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Abstract

Quantiles play a fundamental role in statistics. The quantile function defines the dis-
tribution of a random variable and, thus, provides a way to describe the data that is
specular but equivalent to that given by the corresponding cumulative distribution func-
tion. There are many advantages in working with quantiles, starting from their properties.
The renewed interest in their usage seen in the last years is due to the theoretical, method-
ological and software contributions that have broadened their applicability. This paper
presents the R package Qtools, a collection of utilities for unconditional and conditional
quantiles.

Keywords: discrete random variables, goodness of fit, imputation, location-scale-shape mea-
sures, transformations.

1. Applications and theory of quantiles

Quantiles have a long history in applied statistics, especially the median. The analysis of
astronomical data by Galileo Galilei in 1632 (Hald 2003, p.149) and geodic measurements
by Roger Boscovich in 1757 (Koenker and Bassett 1985; Koenker 2005, p.2) are presumably
the earliest examples of application of the least absolute deviation (L1) estimator in its,
respectively, unconditional and conditional forms. However, it was Sir Francis Galton with
his remarkable studies on anthropometry to provide a more systematic definition of quantiles
and to popularize terms such as ‘median’, ‘quartile’ and ‘percentile’ (Galton 1882, 1885).
He was also responsible for introducing the ogive (Galton 1875), which today it is called
‘quantile function’. (However, it is not uncommon to find that the ogive is used as synonym
with cumulative distribution function.) Over time, the interest in the applications of quantiles
has grown in parallel with advances in the corresponding inference and computing algorithms.

The theoretical studies on unconditional and conditional quantiles of continuous random
variables started to appear in the statistical literature of the 20th century. According to
David (1995), it seems that the term ‘quantile’ itself was first used in print by Kendall (1940).
In his paper, Kendall showed that sample quantiles of independent and identically distributed
(iid) observations have an asymptotic normal distribution (see also Hald, 1998, for historical
notes on asymptotic studies on unconditional quantiles). The asymptotic theory of conditional
quantile functions is more recent, beginning from the work of Bassett and Koenker (1978)
on the median estimator and its generalization to other quantiles by Koenker and Bassett
(1978).

In the case of discrete data, studies have somewhat lagged behind, most probably because of
the analytical drawbacks surrounding the discontinuities that characterise discrete quantile
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functions. Some forms of approximation to continuity have been recently proposed to study
the large sample behavior of quantile estimators. For example, Ma, Genton, and Parzen
(2011) have demonstrated the asymptotic normality of unconditional sample quantiles based
on the definition of the mid-distribution function (Parzen 2004). Machado and Santos Silva
(2005) proposed inferential approaches to the estimation of conditional quantiles for counts
based on data jittering.

Finally, it is worth mentioning that asymptotic results are also available for unconditional (see
for example Oberhofer and Haupt 2005, and references therein) and conditional (Parente and
Santos Silva 2015) sample quantiles when data are not independent, as well as for nonlinear
median functions (Wang 1995).

The focus of this paper is on the package Qtools, a collection of utilities for unconditional
and conditional quantiles, written for the R statistical computing environment (R Core Team
2015) and available from the Comprehensive R Archive Network (CRAN) at http://CRAN.

R-project.org/package=Qtools.

2. Unconditional quantiles

2.1. Definition of quantiles and their properties

Let Y be a random variable with cumulative distribution function (CDF) FY and support SY .
The CDF, calculated at y ∈ SY , returns the probability FY (y) ≡ p = Pr (Y ≤ y). The quantile
function (QF) is defined as Q(p) = infy{FY (y) ≥ p}, 0 < p < 1. (Some authors consider
0 ≤ p ≤ 1. For practical purposes, it is simpler to exclude the endpoints 0 and 1.) When FY
is continuous and strictly monotone (hence, fY (y) ≡ F ′Y (y) > 0 for all y ∈ SY ), the quantile
function is simply the inverse of FY . In other cases, the one-to-one relationship between the
values of Y and the probability p is lost where the distribution function is piecewise constant
and, by convention, the quantile p is defined as the smallest value y such that FY (y) is at
least p.

Quantiles enjoy a number of properties. An excellent overview is given by Gilchrist (2000).
The advantages of using quantiles rather than probabilities lie in their ‘algebraic’ properties
which can be summarized in:

1. Qa+bY (p) = a+ bQY (p), a ∈ R, b ∈ R+ (location-shift rule);

2. if Q1(p) and Q2(p) are two QFs, then Q1(p) +Q2(p) is a QF (addition rule);

3. if Q1(p) and Q2(p) are two QFs, then πQ1(p) + (1 − π)Q2(p), 0 ≤ π ≤ 1, lies between
the two distributions (intermediate rule);

4. if Q1(p) and Q2(p) are two positive QFs, then Q1(p) · Q2(p) is a QF (multiplication
rule);

5. if QY (p) is the QF of Y, the reflection −QY (1− p) is the QF of −Y (reflection rule);

6. if QY (p) is the QF of Y, the reciprocal 1/QY (1−p) is the QF of 1/Y (reciprocal rule);

7. if h(·) is a non-decreasing function on R, then Qh(Y )(p) = h {QY (p)}. Hence QY (p) =
h−1

{
Qh(Y )(p)

}
(Q-tranformation rule or equivariance to monotone transformations).

http://CRAN.R-project.org/package=Qtools
http://CRAN.R-project.org/package=Qtools
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(Note that, in general, the last property does not hold for the expected value, i.e. E{h(Y )} 6=
h {E(Y )}.)
Sample quantiles for a random variable Y can be calculated in a number of ways, depending
on how they are defined (Hyndman and Fan 1996). For example, the function quantile in
the base package stats (R Core Team 2015) provides nine different sample quantile estimators,
which are based on the sample order statistics or the inverse of the empirical CDF. These
estimators are distribution-free as they do not depend on any parametric assumption about
F (or Q). Alternatively, one could consider a model for F (or Q), indexed by some low-
dimensional parameter, say θ. Estimation of θ can be carried out efficiently using one of
several available methods, such as maximum likelihood estimation (MLE), the method of
moments and the method of percentiles (Gilchrist 2000). For instance, suppose that Y follows
an exponential distribution

FY (y; θ) = 1− e−θy,

with rate θ ∈ R+. The corresponding quantile function is given by

QY (p; θ) = − log (1− p)
θ

.

Once the parameter’s estimate θ̂ is obtained, it is straightforward to predict Q̂Y (p; θ̂) for any
0 < p < 1.

Distribution-free and distribution-based quantile estimation obviously differ in some respects.
A major distinction can be made in terms of the possible range of predictions. In contrast
to a distribution-free estimator, a distribution-based approach will yield predictions that are
not constrained to lie between the first and last order sample statistics. However, extrapola-
tion outside the observed range of values should always be taken with a pinch of salt. The
main focus of the package Qtools is on the distribution-free approach, though some on-going
developments of distribution-based quantile methods will be described in the next sections.

2.2. Sample quantiles and large-n properties

Let Yn = (Y1, Y2, . . . , Yn) be an iid sample of size n from the population FY . Let ξp denote

the pth population quantile and ξ̂p the corresponding sample quantile based on the sample
Yn. (The subscripts will be dropped occasionally to ease notation, e.g. F will be used in

place of FY or ξ in place of ξp.) In the continuous case, it is well known that
√
n
(
ξ̂p − ξp

)
is

approximately normal with mean zero and variance

ω2 =
p(1− p)
{fY (ξp)}2

. (1)

A more general result is obtained when the Yi’s are independent with common ξp but different
distribution function, i.e. Yi ∼ FYi . In this case the variance depends on the density fYi , i.e.

ω2
i =

p(1− p)
{fYi(ξp)}2

. (2)

The density evaluated at the pth quantile, f(ξp), is called density-quantile function by Parzen
(1979). Its reciprocal, s(p) ≡ 1/f(ξp), is called sparsity function (Tukey 1965) or quantile-
density function (Parzen 1979). It is easy to verify that s(p) = dQ(p)/dp.
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As mentioned in the previous section, the discontinuities of FY when Y is discrete represent
a mathematical inconvenience. Ma et al. (2011) derived the asymptotic distribution of the
sample mid-quantiles, that is, the sample quantiles based on the mid-distribution function
(mid-CDF). The latter is defined as FmidY (y) = FY (p) − 0.5pY (y), where pY (y) denotes the
probability mass function (Parzen 2004). In particular, they showed that, as n becomes large,
√
n
(
ξ̂p − ξp

)
is approximately normal with mean 0. Under iid assumptions, the expression

for the variance ω2 is similar to that in (1); see Ma et al. (2011) for details.
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Figure 1: Cumulative distribution (a) and quantile (b) functions for the ‘die rolling’ experi-
ment. The ordinary CDF and quantile function are represented by step-functions (solid lines),
with the convention that, at the point of discontinuity or ‘jump’, the function takes its value
corresponding to the ordinate of the filled circle as opposed to that of the hollow circle. The
mid-CDF and mid-quantile functions are represented by piecewise linear functions (dashed
lines) connecting the filled squares.

