model with time heterogeneous
parameters, the function includeTimeDummy can be used, as follows. Consider the refor-
mulation of the evaluation function into

15760 = 3 (3 B0 st 5) ®

k

where m denotes the period (from wave m to wave m + 1 in the panel data set) and 5,(€m)
are parameters for the effects interacted with time dummies. You can include these in
your model simply via the function

myeffects <- includeTimeDummy(myeffects,
density, reciprocity, timeDummy="2,3,6")

which would add three time dummy terms to each effect listed in the function.

We recommend that you start with simple models, and base the decision to include
time heterogeneous parameters on your theoretical and empirical insight in the data (e.g.,
whether the different waves cover a period where the importance of some of the modeled
‘mechanisms’ may have changed) and the score type test that is implemented in the
sienaTimeTest function, see Section 8.6.

See Lospinoso et al. (2011) for a technical presentation and examples of how the test
works, and Lospinoso (2010) for a walkthrough on model selection.

5.10 Limiting the maximum outdegree

It is possible to request that all networks simulated have a maximum outdegree less than
or equal to some given value. This is meaningful only if the observed networks also do not
have a larger outdegree than this number, for any actor at any wave.

This is carried out by specifying the maximum allowed value in the MaxDegree param-
eter of the sienaAlgorithmCreate function, which determines the settings of the algorithm.

MaxDegree is a named vector, which means that its elements have names. The length
of this vector is equal to the number of dependent networks. Each element of this vector
must have a name which is the name of the corresponding network. E.g., for one dependent
network called mynet, one could use

MaxDegree = c(mynet=10)

to restrict the maximum degree to 10. For two dependent networks called friends and
advisors, one could use

MaxDegree = c(friends=6, advisors=4)

51

For a single network, the default value 0 is used to specify that the maximum is
unbounded. For multiple networks, if for one network there is a bound for the maximum
outdegree but for another network this should not be bounded, then the value 0 will not
work, but one should use a bound which is at least n — 1, where n is the number of actors
in the network (or the largest number, if there are multiple groups).

If the MaxDegree parameter is used for data where all, or almost all, degrees are equal
to this maximum value, then it is likely that the estimation algorithm will not converge.
A fixed choice design for network data collection is not compatible with the free choice
nature of the Stochastic Actor-Oriented Model. See Holland and Leinhardt (1973) for
a discussion of fixed choice designs and Znidarsic (2012) for references to more recent
literature.

5.11 Goodness of fit with auxiliary statistics

There is now available in RSienaTest a function sienaGOF which permits users to assess the
fit of the model with respect to auxiliary statistics of networks, e.g. geodesic distributions,
that are not explicitly fit by a particular effect, but are nonetheless important features
of the network to represent by the probability model. This can be used to check, when
one has followed the approach to model specification explained in Sections 5.2 to 5.6
— and explained also in Snijders et al. (2010b) —, whether the end result gives a good
representation also of these other statistics.

The sienaGOF function, proposed and elaborated by Lospinoso (2012), operates basi-
cally by comparing the observed values, at the ends of the periods, with the simulated
values for the ends of the periods. The differences are assessed by combining the auxiliary
statistics using the Mahalanobis distance.

The results of sienaGOF can be plotted which then produces violin plots (Hintze and
Nelson, 1998), which present the distribution of the statistic as a combination of a box
plot and a smooth approximation to the density (by a kernel density estimate), with the
observed values superimposed. The violin plots tend to become squiggly when the proba-
bility distribution is concentrated on a few points (integers usually) and, as a consequence,
the density plot tries to approximate a discrete distribution. For the associated plot func-
tion, options center and scale are available to equalize the centers and scales of the various
statistics plotted. For distributions and cumulative distributions over sets of integers (e.g.,
of degrees or geodesic distances) it often is advisable to use the defaults center = FALSE,
scale = FALSE, whereas for sets of statistics for which a common scale is less important,
e.g., triad counts, a clearer picture may be obtained by plotting with center = TRUE, scale
= TRUE.

The method of joiners and leavers for representing composition change (Section 4.3.3)
does not combine properly with the sienaGOF function.

