
Comparing Least Squares Calculations

Douglas Bates
R Development Core Team

Douglas.Bates@R-project.org

April 28, 2016

Abstract

Many statistics methods require one or more least squares problems
to be solved. There are several ways to perform this calculation, using
objects from the base R system and using objects in the classes defined
in the Matrix package.

We compare the speed of some of these methods on a very small ex-
ample and on a example for which the model matrix is large and sparse.

1 Linear least squares calculations

Many statistical techniques require least squares solutions

β̂ = arg min
β
‖y −Xβ‖2 (1)

where X is an n × p model matrix (p ≤ n), y is n-dimensional and β is p
dimensional. Most statistics texts state that the solution to (1) is

β̂ =
(
XTX

)−1
XTy (2)

when X has full column rank (i.e. the columns of X are linearly independent)
and all too frequently it is calculated in exactly this way.

1.1 A small example

As an example, let’s create a model matrix, mm, and corresponding response
vector, y, for a simple linear regression model using the Formaldehyde data.

> data(Formaldehyde)

> str(Formaldehyde)

'data.frame': 6 obs. of 2 variables:

$ carb : num 0.1 0.3 0.5 0.6 0.7 0.9

$ optden: num 0.086 0.269 0.446 0.538 0.626 0.782

1

mailto:Douglas.Bates@R-project.org


> (m <- cbind(1, Formaldehyde$carb))

[,1] [,2]

[1,] 1 0.1

[2,] 1 0.3

[3,] 1 0.5

[4,] 1 0.6

[5,] 1 0.7

[6,] 1 0.9

> (yo <- Formaldehyde$optden)

[1] 0.086 0.269 0.446 0.538 0.626 0.782

Using t to evaluate the transpose, solve to take an inverse, and the %*% operator
for matrix multiplication, we can translate 2 into the S language as

> solve(t(m) %*% m) %*% t(m) %*% yo

[,1]

[1,] 0.005085714

[2,] 0.876285714

On modern computers this calculation is performed so quickly that it cannot
be timed accurately in R 1

> system.time(solve(t(m) %*% m) %*% t(m) %*% yo)

user system elapsed

0 0 0

and it provides essentially the same results as the standard lm.fit function that
is called by lm.

> dput(c(solve(t(m) %*% m) %*% t(m) %*% yo))

c(0.00508571428571428, 0.876285714285715)

> dput(unname(lm.fit(m, yo)$coefficients))

c(0.00508571428571408, 0.876285714285715)

1From R version 2.2.0, system.time() has default argument gcFirst = TRUE which is as-
sumed and relevant for all subsequent timings

2



1.2 A large example

For a large, ill-conditioned least squares problem, such as that described in
Koenker and Ng (2003), the literal translation of (2) does not perform well.

> library(Matrix)

> data(KNex, package = "Matrix")

> y <- KNex$y

> mm <- as(KNex$mm, "matrix") # full traditional matrix

> dim(mm)

[1] 1850 712

> system.time(naive.sol <- solve(t(mm) %*% mm) %*% t(mm) %*% y)

user system elapsed

3.116 0.028 3.145

Because the calculation of a “cross-product” matrix, such as XTX or XTy,
is a common operation in statistics, the crossprod function has been provided
to do this efficiently. In the single argument form crossprod(mm) calculates
XTX, taking advantage of the symmetry of the product. That is, instead of
calculating the 7122 = 506944 elements of XTX separately, it only calculates
the (712 · 713)/2 = 253828 elements in the upper triangle and replicates them
in the lower triangle. Furthermore, there is no need to calculate the inverse of
a matrix explicitly when solving a linear system of equations. When the two
argument form of the solve function is used the linear system(

XTX
)
β̂ = XTy (3)

is solved directly.
Combining these optimizations we obtain

> system.time(cpod.sol <- solve(crossprod(mm), crossprod(mm,y)))

user system elapsed

0.704 0.000 0.701

> all.equal(naive.sol, cpod.sol)

[1] TRUE

On this computer (2.0 GHz Pentium-4, 1 GB Memory, Goto’s BLAS, in
Spring 2004) the crossprod form of the calculation is about four times as fast as
the naive calculation. In fact, the entire crossprod solution is faster than simply
calculating XTX the naive way.

