
RHRV Quick Start Tutorial

Constantino A. Garćıa∗, Abraham Otero, Xosé Vila,
Arturo Méndez, Leandro Rodŕıguez-Liñares and Maŕıa José Lado

∗E-mail: constantinoantonio.garcia@usc.es

October 19, 2015

Abstract

In this document, a brief description of the RHRV package is presented [7]. Due to the large collection of
features that RHRV offers, we shall only refer to the most important functionality to perform a basic Heart Rate
Variability (HRV) analysis. The interested reader is referred to the free tutorial [5] for further information.

1 Installation

This guide assumes that the user has some basic knowledge of the R environment. If this is not your case, you
can find a nice introduction to R in the R project homepage [2]. The R project homepage also provides an “R
Installation and Administration”guide. Once you have download and installed R, you can install RHRV by typing:

> install.packages("RHRV", dependencies = TRUE)

You can also install it by downloading it from the CRAN [1]. Once the download has finished, open R , move
to the directory where you have download it (by using the R command setwd) and type:

> install.packages("RHRV_XXX",repos=NULL)

Here, XXX is the version number of the library. To start using the library, you should load it by using the
library command:

2 A 15-minutes guide to RHRV

We propose the following basic program flow to perform a basic HRV analysis using the RHRV package:

1. Load heart beat positions. For the sake of simplicity, in this document we will focus in ASCII files.

2. Build the instantaneous Heart Rate (HR) series and filter it to eliminate spurious points.

3. Plot the instantaneous HR series.

4. Interpolate the instantaneous HR series to obtain a HR series with equally spaced values.

5. Plot the interpolated HR series.

6. Perform the desired analysis. The user can perform time-domain analysis, frequency-domain analysis and/or
nonlinear analysis. Since nonlinear analysis techniques make use of advanced concepts, this document focuses
in time and frequency domain analysis.

7. Plot the results of the analysis that has been performed.

In section 3 we will address points 1-5, whereas in section 4 we will deal with points 6 and 7. All the examples of
this chapter will use the example beats file “example.beats” that may be downloaded from http://rhrv.r-forge.r-
project.org/. Aditionally, the data from this file has been included in RHRV. The user can access this data
executing:

1

mailto:constantinoantonio.garcia@usc.es
http://rhrv.r-forge.r-project.org/
http://rhrv.r-forge.r-project.org/

> data("HRVData")

> data("HRVProcessedData")

The example file is an ASCII file that contains the beats positions obtained from a 2 hours ECG (one beat
position per row). The subject of the ECG is a patient suffering from paraplegia and hypertension (systolic
blood pressure above 200 mmHg). During the recording, he is supplied with prostaglandin E1 (a vasodilator that
is rarely employed) and systolic blood pressure fell to 100 mmHg for over an hour. Then, the blood pressure
increased slowly up to approximately 150 mmHg.

3 Preprocessing the Heart Rate series

3.1 Load heart beat positions

RHRV uses a custom data structure called HRVData to store all HRV information related to the signal being
analyzed. Figure 1 summarizes the most important fields in the HRVData structure. HRVData is implemented as
a list object in R language. This list contains all the information corresponding to the imported signal to be ana-
lyzed, some parameters generated by the pre-processing functions and the HRV analysis results. It must be noted
that, since the HRVData structure is a list, each of its fields can be accessed using the $ operator of the R language.

HRVData

Beat
Time

niHR

RR

...

...

...

HR

...

TimeAnalysis

SDNN
SDANN

...

NonLinearAnalysis

FreqAnalysis

ULF
VLF
LF
HF
...

...Index of the analysis
1 n

...Index of the analysis
1 n ...Index of the analysis

1 n

correlation
lyapunov

...

Figure 1: The most important fields stored in the HRVData structure.

A new HRVData structure is created using the CreateHRVData function. In order to obtain detailed infor-
mation about the operations performed by the program, we can activate a verbose mode using the SetVerbose
function.