An illustration based on the outcome of rolling a fair die is given in Figure 1. In this ex-
periment, the variable Y is discrete and each of the six values has a probability 1/6. The
mid-distribution and mid-quantile functions interpolate between the steps of, respectively, the
ordinary CDF and quantile functions.

The package Qtools provides the functions midecdf and midquantile, which return an object
of class ‘list’ containing x and y coordinates, along with the corresponding interpolating
function as an attribute named ‘function’. This is shown in the example below.

R> library("Qtools")

R> set.seed(467)

R> y <- rpois(1000, 4)

R> pmid <- midecdf(y)

R> xmid <- midquantile(y, probs = pmid$y)

R> pmid

$x

[1] 0 1 2 3 4 5 6 7 8 9 10 12
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$y

[1] 0.0110 0.0530 0.1555 0.3305 0.5365 0.7175 0.8450 0.9215 0.9635 0.9860

[2] 0.9965 0.9995

attr(,"function")

[...]

R> xmid

$x

[1] 0.0110 0.0530 0.1555 0.3305 0.5365 0.7175 0.8450 0.9215 0.9635 0.9860

[2] 0.9965 0.9995

$y

[1] 0 1 2 3 4 5 6 7 8 9 10 12

attr(,"function")

[...]

A confidence interval for sample mid-quantiles can be obtained using midquantile.ci. This
function returns an object of class ‘data.frame’ containing sample mid-quantiles, lower and
upper bounds of the confidence interval of a given level (95% by default), along with standard
errors as an attribute named ‘stderr’. This is shown below using the sample y generated in
the previous example.

R> x <- midquantile.ci(y, probs = 1:3/4, level = 0.95)

R> x

midquantile lower upper

25% 2.540000 2.416462 2.663538

50% 3.822816 3.693724 3.951907

75% 5.254902 5.072858 5.436946

R> attr(x, "stderr")

[1] 0.06295447 0.06578432 0.09276875
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2.3. LSS - Location, scale and shape of a distribution

Since the cumulative distribution and quantile functions are two sides of the same coin, the
location, scale and shape (LSS) of a distribution can be examined using one or the other.
Well-known quantile-based measures of location and scale are the median and inter-quartile
range (IQR), respectively. Similarly, there are also a number of quantile-based measures for
skewness and kurtosis (Groeneveld and Meeden 1984; Groeneveld 1998; Jones, Rosco, and
Pewsey 2011).

Define the ‘central’ portion of the distribution as that delimited by the quantiles Q(p) and
Q(1− p), 0 < p < 0.5, and define the ‘tail’ portion as that lying outside these quantiles. Let
IPR(p) = Q(1− p)−Q(p) denote the inter-quantile range at level p. Building on the results
by Horn (1983) and Ruppert (1987), Staudte (2014) considered the following identity:

IPR(p)

IPR(r)︸ ︷︷ ︸
kurtosis

=
IPR(p)

IPR(q)︸ ︷︷ ︸
tail-weight

· IPR(q)

IPR(r)︸ ︷︷ ︸
peakedness

, (3)

where 0 < p < q < r < 0.5. These quantile-based measures of shape are sign, location and
scale invariant. As compared to moment-based indices, they are also more robust to outliers
and easier to interpret (Groeneveld 1998; Jones et al. 2011).

It is easy to verify that a quantile function can be written as

Q(p) = Q(0.5)︸ ︷︷ ︸
median

+
1

2
IPR(0.25)︸ ︷︷ ︸

IQR

· IPR(p)

IPR(0.25)︸ ︷︷ ︸
shape index

·
(
Q(p) +Q(1− p)− 2Q(0.5)

IPR(p)︸ ︷︷ ︸
skewness index

−1

)
. (4)

This identity establishes a relationship between the location (median), scale (IQR) and shape
of a distribution. (This identity appears in Gilchrist (2000, p.74) with an error of sign.
See also Benjamini and Krieger (1996, eq.1).) The quantity IPR(p)/IPR(0.25) in (4) is
loosely defined as ‘shape index’ (Gilchrist 2000, p.72), although it can be seen as the tail-
weight measure given in (3) when p < 0.25. For symmetric distributions, the contribution of
the skewness index (Gilchrist 2000, p.53) vanishes. Note that the skewness index not only
is location and scale invariant, but is also bounded between −1 and 1 (as opposed to the
Pearson’s third standardized moment which can be infinite or even undefined).

The function qlss provides a quantile-based LSS summary as defined in (4) of either a
theoretical or an empirical distribution. It returns an object of class ‘qlss’, which is a list
containing measures of location (median), scale (IQR and IPR), and shape (skewness and
shape indices) for each of the probabilities specified in the argument probs (by default, probs
= 0.1). The quantile-based LSS summary of the normal distribution is given in the example
below for p = 0.1. The argument fun can take any quantile function whose probability
argument is named ‘p’ (this is the case for many standard quantile functions in R, e.g., qt,
qchisq, qf, etc.).

R> qlss(fun = "qnorm", probs = 0.1) # equivalent to qlss()

$location

$location$median
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[1] 0

$scale

$scale$IQR

[1] 1.34898

$scale$IPR

0.1

2.563103

$shape

$shape$skewness

0.1

0

$shape$shape

0.1

1.900031

attr(,"class")

[1] "qlss"

An empirical example is now illustrated using the faithful data set, which contains 272
observations on waiting time (minutes) between eruptions and the duration (minutes) of the
eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA. Summary
statistics are given in Table 1.

Minimum Q1 Q2 Q3 Maximum

Waiting time 43.0 58.0 76.0 82.0 96.0
Duration 1.6 2.2 4.0 4.5 5.1

Table 1: Minimum, maximum and three quartiles (Q1, Q2, Q3) for waiting time and duration
in the Old Faithful Geyser data set.

Suppose the interest is in describing the distribution of waiting times. The estimated density
is plotted in Figure 2, along with the mid-quantile function. The distribution is bimodal with
peaks at around 54 and 80 minutes. Note that qlss takes the argument type as well as any
other argument for the function quantile.

R> y <- faithful$waiting

R> qlss(y, probs = c(0.05,0.1,0.25), type = 7)

$location

$location$median

[1] 76

$scale
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Figure 2: Estimated density (a) and empirical mid-quantile (b) functions of waiting time
between eruptions in the Old Faithful Geyser data set.

$scale$IQR

[1] 24

$scale$IPR

0.05 0.1 0.25

41 35 24

$shape

$shape$skewness

0.05 0.1 0.25

-0.3658537 -0.4285714 -0.5000000

$shape$shape

0.05 0.1 0.25

1.708333 1.458333 1.000000

attr(,"class")

[1] "qlss"

At p = 0.1, the skewness index is approximately −0.43, which denotes a rather strong left
asymmetry. As for the shape index, which is equal to 1.46, one could say that the tails of
this distribution weigh less than those of a normal distribution (1.90), though of course a
comparison between unimodal and bimodal distributions is not meaningful.
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3. Conditional quantiles

3.1. Definition of conditional quantiles
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Figure 3: (a) Probability difference (à la Kolmogorov–Smirnov); (b) Quantile difference (à la
Lehmann–Doksum).

Conditional modeling of quantiles can be easily illustrated starting from the simple case in
which two populations are contrasted in relation to some characteristic Y . Let F0(y) and
F1(y) denote the cumulative distribution functions (CDFs) of Y in the two populations, and
let µ0 =

∫∞
−∞ y dF0(y) and µ1 =

∫∞
−∞ y dF1(y) be their respective means. The two CDFs are

plotted in Figure 3. The question of whether and how F1 differs from F0 can be approached
by comparing, for any fixed value y, the distance between the CDFs along the probability
(vertical) axis. Therefore

∆p(y) = F1(y)− F0(y).