The examples in the help pages for sienaGOF and sienaGOF-auxiliary give ample help
for how to use this function. Also see the script on the SIENA website.

52

5.11.1 Treatment of missing data and structural values in sienaGOF

Missing tie values and structurally determined tie values are treated in the estimation in
such a way that they do not contribute directly to the target statistics. This behavior is
mirrored in their treatment in sienaGOF. The aim is that such values do not contribute to
any differences between observed and simulated values.

Tie variables that are missing at either the beginning or the end of the period are
replaced by 0, both in the observed and in the simulated networks. For behavioral variables
they are replaced by missings (NA).

If there are any differences between structural values at the beginning and at the end
of a period, these are dealt with as follows. For tie variables that have a structural value
at the start of the period, this value replaces the observed value at the end of the period
(for the goodness of fit assessment only). For tie variables that have a structural value at
the end of the period but a free value value at the start of the period, the reference value
for the simulated values is lacking; therefore, the simulated values at the end of the period
then are replaced by the structural value at the end of the period (again, for the goodness
of fit assessment only).

53

6 Estimation

The model parameters are estimated under the specification given during the model spec-
ification part, using an iterative stochastic approximation algorithm. Four estimation
procedures are implemented: the Method of Moments (‘MoM’; Snijders, 2001; Snijders
et al., 2007); the Generalized Method of Moments (‘GMoM’; Amati et al., 2015); the
Method of Maximum Likelihood (‘ML’; Snijders et al., 2010a); and a Bayesian method
(Koskinen, 2004; Koskinen and Snijders, 2007; Schweinberger and Snijders, 2007a). For
non-constant rate functions, currently only MoM and GMoM estimation is available. The
Method of Moments is the default; the other two methods require much more comput-
ing time. Given the greater efficiency but longer required computing time for the ML
and Bayesian methods, these can be useful especially for smaller data sets and relatively
complicated models (networks and behavior; creation or endowment effects).

In the following, the number of parameters is denoted by p. The algorithm is based
on repeated (and repeated, and repeated...) simulation of the evolution process of the
network. These repetitions are called ‘runs’ in the following. The MoM estimation algo-
rithm is based on comparing the observed network (obtained from the data files) to the
hypothetical networks generated in the simulations.

Note that the estimation algorithm is of a stochastic nature, so the results can vary!
This is of course not what you would like. For well-fitting combinations of data set and
model, the estimation results obtained in different trials will be very similar. It is good to
repeat the estimation process at least once for the models that are to be reported in papers
or presentations, to confirm that what you report is a stable result of the algorithm.

6.1 The estimation function sienaQ7

The estimation process implemented in functions siena07() and sienacpp() starts with
initial values for the parameters, and returns a so-called sienaFit object, in this example
called resultsi, which contains the estimates and their standard errors and a lot of
further information. Since the estimate is iterative (depending on the initial value) and
stochastic, the results are not always completely satisfactory. We shall see below how the
satisfactory convergence of the algorithm can be checked, and how to go on if this is not
satisfactory.

Much of what follows is about the use of siena07() but applies equally to sienacpp().
The difference between these two functions is that estimation by sienacpp() stays entirely
in the ‘back end’ C++ part of SIENA, contrasting with siena07() which carries out the
simulations in C++ but the Robbins-Monro updates in the R ‘front end’ part; this yields
greater computational efficiency for sienacpp(). Since the simulations take the largest
amount of processing time for medium-sized and large networks, the time difference is
notable, in a proportional sense, mainly for data sets where simulations run very quickly
(i.e., number of actors and distance between first and last simulations are small). Further,
results from sienacpp() cannot used for sienaGOF().