> hrv.data = CreateHRVData()

> hrv.data = SetVerbose(hrv.data, TRUE)

After creating the empty HRVData structure the next step should be loading the signal that we want to
analyze into this structure. RHRV imports data files containing heart beats positions. Supported formats include

2

ASCII (LoadBeatAscii function), EDF (LoadBeatEDFPlus), Polar (LoadBeatPolar), Suunto (LoadBeatSuunto)
and WFDB data files (LoadBeatWFDB) [6]. For the sake of simplicity, we will focus in ASCII files containing
one heart beat occurrence time per line. We also assume that the beat occurrence time is specified in seconds.
For example, let’s try to load the “example.beats” file, whose first lines are shown below. Each line denotes the
occurrence time of each heartbeat.

0

0.3280001

0.7159996

1.124

1.5

1.88

In order to load this file, we may write:

> hrv.data = LoadBeatAscii(hrv.data, "example.beats",

+ RecordPath = "beatsFolder")

** Loading beats positions for record: example.beats **

Path: beatsFolder

Scale: 1

Date: 01/01/1900

Time: 00:00:00

Number of beats: 17360

The console information is only displayed if the verbose mode is on. The Scale parameter is related to the
time units of the file. 1 denotes seconds, 0.1 tenth of seconds and so on. The Date and Time parameters specify
when the file was recorded. The RecordPath can be omitted if the RecordName is in the working directory.

Further information about this function and other input formats may be found in the online tutorial [5].

3.2 Calculating HR and filtering

To compute the HRV time series the BuildNIHR function can be used (Build Non Interpolated Heart Rate). This
function constructs both the RR and instantaneous heart rate (HR) series. We will refer to the instantaneous
Heart Rate (HR) as the niHR (non interpolated Heart Rate) series. Both series are stored in the HRVData
structure.

> hrv.data = BuildNIHR(hrv.data)

** Calculating non-interpolated heart rate **

Number of beats: 17360

A Filtering operation must be carried out in order to eliminate outliers or spurious points present in the niHR
time series with unacceptable physiological values. Outliers present in the series originate both from detecting an
artifact as a heartbeat (RR interval too short) or not detecting a heartbeat (RR interval too large). The outliers
removal may be both manual or automatic. In this quick introduction, we will use the automatic removal. The
automatic removal of spurious points can be performed by the FilterNIHR function. The FilterNIHR function
also eliminates points with unacceptable physiological values.

> hrv.data = FilterNIHR(hrv.data)

** Filtering non-interpolated Heart Rate **

Number of original beats: 17360

Number of accepted beats: 17215

3.3 Interpolating

In order to be able to perform spectral analysis in the frequency domain, a uniformly sampled HR series is required.
It may be constructed from the niHR series by using the InterpolateNIHR function, which uses linear (default)

3

or spline interpolation. The frequency of interpolation may be specified. 4 Hz (the default value) is enough for
most applications.

> hrv.data = InterpolateNIHR (hrv.data, freqhr = 4)

** Interpolating instantaneous heart rate **

Frequency: 4Hz

Number of beats: 17215

Number of points: 29592

3.4 Plotting

Before applying the different analysis techniques that RHRV provides, it is usually interesting to plot the time
series with which we are working. The PlotNIHR function permits the graphical representation of the niHR series
whereas the PlotHR function permits to graphically represent the interpolated HR time series.

> PlotNIHR(hrv.data)

> PlotHR(hrv.data)

The plots obtained with PlotNIHR and PlotHR are shown in Figures 2 and 3, respectively.

0 2000 4000 6000

80
10

0
12

0
14

0
16

0
18

0

time (sec.)

H
R

 (
be

at
s/

m
in

.)

Non−interpolated instantaneous heart rate

Figure 2: Non interpolated Heart Rate time plot example.

As seen in the Figures 2 and 3, the patient initially had a heart rate of approximately 160 beats per minute.
Approximately half an hour into record the prostaglandina E1 was provided, resulting in a drop in heart rate to
about 130 beats per minute during about 40 minutes, followed by a slight increase in heart rate.