A discrepancy between the two distributions at some value y would result in a positive or
negative ∆p(y). The largest (in magnitude) of all the differences ∆p(y) is used to calculate
the Kolmogorov–Smirnov test statistic. Plot (a) in Figure 3 shows the case in which F1

is stochastically dominated by F0, thus ∆p(y) < 0 for −∞ < y < ∞. A complementary
approach consists in comparing, for any fixed value p, the distance of the CDFs along the
quantile (horizontal) axis. Therefore

∆y(p) = F−11 (p)− F−10 (p)

gives the contrast between the pth quantiles of the two distributions. This is also called ‘quan-
tile treatment effect’ (Doksum 1974; Lehmann 1975; Koenker and Xiao 2002). An illustration
is given in plot (b), Figure 3.

Now, define the indicator variable

X =

{
1 if Y ∼ F1,

0 if Y ∼ F0,
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and the conditional distribution of Y given X

FY |X =

{
F1 if X = 1,

F0 if X = 0.

Then the mean regression model

E(Y |X = x) = µ0︸︷︷︸
intercept

+ (µ1 − µ0)︸ ︷︷ ︸
slope

x (5)

can be seen arising from the contrast between F0 and F1. Indeed, regression analysis revolves
around the modeling of differences between populations. The regression ‘slope’ can be writ-
ten in terms of either the conditional distribution function FY |X or the conditional quantile

function QY |X ≡ F−1Y |X , that is

µ1 − µ0 ≡
∫ ∞
−∞

y
{

dFY |X=1 − dFY |X=0

}
=

∫ 1

0

{
QY |X=1(p)−QY |X=0(p)

}
dp. (6)

The classical regression model for the mean thus takes an average of the quantile differences
∆y(p)’s over p. Often, the question of interest is whether the quantile differences are constant
over p (i.e., the shift of the CDF is uniform along the horizontal axis) and therefore whether
the mean provides an exhaustive summary of ∆y(p), 0 < p < 1.

The pth linear quantile regression (QR) model for Y conditional on X can be specified as

QY |X=x(p) = QY |X=0(p)︸ ︷︷ ︸
intercept

+
{
QY |X=1(p)−QY |X=0(p)

}︸ ︷︷ ︸
slope

x. (7)

The intercept is now the pth quantile of Y |X = 0 and the slope represents the shift ∆y(p) for
a given p.
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Figure 4: (a) Waiting times between eruptions against durations of eruptions (dashed vertical
line drawn at 3 minutes) in the Old Faithful Geyser data set. (b) Mid-CDF of waiting time by
duration of eruption (solid line, shorter than 3 minutes; dashed line, longer than 3 minutes).
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Figure 5: Estimated density of waiting time between eruptions in the Old Faithful Geyser
data set, stratified by duration of eruption.

Waiting times between eruptions are plotted against the durations of the eruptions in Figure 4.
Two clusters of observations can be defined for durations below and above 3 minutes (see also
Azzalini and Bowman 1990). The distribution shows a strong bimodality as illustrated in
Figure 5 using the estimated density function. Such bimodality is also apparent in the sample
quantile function (Figure 2), which is initially convex up to about p = 0.35, then concave
until p = 0.65, and then convex again. Unsurprisingly, the proportion of observations with
duration less than 3 minutes is approximately 35%.

A dummy variable for durations equal to or longer than 3 minutes is created to define the two
distributions and included as covariate X in a model as the one specified in 7. The latter is
then fitted to the Old Faithful Geyser data using the function rq in the R package quantreg
(Koenker 2013). The coefficient for x, therefore, is an estimate of the quantile difference
∆y(p). The latter is calculated for p ∈ {0.1, 0.25, 0.5, 0.75, 0.9} in the following example:

R> require("quantreg")

R> x <- as.numeric(faithful$eruptions >= 3)

R> fit <- rq(formula = y ~ x, tau = c(0.1, 0.25, 0.5, 0.75, 0.9))

R> fit

Call:

rq(formula = y ~ x, tau = c(0.1, 0.25, 0.5, 0.75, 0.9))

Coefficients:

tau= 0.10 tau= 0.25 tau= 0.50 tau= 0.75 tau= 0.90
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(Intercept) 47 50 54 59 63

x 26 26 26 25 25

Degrees of freedom: 272 total; 270 residual

From the output above, it is quite evident that the distribution of waiting times is shifted by
an approximately constant amount at all considered values of p. The location-shift hypothesis
can be tested for by using the Khmaladze test as implemented in the quantreg package. The
critical values of the test and corresponding significance levels are not readily available in the
same package. These are provided by the function KhmaladzeFormat in the Qtools package.

R> kt <- KhmaladzeTest(formula = y ~ x, taus = seq(.05,.95,by = .01),

+ nullH = "location")

R> kt

$nullH

[1] "location"

$Tn

[1] 1.867598

$THn

[1] 1.867598

attr(,"class")

[1] "KhmaladzeTest"

R> KhmaladzeFormat(kt, 0.05)

Khmaladze test for the location-shift hypothesis

Joint test is not significant at 10% level

Test(s) for individual slopes:

not significant at 10% level

3.2. Inference for conditional quantiles

In general, the pth linear QR model is of the form

QY |X(p) = x>β(p) (8)

where x is a k-dimensional vector of covariates (including 1 as first element) and β(p) =
[β0(p), β1(p), . . . , βk−1(p)]

> is a vector of coefficients. The ‘slopes’ βj(p), j = 1, . . . , k − 1,
have the usual interpretation of partial derivatives

∂QY |X(p)

∂xj
= βj(p).
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As in the case of unconditional quantiles, one can model the conditional quantile function
using either a distribution-based or a distribution-free approach. For example, let Y follow
an exponential distribution, Y ∼ Exp(θ), where θ = x>γ for some k-dimensional parameter
γ. As shown in Section 2, the quantile function of Y is given by

QY |X(p; θ) = −
{

x>γ
}−1

log (1− p) .

Fitting this model requires estimating γ, e.g. using an MLE approach. Alternatively, one can
define the quantile function of 1/Y , Y > 0, given by (reciprocal rule)

{
QY |X(1− p; θ)

}−1
= − x>γ

log (p)
.

The function above, which is a valid quantile function, can be re-written in the form of (8)
as QY −1|X(p̄; θ) = x>β(p̄), where p̄ = 1 − p and β(p̄) ≡ γ{− log (1− p̄)}−1. (Note that the
model’s parameter is now a function of p̄.) This model is now amenable to estimation based
on linear programming (LP) algorithms (Koenker and Bassett 1978) which, given a sample
(xi, yi), i = 1, . . . , n, solve

min
b∈Rk

n∑
i=1

κp

(
yi − x>i b

)
,

where κp(u) = u(p− I(u < 0)), 0 < p < 1, is the check loss function.

Figure 6 shows data simulated from an exponential distribution Y ∼ Exp(θ), where θ = 1+2x
and x is a standard uniform. The MLE was obtained using the optim function. The predicted
quantiles of Y conditional on x, for p ∈ {0.05, 0.25, 0.5, 0.75, 0.95}, approximate the true
quantile functions sufficiently well already at n = 300 and, as expected, the accuracy increases
with increasing sample size.
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Figure 6: Quantile functions fitted by maximum likelihood estimation (MLE) and linear
programming (LP) for a bivariate sample of size 300 (a) and 1000 (b).

Methods for conditional quantiles, including estimation and standard error calculation, are
available in the excellent quantreg package, while the package Qtools provides some additional
functionalities.
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Equations 1 and 2 show that (the large-n approximation of) the sampling variance of un-
conditional sample quantiles is inversely proportional to the density of Y (or Yi). Similarly,
√
n
(
β̂(p)− β(p)

)
has a limiting centered normal distribution whose scale depends on whether

the observations are assumed to be iid or nid.

Let fY |X denote the density of Y conditional on X and ξp ≡ x>β(p). In the nid case, the
asymptotic variance-covariance matrix of p-th regression quantile is defined by the sandwich
variance estimator (Koenker 2005, p.74)

V = p (1− p)H−1DH−1 (9)

where D = limn→∞
1
n

∑n
i=1 xix

>
i and H = limn→∞

1
nxix

>
i fYi|Xi

(ξp). In the iid case, the
conditional density is constant and the above expression simplifies to

V = ω2D−1 (10)

where ω2 = p(1−p)
{fYi|Xi

(ξp)}2 , i = 1, . . . , n.