The estimation algorithm is determined by a call of functions such as

algorithml <- sienaAlgorithmCreate(projname = "trypro", useStdInits = FALSE)

54

resultsl <- sienaO7(algorithml, data = mydata, effects = myeff)

The function sienaAlgorithmCreate defines an algorithm specification object with options
for the algorithm, and the function sienaQ7 carries out the estimation. If you do not want
to see the graphical interface with intermediate results, or if your computer has problems
showing this, then add the option batch = TRUE, as in

resultsl <- siena0O7(algorithml, data = mydata, effects = myeff,
batch = TRUE)

If you wish to have detailed information at the console about the intermediate steps taken
by the algorithm, then add the option verbose = TRUE, as in

resultsl <- siena0O7(algorithml, data = mydata, effects = myeff,
verbose = TRUE)

The estimation produces an output file in the current working directory, of which the
name is defined by the projname option; in this example, the name is trypro.out. To
look at the information, you may either look at this file (which can be opened by any text
editor), or produce results on the R console.

A Dbrief summary of the results is given in the R console by typing the name of the
sienaFit object. For example,

resultsl
could give a summary such as

Estimates, standard errors and convergence t-ratios
Estimate Standard Convergence

Error t-ratio

Rate parameters:

0 Rate parameter 6.0803 (1.0220)

1. eval outdegree (density) -2.5270 (0.1589) 0.0152

2. eval reciprocity 2.1021 (0.3038) 0.0039

3. eval transitive triplets 0.5470 (0.1988) 0.0214

4. eval 3-cycles 0.0805 (0.3845) 0.0369

5. eval smokel similarity 0.4400 (0.2560) -0.0427
Overall maximum convergence ratio: 0.1608

Requesting a longer summary by a command such as
summary (resultsi)

will produce more information, including, e.g., the covariance/correlation matrix of the
estimators.

Convergence check

The column Convergence t-ratio shown above, also called t statistics for deviations
from targets, is an indicator of convergence. If some of these values are higher in absolute

55

value than 0.1, convergence is not adequate. The value Overall maximum convergence
ratio is another, stricter, indicator of convergence. For adequate convergence, this value
should be less than 0.25.

In this example, convergence is good. If convergence is not adequate, the estimation
must be repeated. Usually the best way to do this is by employing the argument prevAns
in the call of siena07(). Given that the earlier result was already called results1, this is
done, e.g., by

resultsl <- siena07(algorithml, data = mydata, effects = myeff,
prevAns = resultsl)

Further see below for more information about convergence.

6.1.1 Initial Values

The initial values can be given in three ways.

1. The default: if useStdInits = FALSE and no prevAns parameter is given in the call
of siena(7, the initial values are taken from the sienaEffects object, in this example
called myeff.

Requesting

myeff

will show the initial values. As long as no time dummies have been requested using
sienaTimeFix, the initial values for the requested effects are in the vector

myeff$initialValue [myeff$include]

Changing these values is not often necessary, because the parameter prevAns, as
explained in the next item, does this behind the scenes.

If one does wish to change the initial values contained in the effects object, this
can be done using the function updateTheta, which copies the estimates from earlier
results, contained in a sienaFit object, to the effects object. For a single effect the
initial value can be changed by the setEffect function in which the initialValue then
must be set.

2. If useStdInits = FALSE and the prevAns (‘previous answer’) parameter is used,
such as in

resultsl <- sienaO7(algorithml, data = mydata, effects = myeff,
prevAns = resultsO)

56

the initial parameter estimates are taken from the results of what is given as the
prevAns parameter. This must be a sienaFit object; in this example it is given as
resultsO.

If the specification of the effects object used to obtain resultsO was the same as
myeff, then not only the initial values are copied, but also Phase 1 of the algorithm
is skipped, because information for the sensitivity of the statistics with respect to
the parameters is taken from the results of Phase 3 of results0.

If the specification of the effects object used to obtain resultsO was not the same as
myeff, then for those parameters that do match, the initial values are copied from
resultsO and Phase 1 is carried out as usual.

3. If useStdInits = TRUE is used in the call of sienaAlgorithmCreate, standard initial
values are used.
These consist of some reasonable values for the rate parameters and the outdegree
parameter, as well as for the linear shape parameter for behavioral dependent vari-
ables (if any); and 0 parameters for the rest.
The default is useStdInits = FALSE.