4

0 2000 4000 6000

80
10

0
12

0
14

0
16

0
18

0

time (sec.)

H
R

 (
be

at
s/

m
in

.)

Interpolated instantaneous heart rate

Figure 3: Interpolated Heart Rate time plot example.

4 Analysing the Heart Rate series

4.1 Time-domain analysis techniques

The simplest way of performing a HRV analysis in RHRV is using the time analysis techniques provided by
the CreateTimeAnalysis function. This function computes the most widely used time-domain parameters and
stores them in the HRVData structure. The most interesting parameter that the user may specify is the width
of the window that will be used to analyze short segments from the RR time series (size parameter, in seconds).
Concretely, several statistics will be computed for each window. By studying how these statistics evolve through
the recording, a set of time parameters will be computed (For example, the SDANN and SDNNIDX parameters).
Other important argument that can be tuned is the interval width of the bins that will be used to compute the
histogram (interval parameter). As an alternative to the interval parameter, the user may use the numofbins
parameter to specify the number of bins in the histogram. A typical value for the size parameter is 300 seconds
(which is also the default value), whereas that a typical value for the interval is about 7.8 milliseconds (also default
value).

5

> hrv.data = CreateTimeAnalysis(hrv.data, size = 300,

+ interval = 7.8125)

** Creating time analysis

Size of window: 300 seconds

Width of bins in histogram: 7.8125 milliseconds

Number of windows: 24

Data has now 1 time analyses

SDNN: 39.52197 msec.

SDANN: 31.03599 msec.

SDNNIDX: 24.74394 msec.

pNN50: 8.969443 %

SDSD: 30.28689 msec.

r-MSSD: 30.28601 msec.

IRRR: 56 msec.

MADRR: 16 msec.

TINN: 173.9873 msec.

HRV index: 11.13519

If the verbose mode is on, the program will display the results of the calculations on the screen. Otherwise,
the user must access the “raw” data using the $ operator of the R language.

Finally, we show a complete example for performing a basic time-domain analysis. The console output is
also shown. It should be noted that it is not necessary to perform the interpolation process before applying the
time-domain techniques since these parameters are calculated directly from the non interpolated RR-time series.

> hrv.data = CreateHRVData()

> hrv.data = SetVerbose(hrv.data,FALSE)

> hrv.data = LoadBeatAscii(hrv.data,"example.beats","beatsFolder")

> hrv.data = BuildNIHR(hrv.data)

> hrv.data = FilterNIHR(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)

> hrv.data = CreateTimeAnalysis(hrv.data,size=300,interval = 7.8125)

** Creating time analysis

Size of window: 300 seconds

Width of bins in histogram: 7.8125 milliseconds

Number of windows: 24

Data has now 1 time analyses

SDNN: 39.52197 msec.

SDANN: 31.03599 msec.

SDNNIDX: 24.74394 msec.

pNN50: 8.969443 %

SDSD: 30.28689 msec.

r-MSSD: 30.28601 msec.

IRRR: 56 msec.

MADRR: 16 msec.

TINN: 173.9873 msec.

HRV index: 11.13519

> cat("The SDNN has a value of ",hrv.data$TimeAnalysis[[1]]$SDNN," msec.\n")

The SDNN has a value of 39.52197 msec.

6

4.2 Frequency-domain analysis techniques

A major part of the functionality of the RHRV package is dedicated to the spectral analysis of HR signals. Be-
fore performing the frequency analysis, a data analysis structure must be created. Such structure shall store the
information extracted from a variability analysis of the HR signal as a member of the FreqAnalysis list, under the
HRVData structure. Each analysis structure created is identified by a unique number (in order of creation). To
create such an analysis structure, the CreateFreqAnalysis function is used.