If the model includes a single binary predictor x, the estimation of V can be carried out
efficiently using

D̂ =

[
n n1
n1 n1

]
and

Ĥ =

[
n0f̂0 + n1f̂1 n1f̂1

n1f̂1 n1f̂1

]
,

where n1 =
∑n

i=1 xi and n0 = n−n1. The density f̂x ≡ f̂Y |X=x(ξ̂p), x = 0, 1, can be calculated
using the reciprocal of the sparsity function. The latter is estimated using the finite difference
quotient ŝ(p) = dQ̂(p)/2εn, x = 0, 1, where

dQ̂(p) =

{
Q̂Y |X=1(p+ εn)− Q̂Y |X=1(p− εn) if X = 1,

Q̂Y |X=0(p+ εn)− Q̂Y |X=0(p− εn) if X = 0,

and εn is a bandwidth parameter satisfying εn
n→∞−−−→ 0 (Koenker 2005). To avoid division by

zero, a tolerance parameter is introduced in the event that dQ̂(p) = 0.

An estimate of the density f̂x and the sparsity ŝx for all observations is obtained using the
Qtools’s function sparsity (which is based on the code of quantreg::summary.rq). The
argument se specifies the method used to calculate the standard errors (iid, nid, ker), while
hs is a logical flag to choose the bandwidth εn (the Hall and Sheather’s (1988) bandwidth if
TRUE (default) or the Bofinger’s (1975) bandwidth if FALSE). Estimated density and sparsity
from the fitted model in Section 3.1 are given below.

R> sparsity(fit, se = "nid", hs = TRUE)

$density

0.1 0.25 0.5 0.75 0.9

[1,] 0.02670032 0.05192653 0.07497496 0.05192653 0.02670032

[2,] 0.05340063 0.05192653 0.05997997 0.05192653 0.02136025
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[3,] 0.02670032 0.05192653 0.07497496 0.05192653 0.02670032

[...]

$sparsity

0.1 0.25 0.5 0.75 0.9

[1,] 37.45274 19.25798 13.33779 19.25798 37.45274

[2,] 18.72637 19.25798 16.67223 19.25798 46.81593

[3,] 37.45274 19.25798 13.33779 19.25798 37.45274

[...]

$bandwidth

[1] 0.05340063

Besides a loss of precision, high sparsity (low density) might also lead to a violation of the
basic property of monotonicity of quantile functions. Quantile crossing occurs when x>i β̂(p) >
x>i β̂(p′) for some xi and p < p′. This problem typically occurs in the outlying regions of the
design space (Koenker 2005) where also sparsity occurs more frequently. Balanced designs
with larger sample sizes would then offer some assurance against quantile crossing, provided, of
course, that the QR models are correctly specified (see Section 3.4). Model’s misspecification,
indeed, can still be a cause of crossing of the quantile curves. Restricted regression quantiles
(RRQ) (He 1997) might offer a practical solution when little can be done in terms of modeling.
This approach applies to a subclass of linear models

Y = x>β + ε

and linear heteroscedastic models

Y = x>β + (x>γ) ε

where x>γ > 0 and ε ∼ F . Basically, it consists in fitting a reduced regression model passing
through the origin. The reader is referred to He (1997) for details. See also Zhao (2000) for
an examination of the asymptotic properties of the restricted QR estimator.

The package Qtools provides the functions rrq, rrq.fit and rrq.wfit which are, respectively,
the ‘restricted’ analogous of rq, rq.fit, and rq.wfit in quantreg. S3 methods print, coef,
predict, fitted, residuals, and summary are available for objects of class rrq. In particular,
confidence intervals are obtained using the functions boot and boot.ci from package boot
(Canty and Ripley 2014; Davison and Hinkley 1997). Future versions of the package will
develop the function summary.rrq to include asymptotic standard errors (Zhao 2000).

An application is shown below using an example discussed by Zhao (2000). The data set,
available from Qtools, consists of 118 measurements of esterase concentrations and number
of bindings counted in binding experiments.

R> data(esterase)

R> # Fit standard quantile regression

R> fit.rq <- rq(Count ~ Esterase, data = esterase, tau = c(.1,.25,.5,.75,.9))
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R> yhat1 <- fitted(fit.rq)

R> # Fit restricted quantile regression

R> fit.rrq <- rrq(Count ~ Esterase, data = esterase, tau = c(.1,.25,.5,.75,.9))

R> yhat2 <- fitted(fit.rrq)

The predicted 90th centile curve crosses the 50th and 75th curves at lower esterase concen-
trations (Figure 7). The crossing is removed in predictions based on RRQs.
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Figure 7: Predicted quantiles of number of bindings conditional on esterase concentration
using regression quantiles (a) and restricted regression quantiles (b) in the Esterase data set.

For unconditional non-monotonic step functions Q(p), monotonicity by rearrangement (Cher-
nozhukov, Fernández-Val, and Galichon 2009) is provided by the function quantreg::rearrange.

3.3. Conditional LSS

Quantile-based measures of location, scale, and shape can be assessed conditionally on covari-
ates. A simple approach to conditional LSS measures is to a fit a QR model of the type (8)
and then predict the conditional quantiles according to specific values of x. An example is
provided further below using the New York Air Quality data set, which contains 111 complete
observations on daily mean ozone (parts per billion – ppb) and solar radiation (Langleys –
Ly. For simplicity, wind speed and maximum daily temperature, also included in the data
set, are not analyzed here.

Suppose that the model of interest is

Qozone(p) = β0(p) + β1(p) · Solar.R. (11)

Three conditional quantiles (p ∈ {0.1, 0.5, 0.9}) are estimated and plotted using the following
code:

R> dd <- airquality[complete.cases(airquality),]

R> dd <- dd[order(dd$Solar.R),]

R> x <- seq(min(dd$Solar.R), max(dd$Solar.R), length = 200)
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R> yhat <- predict(rq(Ozone ~ Solar.R , tau = c(.1,.5,.9), data = dd),

+ newdata = data.frame(Solar.R = x))

R> plot(Ozone ~ Solar.R, data = dd)

R> apply(yhat, 2, function(y,x) lines(x,y), x = x)
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Figure 8: Predicted 10th (solid line), 50th (dashed line), and 90th (dot-dashed line) centiles
of ozone conditional on solar radiation in the New York Air Quality data set.

As a function of solar radiation, the median of the ozone daily averages increases by 0.09
ppb for each Ly increase in solar radiation (Figure 8). The 90th centile of conditional ozone
shows a steeper slope at 4.3 ppb/Ly, about nine times larger than the slope of the conditional
10th centile at 0.04 ppb/Ly. (The assumption that a straight-line model holds for these three
conditional quantiles will be assessed in the next section.) Based on these results, it can be
expected that solar radiation affects not only the location of the ozone distribution but also
its scale and, possibly, its shape. The location-shift hypothesis for this model is rejected at
the 10% level in favor of a more complex model. However, it seems that there is not enough
evidence to support a model more complex than a location–scale-shift model.

R> kt <- KhmaladzeTest(Ozone ~ Solar.R, data = dd, taus = seq(.05,.95,by = .01),
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+ nullH = "location")

R> KhmaladzeFormat(kt, 0.05)

Khmaladze test for the location-shift hypothesis

Joint test is significant at 10% level

Test(s) for individual slopes:

significant at 10% level

R> kt <- KhmaladzeTest(Ozone ~ Solar.R, data = dd, taus = seq(.05,.95,by = .01),

R> nullH = "location-scale")

R> KhmaladzeFormat(kt, 0.05)

Khmaladze test for the location-scale-shift hypothesis

Joint test is not significant at 10% level

Test(s) for individual slopes:

not significant at 10% level

Inference on conditional LSS can be carried out by using the function qlss.formula. The
conditional model is specified in the argument formula, while the probability p is given in
probs. The argument type specifies the required type of regression model, more specifically
rq for linear models and rqt for transformation-based models (see Section 4.1). As seen in
Equation 4, the other probabilities of interest are 1 − p, 0.25, 0.5, and 0.75, which are used
by qlss.formula to obtain the decomposition of the conditional quantiles.

R> set.seed(567)

R> fit.qlss <- qlss(formula = Ozone ~ Solar.R, data = airquality, type = "rq",

+ probs = c(0.05, 0.1), predictLs = list(newdata = data.frame(Solar.R = x)),

+ ci = TRUE, R = 500)

R> str(fit.qlss)

List of 4

$ location:List of 1

[...]

$ scale :List of 2

[...]

$ shape :List of 2

[...]

$ CI :List of 5

[...]

- attr(*, "class")= chr "qlss"
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The output, which is of class ‘qlss’, is a named list containing three elements as seen in the
case of unconditional quantiles. However, the LSS measures of the distribution of daily mean
ozone are now conditional on solar radiation. By default, the predictions are the fitted values.
Alternatively, one can provide a new data frame via the argument predictLs, which consists
of a list of arguments passed to the function quantreg::predict.rq. So, for example, the
code above defines a fine grid of 300 values for solar radiation, i.e. seq(min(x), max(x),

length = 300). Finally, the function qlss.formula will take any additional argument to be
passed to quantreg::rq (e.g., subset, weights, etc.).