6.1.2 Convergence Check

When parameters have been estimated, first the convergence of the algorithm must be
checked. This is done by looking at the t-ratios for convergence and the overall mazimum
convergence ratio. These are given in the output of the algorithm, presented above. This
check considers the deviations between simulated values (in Phase 3, see below) of the
statistics and their observed values (the latter are called the ‘targets’). Ideally, these
deviations should be 0. Because of the stochastic nature of the algorithm, when the process
has properly converged the deviations are small but not exactly equal to 0. The program
calculates the averages and standard deviations of the deviations and combines these in
a t-ratio (in this case, average divided by standard deviation). The overall maximum
convergence ratio is the maximum value of the ratio

average deviation

standard deviation

for any linear combination of the target values. A precise definition is given in
Siena Algorithms.pdf which can be downloaded from the SIENA website.

Convergence is excellent when the overall maximum convergence ratio is less than
0.2, and for all the individual parameters the t-ratios for convergence all are less than
0.1 in absolute value; convergence is reasonable when the former is less than 0.30. For
published results, it is suggested that estimates presented come from runs in which the
overall maximum convergence ratio is less than 0.25. (These bounds are indications only,
and are not meant as severe limitations.)

In the example above, the largest absolute value of the t-ratios for convergence is
equal to 0.0427, and the overall maximum convergence ratio is 0.1608; both are quite
good values.

57

If convergence is not adequate, the best way to continue is by making another esti-
mation run, now carrying on from the last obtained result. This is done by using this
result in the prevAns (‘previous answer’) parameter, while taking care that useStdInits
= FALSE has been specified. An example is

resultsl <- sienaO7(algorithml, data = mydata, effects = myeff,
prevAns = resultsl)

In this case, this second estimation run produced good results, with a maximum absolute
t-ratio for convergence equal to 0.0777. The output file gives more extensive results, viz.,
the averages and standard deviations of the deviations from targets and the resulting
t-ratios:

End of stochastic approximation algorithm, phase 3.

Total of 1822 iterations.

Parameter estimates based on 822 iteratioms,

basic rate parameter as well as

convergence diagnostics, covariance and derivative matrices based on 1000 iterations.

Information for convergence diagnosis.
Averages, standard deviations, and t-ratios for deviations from targets:
1. 0.2460 16.1494 0.0152
2 0.0560 14.3829 0.0039
3. 0.9520 44.5338 0.0214
4. 0.5380 14.5726 0.0369
5. -0.2080 4.8672 -0.0427

Good convergence is indicated by the t-ratios being close to zero.
Overall maximum convergence ratio = 0.1608.

For example, for the fourth parameter (3-cycles), the average deviation from the target
value was 0.5380, and the standard deviation across the 1000 simulations in Phase 3 was
14.5726. This yields a t-ratio of 0.5380/14.5726 = 0.0369. Large values of the averages
and standard deviations are in themselves not at all a reason for concern; only the ¢-ratio
is important.

6.1.3 Continued estimation to obtain convergence

Above, the prevAns parameter was mentioned which will lead to using the result from a
previous estimation as the initial value for the next estimation. If convergence is difficult to
obtain, one may use other settings of the estimation algorithm, given as parameters in the
sienaAlgorithmCreate() function, to try and improve convergence. The main parameters
of sienaAlgorithmCreate() that can be used for this purpose are the following. For the
technical background, see Siena_Algorithms.pdf which can be downloaded from the
SIENA website.

58

e doubleAveraging
This replaces the Robbins-Monro updating step by a double averaging step (Bather,
1989; Schwabe and Walk, 1996; Kushner and Yin, 2003) which can be more efficient.
Try doubleAveraging=0, which starts using this step from phase 2.1.

e diagonalize

This parameter may range from 0 to 1, and determines the extent to which the
matrix of derivatives of expected values with respect to parameters is diagonalized.
The value 1 (the default) gives greatest stability; smaller values may give greater
efficiency. Very small values (less than 0.2) may lead to an unstable algorithm.
Advice: try values such as 0.7, 0.5, or even 0.2; if the algorithm becomes unstable
reduce firstg (e.g., to 0.005 or 0.001) but if this does not help, the value used for
diagonalize is too small.

e n2start
This is the minimum length of phase 2.1, i.e., the first subphase of phase 2. The
default value is 2.52 x (p 4+ 7), where p is the number of estimated parameters.
The minimum lengths of the subsequent subphases are (2.52)*~!x n2start for sub-
phase k.
This implies the total duration of the algorithm will be roughly proportional to
n2start. One may try using a value higher than the default.

o firstg
This determines the step sizes in the estimation algorithm. If the algorithm is
unstable, use a smaller value (but greater than 0).