> hrv.data = CreateFreqAnalysis(hrv.data)

** Creating frequency analysis

Data has now 1 frequency analysis

Notice that, if verbose mode is on, the CreateFreqAnalysis function informs us about the number of frequency
analysis structures that have been created. In order to select a particular spectral analysis, we will use the in-
dexFreqAnalysis parameter in the frequency analysis functions.

The most important function to perform spectral HRV analysis is the CalculatePowerBand function. The
CalculatePowerBand function computes the spectrogram of the HR series in the ULF (Ultra Low Frequency),
VLF (Very Low Frequency), LF (Low Frequency) and HF (High Frequency) bands using the Short Time Fourier
Transform (STFT) or wavelets. Boundaries of the bands may be chosen by the user. If boundaries are not speci-
fied, default values are used: ULF, [0, 0.03] Hz; VLF, [0.03, 0.05] Hz; LF, [0.05, 0.15] Hz; HF, [0.15, 0.4] Hz. The
type of analysis can be selected by the user by specifying the type parameter of the CalculatePowerBand function.
The possible options are either “fourier” or “wavelet”. Because of the backwards compatibility, the default value
for this parameter is “fourier”.

4.2.1 Fourier

When using the STFT to compute the spectrogram using the CalculatePowerBand function, the user may specify
the following parameters related with the STFT :

• Size: the size of window for calculating the spectrogram measured in seconds. The RHRV package employs
a Hamming window to perform the STFT.

• Shift : the displacement of window for calculating the spectrogram measured in seconds.

• Sizesp: the number of points for calculating each window of the STFT. If the user does not specify it, the
program selects a proper length for the calculations (it selects sizesp so that sizesp = 2m, for some m ∈ N).

When using CalculatePowerBand, the indexFreqAnalysis parameter (in order to indicate which spectral anal-
ysis we are working with) and the boundaries of the frequency bands may also be specified.

As an example, let’s perform a frequency analysis in the typical HRV spectral bands based on the STFT . We
may select 300 s (5 minutes) and 30 s as window size and displacement values because these are typical values
when performing HRV spectral analysis. We let the program choose the value of the zero-padding. Thus, we may
write:

7

> hrv.data = CreateHRVData()

> hrv.data = SetVerbose(hrv.data,FALSE)

> hrv.data = LoadBeatAscii(hrv.data,"example.beats","beatsFolder")

> hrv.data = BuildNIHR(hrv.data)

> hrv.data = FilterNIHR(hrv.data)

> hrv.data = InterpolateNIHR (hrv.data, freqhr = 4)

> hrv.data = CreateFreqAnalysis(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)

> hrv.data = CalculatePowerBand(hrv.data , indexFreqAnalysis= 1,

+ size = 300, shift = 30, type = "fourier",

+ ULFmin = 0, ULFmax = 0.03, VLFmin = 0.03, VLFmax = 0.05,

+ LFmin = 0.05, LFmax = 0.15, HFmin = 0.15, HFmax = 0.4)

** Calculating power per band **

** Using Fourier analysis **

Windowing signal... 237 windows

Power per band calculated

Alternatively, since most values of the arguments match its default values we could have written:

> hrv.data = CalculatePowerBand(hrv.data , indexFreqAnalysis= 1,

+ size = 300, shift = 30)

4.2.2 Wavelets

When using Wavelet analysis with the CalculatePowerBand function, the user may specify:

• Wavelet : mother wavelet used to calculate the spectrogram. Some of the most widely used Wavelets are
available: Haar (“haar”), extremal phase (“d4”, “d6”, “d8” and “d16”) and the least asymmetric Daubechies
(“la8”, “la16” and “la20”) and the best localized Daubechies (“bl14” and “bl20”) Wavelets among others. The
default value is “d4”. The name of the wavelet specifies the “family” (the family determines the shape of
the Wavelet and its properties) and the length of the wavelet. For example, “la8” belongs to the Least
Asymmetric family and has a length of 8 samples. We may give a simple advice for wavelet selection
based on the wavelet’s length: shorter wavelets usually have better temporal resolution, but worse frequency
resolution. On the other hand, longer wavelets usually have worse temporal resolution, but they provide
better frequency resolution. Better temporal resolution means that we can study shorter time intervals.
On the other hand, a better frequency resolution means better “frequency discrimination”. That is, shorter
wavelets will tend to fail when discriminating close frequencies.