The conditional LSS measures can be conveniently plotted using the plot.qlss function as
shown in the code below.

R> plot(fit.qlss, z = x, which = 2, ci = TRUE, level = 0.90, type = "l",

+ xlab = "Solar radiation (lang)", lwd = 2)

The first argument specifies a qlss.formula object, while the second argument specifies the
values of the covariate of interest against which the LSS measures must be plotted (note that
these values must be the same as those used to predict the quantiles). Confidence intervals
of a given level can be plotted by setting the argument ci = TRUE (note, however, that ci

must be set to TRUE in the original qlss call as well). These are based on 500 bootstrap
replications obtained with quantreg::summary.rq (it is, therefore, advisable to set the seed
before calling qlss). Finally, the argument which specifies which of the probabilities given in
probs should be used for plotting (in this example, which = 2 corresponds to p = 0.1).

Figure 9 shows that both the median and the IQR of ozone increase with increasing solar
radiation, as expected. The distribution of ozone is skewed to the right and the degree of
asymmetry increases with increasing solar radiation. The conditional shape index increases
monotonically from 1.16 to about 1.70, and it remains always below the tail-weight threshold
of a normal distribution (1.90). The confidence intervals indicate a substantial estimation
uncertainty in the proximity of the extremes of the observed solar radiation range.

3.4. Goodness of fit

Distribution-free quantile regression does not require introducing an assumption on the func-
tional form of the error distribution (Koenker and Bassett 1978), but only weaker quantile
restrictions (Powell 1994). Comparatively, the linear specification of the conditional quantile
function in Equation 8 is a much stronger assumption and thus plays an important role for
inferential purposes.

The problem of assessing the goodness of fit (GOF) is rather neglected in applications of QR.
Although some approaches to GOF have been proposed (Zheng 1998; Koenker and Machado
1999; He and Zhu 2003; Khmaladze and Koul 2004), there is currently a shortage of software
code available to users. The function GOFTest implements a test based on the cusum process
of the gradient vector (He and Zhu 2003). Briefly, the test statistic is given by the largest
eigenvalue of

n−1
n∑
i

Rn(xi)R
>
n (xi)

where Rn(t) = n−1/2
∑n

j=1 ψp(rj)xjI(xj ≤ t) is the residual cusum (RC) process and ψp(rj)
is the derivative of the loss function κp calculated for residual rj . The sampling distribution
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Figure 9: Location, scale and shape of ozone levels conditional on solar radiation in the New
York Air Quality data set. Dashed lines denote the bootstrapped 90% point-wise confidence
intervals.
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of this test statistic is non-normal (He and Zhu 2003) and a resampling approach is used to
obtain the p-value under the null hypothesis.

Turning to a practical example, the residual cusum test applied to the model in Equation 11
provides evidence of lack of fit for all quantiles considered, particularly for p = 0.1 and p = 0.5.

R> fit.rq <- rq(Ozone ~ Solar.R, tau = c(.1,.5,.9), data = dd)

R> gof.rq <- GOFTest(fit.rq, alpha = 0.05, B = 1000, seed = 987)

R> gof.rq

Goodness-of-fit test for quantile regression based on the cusum process

Quantile 0.1: Test statistic = 0.1057; p-value = 0.005

Quantile 0.5: Test statistic = 0.2191; p-value = 0

Quantile 0.9: Test statistic = 0.0457; p-value = 0.066

4. Other topics in conditional modeling

4.1. Transformation models

Complex dynamics may result in nonlinear effects in the relationship between the covariates
and the response variable. For instance, in kinesiology, pharmacokinetics, and enzyme kinet-
ics, the study of the dynamics of an agent in a system involves the estimation of nonlinear
models; phenomena like human growth, certain disease mechanisms and the effects of harm-
ful environmental substances such as lead and mercury, may show strong nonlinearities over
time. In this section, the linear model is abandoned in favor of a more general model of the
type

QY |X(p) = g
{

x>β(p)
}

(12)

for some real-valued function g. If g is nonlinear, the alternative approaches to conditional
quantile modeling are

1. nonlinear parametric models: this approach may provide a model with substantive
interpretability, possibly parsimonious (in general more parsimonious than polynomials),
and valid beyond the observed range of the data. A nonlinear model depends on either
prior knowledge of the phenomenon or the introduction of new, strong theory to explain
the observed relationship with potential predictive power. Estimation may present
challenges;

2. polynomial models and smoothing splines: this approach goes under the label of non-
parametric regression, in which the complexity of the model is approximated by a se-
quence of locally linear polynomials (a näıve global polynomial trend can be considered
to be a special case). A nonparametric model need not introducing strong assumptions
about the relationship and is essentially data-driven. Estimation is based on linear ap-
proximations and, typically, requires the introduction of a penalty term to control the
degree of smoothing;
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3. transformation models: a flexible, parsimonious family of parametric transformations
is applied to the response seeking to obtain approximate linearity on the transformed
scale. The data provide information about the ‘best’ transformation among a family
of transformations. Estimation is facilitated by the application of methods for linear
models.

The focus of this section is on the third approach. More specifically the functions available in
Qtools refer to the methods for transformation-based QR models developed by Powell (1991),
Chamberlain (1994), Mu and He (2007), Dehbi, Cortina-Borja, and Geraci (2015) and Geraci
and Jones (2015). Examples of approaches to nonlinear QR based on parametric models or
splines can be found in Koenker and Park (1996) and Yu and Jones (1998), respectively.

The goal of transformation-based QR is to fit the model

Qh(Y ;λp)(p) = x>β(p). (13)

The assumption is that the transformation h is the inverse of g, h(Y ;λp) ≡ g−1(Y ), so that
the pth quantile function of the transformed response variable in Equation 12 is linear. (In
practice, it is satisfactory to achieve approximate linearity.) The parameter λp is a low-
dimensional parameter that gives some flexibility to the shape of the transformation and is
estimated from the data. In general, the interest is on predicting QY |X(p) and estimating the
effects of the covariates on QY |X(p). If h is a non-decreasing function on R (as is the case for
all transformations considered here), predictions can be easily obtained from (13) by virtue
of the equivariance property (Q-transformation rule) of quantiles, i.e.

QY |X(p) = h−1
{

x>β(p);λp

}
. (14)

The marginal effect of the jth covariate xj can be obtained by differentiating the quantile
function QY |X(p) with respect to xj . This can be written as the derivative of the composition
Q ◦ η, i.e.

∂Q(p)

∂xj
=
∂Q(p)

∂η(p)
· ∂η(p)

∂xj
, (15)

η(p) = x>β(p). Once the estimates β̂(p) and λ̂p are obtained, these can be plugged in
Equations 14 and 15.

The package Qtools provides several transformation families, namely the Box–Cox (Box and
Cox 1964), Aranda-Ordaz (Aranda-Ordaz 1981) and Jones (Jones 2007; Geraci and Jones
2015) transformations. A distinction between these families is made in terms of the support of
the response variable to which the transformation is applied and the number of transformation
parameters. The Box–Cox is a one-parameter family of transformations which applies to singly
bounded variables, y > 0. The Aranda-Ordaz symmetric and asymmetric transformations too
have one parameter and are used when responses are bounded on the unit interval, 0 < y < 1.
(The symmetry here is that h(Y ;λp) = h(Y ;−λp).) Geraci and Jones (2015) developed two
families of transformations which can be applied to either singly or doubly bounded responses:

• Proposal I transformations – this family has one parameter and it comes in both sym-
metric and asymmetric forms;

• Proposal II transformations – this family has two parameters, with one parameter mod-
eling the symmetry (or lack thereof) of the transformation.
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Originally, Box and Cox (1964) proposed using power transformations to address lack of
linearity, homoscedasticity and normality of the residuals in mean regression modeling. Sakia
(1992, p.175) reported “that seldom does this transformation fulfil the basic assumptions of
linearity, normality and homoscedasticity simultaneously as originally suggested by Box &
Cox (1964). The Box-Cox transformation has found more practical utility in the empirical
determination of functional relationships in a variety of fields, especially in econometrics”.
Indeed, the practical utility of power transformations has been long recognized in QR modeling
(Powell 1991; Buchinsky 1995; Chamberlain 1994; Mu and He 2007). Model 13 is the Box–Cox
QR model if

h (Y ;λp) =


Y λp − 1

λp
if λp 6= 0

log Y if λp = 0.