If convergence is not very good even with repeated estimation with the prevAns option,
sometimes it can be useful to try and use updateTheta() to copy the results from the earlier
estimation rather than prevAns; this will use the same starting values but not skip Phase 1
of the estimation algorithm, and sometimes this turns out to lead to faster convergence.

The following function will iterate the execution of siena07() until it has converged. It
can be modified to suit your further purposes. The argument ansO can be employed to
use an earlier existing ‘on track’ estimation result, if available, as the initial value for the
algorithm.

sienaO7ToConvergence <- function(alg, dat, eff, ansO0=NULL, ...){
numr <- O
ans <- sienaO7(alg, data=dat, effects=eff, prevAns=ansO, ...) # the first run
repeat {
save(ans, file=paste("ans",numr,".RData",sep="")) # to be safe
numr <- numr+1 # count number of repeated runs
tm <- ans$tconv.max # convergence indicator
cat(numr, tm,"\n") # report how far we are
if (tm < 0.25) {break} # success
if (tm > 10) {break} # divergence without much hope

59

of returning to good parameter values
if (numr > 100) {break} # now it has lasted too long

ans <- siena0O7(alg, data=dat, effects=eff, prevAns=ans, ...)
}

if (tm > 0.25)

{
cat("Warning: convergence inadequate.\n")

+

ans

Another approach that sometimes can be helpful to obtain convergence in difficult
situations is to gradually build up the model, adding further effects while using the prevAns
parameter to use previous estimates as starting values for the next, extended model. This
may be more successful than estimating a complicated model right from the start.

6.2 What to do if there are convergence problems

If there are persisting convergence problems even after repeated estimations using the
prevAns parameter and trying out various settings for the algorithm as suggested in the
preceding sections, this may have several reasons.

e The data specification was incorrect (e.g., because the coding was not given prop-
erly).

e The starting values were poor. Try restarting from the standard initial values (a
certain non-zero value for the density parameter, and zero values for the other pa-
rameters); or from values obtained as the estimates for a simpler model that gave
no problems. The initial default parameter values can be obtained by choosing the
model option “standard initial values”.

e The model does not fit well in the sense that even with well-chosen parameters it
will not give a good representation of the data.

This can be the case, e.g., when there is a large heterogeneity between the actors
which is not well represented by effects of covariates. The out-degrees and in-degrees
are given in the begin of the SIENA output to be able to check whether there are
outlying actors having very high in- or out-degrees, or a deviating dynamics in their
degrees. Strong heterogeneity between the actors will have to be represented by
suitable covariates; if these are not available, one may define one or a few dummy
variables each representing an outlying actor, and give this dummy variable an ego
effect in the case of deviant out-degrees, and an alter effect in the case of deviant
in-degrees.

Sometimes transitivity can better be modeled by the GWESP effects (search for this
term in the manual) than by transitive triplers. This may help with convergence.

60

Another possibility is that there is time heterogeneity. Indications about this can
be gathered also from the descriptives given in the start of the output file: the
number of changes upward and downward, in the network and also — if any — in the
dependent behavioral variable. If these do not show a smooth or similar pattern
across the observations, then it may be useful to include actor variables representing
time trends. These could be smooth — e.g., linear — but they also could be dummy
variables representing one or more observational periods; these must be included as
an ego effect to represent time trends in the tendency to make ties (or to display
higher values of the behavior in question). Further see Section 5.9 for how to discover
and handle time heterogeneity.

e Too many weak effects are included. Use a smaller number of effects, delete non-
significant ones, and increase complexity step by step. Retain parameter estimates
from the last (simpler) model as the initial values for the new estimation proce-
dure, provided for this model the algorithm converged without difficulties; here also
prevAns may be used.