• Bandtolerance: maximum error allowed when the Wavelet-based analysis is performed [3], [4]. It can be
specified as an absolute or a relative error depending on the “relative”parameter value. Default value is 0.01.

• Relative: logic value specifying which type of band tolerance shall be used: relative (in percentage) or
absolute (default value). For the sake of simplicity, in this document we will use the absolute band tolerance.

Let’s analyze the same frequency bands as before but using the wavelet-algorithm. For the sake of simplicity,
we will use an absolute tolerance of 0.01 Hz. We may select the least asymmetric Daubechies of width 8 (“la8”)
as wavelet, since it provides a good compromise between frequency and time resolution. Thus, we may write:

8

> hrv.data = CreateHRVData()

> hrv.data = SetVerbose(hrv.data,FALSE)

> hrv.data = LoadBeatAscii(hrv.data,"example.beats","beatsFolder")

> hrv.data = BuildNIHR(hrv.data)

> hrv.data = FilterNIHR(hrv.data)

> hrv.data = InterpolateNIHR (hrv.data, freqhr = 4)

> hrv.data = CreateFreqAnalysis(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)

> hrv.data = CalculatePowerBand(hrv.data , indexFreqAnalysis= 1,

+ type = "wavelet", wavelet = "la8", bandtolerance = 0.01, relative = FALSE,

+ ULFmin = 0, ULFmax = 0.03, VLFmin = 0.03, VLFmax = 0.05,

+ LFmin = 0.05, LFmax = 0.15, HFmin = 0.15, HFmax = 0.4)

** Calculating power per band **

** Using Wavelet analysis **

Power per band calculated

4.2.3 Creating several analyses

In the previous examples we have used just one frequency analysis to illustrate the basic use of CalculatePower-
Band. However, it is possible to create and use the same HRVData for performing several spectral analysis. When
we do this, we use the parameter “indexFreqAnalysis” to indicate which spectral analysis we are working with.
For example, we could perform both Fourier and wavelet based analysis:

> hrv.data = CreateFreqAnalysis(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)

> hrv.data = CalculatePowerBand(hrv.data , indexFreqAnalysis= 1,

+ size = 300, shift = 30, sizesp = 2048, type = "fourier")

** Calculating power per band **

** Using Fourier analysis **

Windowing signal... 237 windows

Power per band calculated

> hrv.data = CreateFreqAnalysis(hrv.data)

** Creating frequency analysis

Data has now 2 frequency analysis

> hrv.data = CalculatePowerBand(hrv.data , indexFreqAnalysis= 2,

+ type = "wavelet", wavelet = "la8", bandtolerance = 0.01, relative = FALSE)

** Calculating power per band **

** Using Wavelet analysis **

Power per band calculated

4.2.4 Plotting

RHRV also includes plotting utilities for representing the spectrogram of each frequency band: the PlotPower-
Band function. The PlotPowerBand receives as inputs the HRVData structure and the index of the frequency
analysis that the user wants to plot (indexFreqAnalysis argument). Optionally, the user can specify additional
parameters for modifying the plots (whether to use or not normalized plots, specify the y-axis, etc.). For the sake
of simplicity we will only use the ymax parameter (for specifying the maximum y-axis of the power bands plot)
and the ymaxratio parameter (for specifying the maximum y-axis in the LF/HF plot).