(16)

Note that when λp 6= 0, the range of this transformation is not R but the singly bounded
interval (−1/λp,∞). This implies that the inversion in (14) is defined only for λpx

>β(p)+1 >
0. To overcome this computational difficulty, Geraci and Jones (2015) proposed to use instead

h (Y ;λp) =


1

2λp

(
Y λp − 1

Y λp

)
if λp 6= 0

log Y if λp = 0,

(17)

which has range R for all λp and hence admits an explicit inverse transformation. In addition,
in the case of a single covariate, every estimated quantile that results will be monotone
increasing, decreasing or constant, although different estimated quantiles can have different
shapes from this collection. Note also that, for λp 6= 0, transformation (17) can be written

h (Y ;λp) =
1

λp
sinh(λp log Y ).

Model fitting for one-parameter transformation models (two-parameter transformation models
are discussed further on in this paper) can be carried out using the function tsrq. The latter
applies a two-stage (TS) estimator (Chamberlain 1994; Buchinsky 1995) whereby β(p) is
estimated conditionally on a fine grid of values for λp. The formula argument specifies a
linear model as in (13), while the argument tsf provides the desired transformation h. In
Qtools, there are currently three one-parameter transformation families available: mcjI for
proposal I transformations (Geraci and Jones 2015), bc for the Box–Cox model (Powell 1991),
and ao for Aranda-Ordaz families (Aranda-Ordaz 1981). The reader is referred to the cited
publications for details on these transformations. Additional arguments in the function tsrq

include: symmetry, a logical flag to specify the symmetric or asymmetric version of ao and
mcjI; dbounded, a logical flag to specify whether the response variable is doubly bounded
(default is strictly positive, i.e. singly bounded); and lambda, a numerical vector to define
the grid of values for λp. An instance of the function tsrq based on (17) is given below

R> fit.rqt <- tsrq(Ozone ~ Solar.R, tsf = "mcjI", symm = TRUE, dbounded = FALSE,

+ lambda = seq(1,3,by=0.005), tau = c(.1,.5,.9), data = dd)

R> fit.rqt
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call:

tsrq(formula = Ozone ~ Solar.R, tsf = "mcjI", symm = TRUE, dbounded = FALSE,

lambda = seq(1, 3, by = 0.005), tau = c(0.1, 0.5, 0.9), data = dd)

Proposal I symmetric transformation (singly bounded response)

Optimal transformation parameter:

tau = 0.1 tau = 0.5 tau = 0.9

2.210 2.475 1.500

Coefficients linear model (transformed scale):

tau = 0.1 tau = 0.5 tau = 0.9

(Intercept) -3.3357578 -48.737341 16.557327

Solar.R 0.4169697 6.092168 1.443407

Degrees of freedom: 111 total; 109 residual

The output reports the estimates β̂(p) and λ̂p for each quantile level specified in tau. Here,
the quantities of interest are the predictions on the ozone scale and the marginal effect of
solar radiation, which are obtained by plugging β̂(p) and λ̂p in (14) and (15), respectively. In
particular, the function maref will determine the transformation h that was used for estima-
tion and calculate the corresponding derivative. The argument index selects the position in
the vector β̂(p) of the effect of interest. Since the model may contain interactions, additional
terms to be included in the computation can be specified in the argument index.extra.

R> x <- seq(min(dd$Solar.R), max(dd$Solar.R), length = 200)

R> yhat <- yhat <- predict(fit.rqt, newdata = data.frame(Solar.R = x),

+ type = "response")

R> dyhat <- maref(fit.rqt, newdata = data.frame(Solar.R = x), index = 2)

The effect of solar radiation on different quantiles of ozone levels shows a nonlinear behavior,
especially at lower ranges of radiation (below 50 Ly) and on the median ozone (Figure 10).
It might be worth testing the goodness-of-fit of the model. In Section 3.4, it was found
evidence of lack of fit for the linear specification (11). In contrast, the output reported below
indicates that, in general, the goodness of fit of the quantile models based on transformation
(17) has improved since the test statistics are now smaller at all values of p. However, such
improvement is still far from being sufficient for p = 0.5.

R> GOFTest(fit.rqt, alpha = 0.05, B = 1000, seed = 416)

Goodness-of-fit test for quantile regression based on the cusum process

Quantile 0.1: Test statistic = 0.0393; p-value = 0.077

Quantile 0.5: Test statistic = 0.1465; p-value = 0

Quantile 0.9: Test statistic = 0.0212; p-value = 0.289

There are other functions to fit transformation models. The function rcrq fits one-parameter
transformation models using an estimator based on the RC process (akin to the RC process
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Figure 10: Predicted 10th (solid line), 50th (dashed line), and 90th (dot-dashed line) centiles
of ozone conditional on solar radiation (a) and corresponding estimated marginal effects (b)
using the symmetric proposal I transformation in the New York Air Quality data set.

introduced in Section 3.4) (Mu and He 2007). This estimator avoids the troublesome inversion
of the Box-Cox and Aranda-Ordaz transformations, but it is computationally more intensive
than the TS estimator. The functions tsrq2 and nlrq2 are specific to Geraci and Jones’s
(2015) Proposal II transformations. The former employs a two-way grid search while the
latter is based on Nelder-Mead optimization.

A summary of the basic differences between all fitting functions is given in Table 2. The table
also shows the available methods in summary.rqt to estimate standard errors and confidence
intervals for the model’s parameters. Unconditional inference is carried out jointly on β(p)
and the transformation parameter by means of bootstrap using the package boot. Large-n
approximations (Powell 1991; Chamberlain 1994; Machado and Mata 2000) are also available
for the one-parameter TS estimator under iid or nid assumptions. A näıve approach to
confidence interval estimation for βp is to apply one of the several methods developed for linear
quantile regression estimators (Koenker 2005, p.110) by assuming that the transformation
parameter is known (see options rank, iid, nid, ker, and boot in quantreg::summary.rq).
It is worth stressing that conditional inference may produce substantially lower standard
errors for the regression coefficients and thus lead to overstating their significance (Mu and
He 2007).

Function Transformation Estimation Standard errors/confidence intervals
name parameters Unconditional Conditional

tsrq 1 Two-stage iid, nid, boot All types

rcrq 1
Residual cusum
process

boot All types

tsrq2 2 Two-stage boot All types
nlrq2 2 Nelder–Mead boot All types

Table 2: Transformation-based quantile regression in package Qtools. ‘All types’ consists of
options rank, iid, nid, ker, and boot as provided by function summary in package quantreg.
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4.2. Multiple imputation

Regression models play an important role in conditional imputation of missing values. QR can
be used as an effective approach for multiple imputation (MI) when location-shift models are
inadequate (Muñoz and Rueda 2009; Bottai and Zhen 2013; Geraci 2013). Let the n× (k+ 1)
matrix Z with row vectors z>i , i = 1, . . . , n collect the data in the study. Correspondingly,
Z̃ is used to denote the matrix without the jth column. In addition, for j = 1, . . . , k + 1,
let nj and n̄j = n − nj be, respectively, the number of observed and missing values in zj ,
and let Aj be the set indexing the units i for which the jth variable is not observed. The
aim is to impute n̄j missing values of a partially-observed continuous variable within a fully
conditional specification (FCS) algorithm (van Buuren 2007). Throughout this section, it is
assumed that the data are missing at random (MAR), i.e the probability of a value being
missing conditional on observed data is independent of the unobserved data (Schafer 1997).
Under this assumption, the application of MI is apposite.

The literature on multiple imputation (MI) is largely focused on location-shift models. For
example, a common imputation model for continuous responses is the iid linear model, i.e.
Zi,j ∼ N

(
z̃>i β, σ

2
)
, i ∈ Aj . If the normality assumption is too restrictive, an alternative

approach is to draw a sample from FZi,j |Z̃ using the probability integral transformation. The

latter is a well-known theorem used in random number generation: if V ∼ F and U ∼
Unif (0, 1), then F−1 (U) ∼ F , that is V and F−1 (U) have the same distribution. Thus, a
distribution-free approach to imputation can be carried out in three steps:

(a) Generate u independently from a standard uniform distribution. To avoid sampling in
the vicinity of the boundaries which could cause computational inconveniences in step
(b), the sampling domain can be restricted to Unif(ω, 1 − ω) with ω sufficiently small,
say ω = 0.001. The parameter ω can be used to trim or truncate the distribution of
Zi,j .

(b) Estimate the quantile regression model

QZj |Z̃ (u) = z̃>β (u) .