Effects that are left out of the estimation can still be used in the model by specifying
them with test=TRUE, fix=TRUE; this will not burden the estimation process, and
give information (with a score-type test, see Section 8.2) about the significance of
this excluded effect.

Usually this will be applied with initialValue=0, the default. But sometimes it
may be done with a plausible non-zero value for initialValue.

e Two or more effects are included that are almost collinear in the sense that they
can both explain the same observed structures. This will be seen in high absolute
values of correlations between parameter estimates, presented in the summary of the
results object and also in the output file. In this case it may be better to exclude
one of these effects from the model.

e An effect is included that is large but of which the precise value is not well-determined
(see above: section on fixing parameters). This will be seen in estimates and standard
errors both being large and often in divergence of the algorithm. Fix this parameter
to some large value. (Note: large here means, e.g., more than 5 or less than -5;
depending on the effect, of course.)

Another trick that may be tried is the following. Sometimes one (or some) of the rate
parameters are especially the causes of difficulties of convergence. Then one may fix this
parameter at a good value, and estimate the rest of the parameters. Suppose that this
is feasible, i.e., good convergence can be obtained provided that this rate parameter is
fixed. Then by trial and error one may find a fixed value for this rate parameter for which
the t-ratio for convergence for this parameter also is acceptable (less than 0.2, preferably
less than 0.1). Since normally, rate parameters are nuisance parameters (i.e., not of focal
interest), this can be an acceptable way out.

61

6.3 Some important components of the sienaFit object

If a user would like to do further calculations, it can be useful to know about the following
components of sienaFit objects. Suppose the object is called ans. Some of the components
are the following. Further details are in the help file for siena07.

ans$theta

ans$covtheta
ans$se

ans$pp
ans$targets
ans$tconv
ans$tmax
ans$tconv.max

ans$sf
ans$msf
ans$dfra
ans$ac
ans$sims

ans$estMeans

ans$effects
ans$f

ans$version
ans$revision

estimates

(but not for the rate parameter used for conditioning;

if time dummies were requested using sienaTimeFix,

these are also in theta).

covariance matrix of the estimates

standard errors of the estimates

number of parameters

targets (observed statistics) for Method of Moments estimation
t-ratios for convergence for each of the parameters

maximum absolute value of these ratios for non-fixed parameters
maximum t-ratio for convergence for

any linear combination of the parameters,

called the overall maximum convergence ratio

generated statistics in Phase 3 (targets subtracted)
covariance matrix of ans$sf

estimated derivative of expected statistics w.r.t. parameters,
autocorrelations of generated statistics in Phase 3

simulated values of dependent variables in Phase 3 of the algorithm
for Methods of Moments estimation (see Section 9.1),

if returnDeps = TRUE in the call of siena07

estimated expected values of the target statistics

(if the Dolby option was chosen, this is

not equal to the average of the simulations!)

the effects object with only the requested effects

everything needed for the calculations in C++;

in particular, the data set is hidden in here, and can be reconstructed.
Digging in will show as mat1 the network data, as mat2 the missings,
and as mat3 the structurally determined values.

All these are stored as transposed edge lists.

Programmers can consult function initializeFRAN()

for the creation and hence contents of this object.

the RSiena/Test version

the R-Forge revision.

Like for any R object, the internal structure of the sienaFit object can be requested by

requesting

sink("ans.txt")

62

str(ans)
sink()

This writes the structure to the external file ans. txt, which may be better than printing
it to the console, because it is a long story.
A limited representation of the structure of this object is obtained from

sink("ans.txt")
str(ans, 1)
sink()

To get some further understanding, one could investigate some of the components of
this object as follows. Note that putting a statement between parentheses like in
(A <- B) is just a way for constructing the object A and showing it at the same time.

Compute the covariance matrix of the generated statistics
print(covsf <- cov(ans$sf))

This is the same as ans$msf, provided there are no fixed parameters.
The means and standard deviations of the generated statistics minus targets:
(v <- colMeans(ans$sf))

(s <- apply(ans$sf, 2, sd))

This also allows to compute the convergen