If we want to plot the power bands computed in the previous example, we may use:

> PlotPowerBand(hrv.data, indexFreqAnalysis = 1, ymax = 200, ymaxratio = 1.7)

9

> PlotPowerBand(hrv.data, indexFreqAnalysis = 2, ymax = 700, ymaxratio = 50)

0 1000 2000 3000 4000 5000 6000 7000

0.
0

1.
0

LF
/H

F

0 1000 2000 3000 4000 5000 6000 7000

0
10

0
U

LF

0 1000 2000 3000 4000 5000 6000 7000

0
10

0
V

LF

0 1000 2000 3000 4000 5000 6000 7000

0
10

0
LF

0 1000 2000 3000 4000 5000 6000 7000

0
10

0

Time (seconds)

H
F

Power bands of HRV

Figure 4: Plot obtained with the PlotPowerBand for the Fourier-based analysis.

The plots obtained with PlotPowerBand are shown in Figures 4 and 5, respectively.

4.2.5 A brief comparison: Wavelets Vs. Fourier

Figures 4 and 5 illustrate some of the most important differences between Fourier and wavelet-based analysis.
The most important differences may be summarized as follows:

• The power range is not the same when using Fourier than when using wavelets due to the windowing used
in both techniques. Thus, we should avoid direct comparisons between the numerical results obtained with
Fourier with those obtained using wavelets.

• The Fourier’s power spectrum is smoother than the wavelet’s power spectrum. This is a consequence of
the higher temporal resolution that the wavelet-based analysis provides. We could try to increase Fourier’s
frequency resolution by decreasing the window’ size used in the analysis. The shorter window we use,
the sharper spectrum we get. Similarly, we can increase/decrease temporal resolution using shorter/larger
wavelets when performing wavelet-based analysis.

• The power spectrum obtained from the Fourier-based analysis has a smaller number of samples than the
original signal as a consequence of the use of windows. Conversely, the power spectrum obtained from the
wavelet-based analysis has the same number of samples as the original RR time series.

10

0 2000 4000 6000

0
20

50
LF

/H
F

0 2000 4000 6000

0
30

0
70

0
U

LF

0 2000 4000 6000

0
30

0
70

0
V

LF

0 2000 4000 6000

0
30

0
70

0
LF

0 2000 4000 6000

0
30

0
70

0

Time (seconds)

H
F

Power bands of HRV

Figure 5: Plot obtained with the PlotPowerBand for the Wavelet-based analysis.

11

References

[1] The comprehensive R archive network. http://cran.r-project.org/.

[2] The R project for statistical computing. http://www.r-project.org/.

[3] C.A. Garćıa, A. Otero, X.A. Vila, and M.J. Lado. An open source tool for heart rate variability wavelet-based
spectral analysis. In International Joint Conference on Biomedical Engineering Systems and Technologies,
BIOSIGNALS 2012, 2012.

[4] Constantino A. Garćıa, Abraham Otero, Xosé Vila, and David G. Márquez. A new algorithm for wavelet-based
heart rate variability analysis. Biomedical Signal Processing and Control, 8(6):542–550, 2013.

[5] Constantino A. Garćıa, Abraham Otero, Xosé Vila, Arturo Méndez, Leandro Rodŕıguez-Liñares, and Maŕıa
José Lado. Getting started with RHRV, http://rhrv.r-forge.r-project.org/tutorial/, 2013.

[6] G.B. Moody and R.G. Mark. The MIT-BIH arrhythmia database on cd-rom and software for use with it. In
Computers in Cardiology, pages 185–188, 1990.

[7] L. Rodŕıguez-Liñares, A.J. Méndez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gómez-Conde. An open source
tool for heart rate variability spectral analysis. Computer Methods and Programs in Biomedicine, 2010.

12

http://cran.r-project.org/
http://www.r-project.org/
http://rhrv.r-forge.r-project.org/tutorial/

	Installation
	A 15-minutes guide to RHRV
	Preprocessing the Heart Rate series
	Load heart beat positions
	Calculating HR and filtering
	Interpolating
	Plotting

	Analysing the Heart Rate series
	Time-domain analysis techniques
	Frequency-domain analysis techniques
	Fourier
	Wavelets
	Creating several analyses
	Plotting
	A brief comparison: Wavelets Vs. Fourier