(c) Obtain and impute the value z∗i,j = z̃>i β̂ (u), i ∈ Aj .

The imputation procedure above can be easily extended to models fitted on the transformed
variable h (Zj), for some monotone function h, in which case the imputed value would be

z∗i,j = h−1
{

z̃>i β̂ (u)
}

. The equivariance property is therefore very useful if a transformation

is applied to achieve linearity of the conditional model or to ensure that imputations lie
within some interval (a, b). Some authors refer to such pre-imputation transformations as
pre-processing, followed by post-processing to transform the data back (Su, Gelman, Hill,
and Yajima 2011).

In Qtools, mice.impute.rq and mice.impute.rrq are auxiliary functions written to be used
along with the functions of the R package mice (van Buuren and Groothuis-Oudshoorn 2011).
The former is based on the standard QR estimator (rq.fit) while the latter on the re-
stricted counterpart (rrq.fit). Both imputation functions allow for the specification of
the transformation-based QR models described in Section 4.1. An example available from
?mice.impute.rq using the nhanes data set is reported below.
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R> require(mice)

R> data(nhanes)

R> nhanes2 <- nhanes

R> nhanes2$hyp <- as.factor(nhanes2$hyp)

R> # Impute continuous variables using quantile regression

R> set.seed(199)

R> imp <- mice(nhanes2, meth = c("polyreg", "rq", "logreg", "rq"), m = 5)

R> # estimate linear regression and pool results

R> fit <- lm.mids(bmi ~ hyp + chl, data = imp)

R> pool(fit)

Call: pool(object = fit)

Pooled coefficients:

(Intercept) hyp2 chl

23.09613686 0.79895370 0.01652075

Fraction of information about the coefficients missing due to nonresponse:

(Intercept) hyp2 chl

0.3626414 0.6585308 0.4835364

4.3. Conditional quantiles of discrete data

Modeling discrete response variables, such as categorical and count responses, has been tra-
ditionally approached with distribution-based methods: a parametric model FY |X(y; θ) is
assumed and then fitted by means of MLE. Binomial, negative binomial, multinomial and
Poisson regressions are well-known in many applied sciences. Because of the computational
advantages and the asymptotic properties of MLE, these methods have long ruled among
competing alternatives.

Modeling conditional functions of discrete data is less common and, on a superficial level,
might even appear as an unnecessary complication. However, a deeper look at its rationale
will reveal that a distribution-free analysis can provide insightful information in the discrete
case as it does in the continuous case. Indeed, methods for conditional quantiles of continuous
distributions can be—and have been—adapted to discrete responses.

Let Y be a count variable such as, for example, the number of car accidents during a week or
the number of visits of a patient to their doctor during a year. As usual, X denotes a vector
of covariates. Poisson regression, which belongs to the family of generalized linear models
(GLMs), is a common choice for this kind of data, partly because of its availability in many
statistical packages. Symbolically, Y ∼ Pois(θ) where

θ ≡ E(Y |X = x) = h−1
(
x>β

)
and h is the logarithmic link function. Note that the variance also is equal to θ. Indeed,
moments of order higher than 2 governing the shape of the distribution depend on the same
parameter. Every component of the conditional LSS in a Poisson model is therefore controlled
by θ. If needed, more flexibility can be achieved using a distribution-free approach.
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Machado and Santos Silva (2005) proposed the model

Qh(Z;p)(p) = x>β(p). (18)

where Z = Y + U is obtained by jittering Y with a [0, 1)-uniform noise U , independent of Y
and X. In principle, any monotone transformation h can be considered. A natural choice for
count data is a log-linear model (Machado and Santos Silva 2005), i.e.

h (Z; p) =


log (Z − p) for Z > p

log ζ for Z ≤ p.

where 0 < ζ < p. It follows that QZ|X(p) = p+ exp
(
x>β(p)

)
. (Note that the pth quantile of

the conditional distribution of Z is bounded below by p.) Given the continuity between counts
induced by jittering, standard inference for linear quantile functions (Koenker and Bassett
1978) can be applied to fit (18). In practice, a sample of M jittered responses Z is taken to
estimate β̂m(p), m = 1, . . . ,M ; the noise is then averaged out, β̂(p) = 1

M

∑
m β̂m(p).

Machado and Santos Silva’s (2005) methods, including large-n approximations for standard
errors, are implemented in the function rq.counts. The formula argument specifies a linear
model as in (18), while the argument tsf provides the desired transformation h. By default,
this is the log transformation (i.e. Box-Cox with parameter λp = 0) but other transformations
described in Section 4.1 are allowed. In the example below, estimation is carried out using
M = 50 jittered samples and ζ = 10−5 (see Machado and Santos Silva (2005) for further
details on these settings).

R> data(esterase)

R> fit.rq.counts <- rq.counts(formula = Count ~ Esterase, tau = 0.1,

+ data = esterase, tsf = "bc", lambda = 0, M = 50, zeta = 1e-05)

Figure 11 shows a contrast between centile curves as predicted by the Poisson and the QR
models in the Esterase data set. The Poisson distribution clearly underestimates the variabil-
ity in the data. An empirical modeling of the conditional quantiles seems to be preferred in
this case. Of course, the assumption of log-linearity of the models would need to be carefully
assessed (note that GOFTest can be applied also to rq.counts objects).

Qtools provides functions for modeling binary responses as well. First of all, it is useful to
note that the classical GLM for a binary response Y ∼ Bin(1, π) establishes a relationship
between the probability Pr (Y = 1) = π and a set of predictors x, that is

π ≡ E(Y |X = x) = h−1
(
x>β

)
.

Common choices for the link function h : (0, 1)→ R are logit, probit and c-log-log, which can
be considered special cases of the Aranda-Ordaz families of transformations. Another way
to formulate the regression problem above is to consider the continuous latent variable Y ∗,
where

Y ∗ = x>β + ε, (19)
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Figure 11: Predicted 10th, 50th, and 90th centiles of number of bindings conditional on
esterase concentration using Poisson regression and distribution-free quantile regression (QR)
in the Esterase data set.
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and assume that the binary observations are the result of the dichotomization Y = I(Y ∗ > 0).
Consequently,

Pr (Y = 1) = Pr (Y ∗ > 0)

= Pr
(
x>β + ε > 0

)
= Pr

(
ε > −x>β

)
= 1− Fε

(
−x>β

)
,

with the understanding that the probabilities above are conditional on x. For distributions
symmetric about 0, the expression above can be re-written as π = Fε

(
x>β

)
, where ε = −ε.

Parametric models for Fε will correspond to specific link functions h ≡ F−1ε . For example, the
probit function corresponds to ε ∼ N (0, 1). In the econometric literature, this formulation is
known as binary choice model.

Maximum score estimation, originally developed by Manski (1975, 1985), is equivalent to
estimating the conditional quantiles of the latent variable Y ∗ in (19). Using the same notation
introduced in Section 3.2, the problem to be solved is given by

min
b∈Rk

n∑
i=1

κp

(
yi − I

(
x>i b > 0

))
. (20)

Since the indicator function is a monotone transformation, the Q-transformation rule applies.
Indeed, I

(
QY ∗|X(p) > 0

)
= QI(Y ∗)>0|X(p) = QY |X(p). In practice, the goal is to find b

such that the number of matches between observed and fitted 0’s and 1’s is as large as
possible. However, the minimization problem in (20) offers numerical challenges due to the
the piecewise linearity of the indicator function and the nonconvexity of the loss function.
Smoothed approximations of I(·) and simulated annealing algorithms have been suggested
(Horowitz 1992; Kordas 2006).

It should be noted that the regression parameter β(p) is identified up to a scale. For this
reason, a normalization is required. In one approach (Horowitz 1992), it is assumed that there
exists a regressor, say xk, such that, conditionally on the remaining terms

1. the probability distribution of xk is absolutely continuous (continuity assumption);

2. the distribution of ε is conditionally independent from xk (homoscedasticity assump-
tion).

If the latter assumption does not hold, ‘slopes’ are no longer comparable across different
quantile models (Kordas 2006). This issue can be addressed using the normalization ||β(p)|| =
1 (Manski 1975, 1985), although, in this case, a meaningful interpretation of the intercepts
would be lost.

Let us consider the following data set on wine quality (Cortez, Cerdeira, Almeida, Matos, and
Reis 2009). The data set consists of 1599 observations on 12 variables (11 physicochemical
continuous attributes and one sensory categorical variable) for red variants of the Portuguese
‘Vinho Verde’ – white wines are excluded from the present analysis. The outcome of interest
is ‘quality’ of the wine as assessed on a 1-10 scale, with 1 and 10 indicating, respectively,
worst and best quality. The summary of the data set is given below.
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R> wine <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/

wine-quality/winequality-red.csv", sep = ";")

R> summary(wine)

fixed.acidity volatile.acidity citric.acid residual.sugar

Min. : 4.60 Min. :0.1200 Min. :0.000 Min. : 0.900

1st Qu.: 7.10 1st Qu.:0.3900 1st Qu.:0.090 1st Qu.: 1.900

Median : 7.90 Median :0.5200 Median :0.260 Median : 2.200

Mean : 8.32 Mean :0.5278 Mean :0.271 Mean : 2.539

3rd Qu.: 9.20 3rd Qu.:0.6400 3rd Qu.:0.420 3rd Qu.: 2.600

Max. :15.90 Max. :1.5800 Max. :1.000 Max. :15.500

chlorides free.sulfur.dioxide total.sulfur.dioxide density

Min. :0.01200 Min. : 1.00 Min. : 6.00 Min. :0.9901

1st Qu.:0.07000 1st Qu.: 7.00 1st Qu.: 22.00 1st Qu.:0.9956

Median :0.07900 Median :14.00 Median : 38.00 Median :0.9968

Mean :0.08747 Mean :15.87 Mean : 46.47 Mean :0.9967

3rd Qu.:0.09000 3rd Qu.:21.00 3rd Qu.: 62.00 3rd Qu.:0.9978

Max. :0.61100 Max. :72.00 Max. :289.00 Max. :1.0037

pH sulphates alcohol quality

Min. :2.740 Min. :0.3300 Min. : 8.40 Min. :3.000

1st Qu.:3.210 1st Qu.:0.5500 1st Qu.: 9.50 1st Qu.:5.000

Median :3.310 Median :0.6200 Median :10.20 Median :6.000

Mean :3.311 Mean :0.6581 Mean :10.42 Mean :5.636

3rd Qu.:3.400 3rd Qu.:0.7300 3rd Qu.:11.10 3rd Qu.:6.000

Max. :4.010 Max. :2.0000 Max. :14.90 Max. :8.000

The rankings of the red wines range from 3 to 8 and are almost equally split at the mid-ranking
5.5.

> table(wine$quality)

3 4 5 6 7 8

10 53 681 638 199 18

Given the limited number of unique rankings and to simplify the analysis, a logistic regression
is fitted on the binary variable y which denotes whether a wine is above (y = 1) or below (y
= 0) the mid-rank. All the physicochemical variables enter in the model as covariates (issues
of multicollinearity are not discussed here).

R> wine$y <- as.numeric(wine$quality > 5)

R> ff <- as.formula(y ~ fixed.acidity + volatile.acidity + citric.acid +

+ residual.sugar + chlorides + free.sulfur.dioxide + total.sulfur.dioxide +

+ density + sulphates + alcohol + pH)

R> summary(glm(ff, data = wine, family = binomial("logit")))

Call:

glm(formula = ff, family = binomial("logit"), data = wine)
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Deviance Residuals:

Min 1Q Median 3Q Max

-3.4025 -0.8387 0.3105 0.8300 2.3142

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 42.949948 79.473979 0.540 0.58890

fixed.acidity 0.135980 0.098483 1.381 0.16736

volatile.acidity -3.281694 0.488214 -6.722 1.79e-11 ***

citric.acid -1.274347 0.562730 -2.265 0.02354 *

residual.sugar 0.055326 0.053770 1.029 0.30351

chlorides -3.915713 1.569298 -2.495 0.01259 *

free.sulfur.dioxide 0.022220 0.008236 2.698 0.00698 **

total.sulfur.dioxide -0.016394 0.002882 -5.688 1.29e-08 ***

density -50.932385 81.148745 -0.628 0.53024

sulphates 2.795107 0.452184 6.181 6.36e-10 ***

alcohol 0.866822 0.104190 8.320 < 2e-16 ***

pH -0.380608 0.720203 -0.528 0.59717

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

[...]

The estimated coefficients for volatile acidity (g · dm−3), citric acid (g · dm−3), chlorides
(g·dm−3), and total sulfur dioxide (mg·dm−3) show a negative association with the probability
of a wine being ranked above ‘mediocrity’. The association is positive for free sulfur dioxide
(mg ·dm−3), sulphates (g ·dm−3), and alcohol (% vol.). The other variables are not significant
at the 5% level.

Let us now consider a binary quantile regression approach to model the (latent) quality of the
wines. The function rq.bin is the main function to obtain binary regression quantiles. It is a
wrapper for the function rqbin.fit which calls Fortran code written for simulated annealing
estimation (Goffe, Ferrier, and Rogers 1994). Qtools offers general methods for objects of
class rq.bin including coef and predict. In particular, the commands predict(object,

type = "latent") and predict(object, type = "probability") provide predictions for,
respectively, the latent quantiles x>i β(p) and the individual probabilities Pr (Y ∗i > 0), i =
1, . . . , n. A summary method to calculate standard errors has not yet been implemented.

Once the linear model has been defined, it is important to decide on the normalization ap-
proach. Horowitz’ approach, the default, is specified with the argument normalize = "last"

in rq.bin. The user must ensure that the last term in formula (or the last column in the
matrix x when using rqbin.fit) corresponds to the regressor xk discussed above. Manski’s
approach is obtained with normalize = "all". In the Wine Quality data set, the continuity
and homoscedasticity assumptions for pH seem to be reasonably met. This can be verified
also by analyzing the residuals of the model without pH as shown below.

R> tmp <- glm(y ~ fixed.acidity + volatile.acidity + citric.acid +

+ residual.sugar + chlorides + free.sulfur.dioxide + total.sulfur.dioxide +
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+ density + sulphates + alcohol, data = wine, family = binomial())

R> w <- residuals(tmp, type = "deviance")

R> summary(lm(wine$pH ~ w))

R> summary(rq(wine$pH ~ w, tau = 1:9/10), se = "nid")

The choice of the quantiles to be estimated should take into account the probability of the
event in the population to ensure that both positive and negative values of x>β(p) appear in
the population (Manski 1985). Let α be such probability. If α is small (rare event), then one
may consider estimating the quantile p = 1− α.

Given the proportion of cases in the sample is about 50%, four binary regressions are fitted
for the first four deciles p ∈ {0.1, 0.2, 0.3, 0.4} to investigate how covariates affect the latent
quality of wines with probability below or near Pr (Y ∗ > 0).

R> fit.bin.rq <- rq.bin(ff, tau = 1:4/10, data = wine, normalize = "last")

R> fit.bin.rq

Call: rq.bin(formula = ff, tau = 1:4/10, data = wine, normalize = "last")

Binary quantile model

Coefficients (last coefficient is set equal to 1):

tau = 0.1 tau = 0.2 tau = 0.3 tau = 0.4

(Intercept) -59.71800365 -75.41198294 -77.09631530 -78.01551696

fixed.acidity -1.79404630 0.54662796 -6.77954027 5.84083844

volatile.acidity -0.02877108 5.29573448 -2.87345046 -2.45791298

citric.acid 12.02411499 4.75218615 12.12135441 10.99106011

residual.sugar 1.32124832 3.20378316 -5.12604687 0.63582415

chlorides 16.68480346 16.73069252 10.23576481 14.36408494

free.sulfur.dioxide 6.98601986 8.09025703 6.03302707 6.95053071

total.sulfur.dioxide -5.68934652 -6.58013730 -4.72346519 -6.66718453

density 92.08799058 79.09454731 93.62448607 79.37356139

sulphates -1.09200785 3.78027756 3.83931880 -2.83597864

alcohol -1.57289484 -1.11292830 5.40091225 7.45298172

pH 1.00000000 1.00000000 1.00000000 1.00000000

Degrees of freedom: 1599 total; 1588 residual

The output above indicates that the association between some of the covariates and quality
may be heterogeneous across the quantiles of the latent variable. For example, wines with
higher alcohol percentages are perceived as of better quality as long as they rank in the third
or fourth decile of the conditional distribution. However, at lower quantiles, alcohol seems
not to affect, or to affect negatively, perceived wine quality. In other words, for wines that
rank poorly as compared to other wines with similar attributes, a higher alcohol content will
not improve their perceived quality conditional on those attributes.
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5. Final remarks

Quantiles have long occupied an important place in statistics. The package Qtools builds
on recent methodological and computational developments of quantile functions and related
methods to promote their application in statistical data modeling.
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