> system.time(t(mm) %*% mm)

3



user system elapsed

1.304 0.008 1.311

Note that in newer versions of R and the BLAS library (as of summer 2007),
R’s %*% is able to detect the many zeros in mm and shortcut many operations, and
is hence much faster for such a sparse matrix than crossprod which currently
does not make use of such optimizations. This is not the case when R is linked
against an optimized BLAS library such as GOTO or ATLAS. Also, for fully
dense matrices, crossprod() indeed remains faster (by a factor of two, typically)
independently of the BLAS library:

> fm <- mm

> set.seed(11)

> fm[] <- rnorm(length(fm))

> system.time(c1 <- t(fm) %*% fm)

user system elapsed

1.208 0.000 1.210

> system.time(c2 <- crossprod(fm))

user system elapsed

0.560 0.000 0.562

> stopifnot(all.equal(c1, c2, tol = 1e-12))

1.3 Least squares calculations with Matrix classes

The crossprod function applied to a single matrix takes advantage of symme-
try when calculating the product but does not retain the information that the
product is symmetric (and positive semidefinite). As a result the solution of (3)
is performed using general linear system solver based on an LU decomposition
when it would be faster, and more stable numerically, to use a Cholesky decom-
position. The Cholesky decomposition could be used but it is rather awkward

> system.time(ch <- chol(crossprod(mm)))

user system elapsed

0.636 0.004 0.639

> system.time(chol.sol <-

+ backsolve(ch, forwardsolve(ch, crossprod(mm, y),

+ upper = TRUE, trans = TRUE)))

user system elapsed

0.000 0.000 0.003

> stopifnot(all.equal(chol.sol, naive.sol))

4



The Matrix package uses the S4 class system (Chambers, 1998) to retain
information on the structure of matrices from the intermediate calculations.
A general matrix in dense storage, created by the Matrix function, has class
"dgeMatrix" but its cross-product has class "dpoMatrix". The solve methods
for the "dpoMatrix" class use the Cholesky decomposition.

> mm <- as(KNex$mm, "dgeMatrix")

> class(crossprod(mm))

[1] "dpoMatrix"

attr(,"package")

[1] "Matrix"

> system.time(Mat.sol <- solve(crossprod(mm), crossprod(mm, y)))

user system elapsed

0.632 0.000 0.632

> stopifnot(all.equal(naive.sol, unname(as(Mat.sol,"matrix"))))

Furthermore, any method that calculates a decomposition or factorization
stores the resulting factorization with the original object so that it can be reused
without recalculation.

> xpx <- crossprod(mm)

> xpy <- crossprod(mm, y)

> system.time(solve(xpx, xpy))

user system elapsed

0.076 0.000 0.075

> system.time(solve(xpx, xpy)) # reusing factorization

user system elapsed

0.000 0.004 0.001

The model matrix mm is sparse; that is, most of the elements of mm are zero.
The Matrix package incorporates special methods for sparse matrices, which
produce the fastest results of all.

> mm <- KNex$mm

> class(mm)

[1] "dgCMatrix"

attr(,"package")

[1] "Matrix"

> system.time(sparse.sol <- solve(crossprod(mm), crossprod(mm, y)))

5



user system elapsed

0.000 0.000 0.005

> stopifnot(all.equal(naive.sol, unname(as(sparse.sol, "matrix"))))

As with other classes in the Matrix package, the dsCMatrix retains any
factorization that has been calculated although, in this case, the decomposition
is so fast that it is difficult to determine the difference in the solution times.

> xpx <- crossprod(mm)

> xpy <- crossprod(mm, y)

> system.time(solve(xpx, xpy))

user system elapsed

0.000 0.000 0.001

> system.time(solve(xpx, xpy))

user system elapsed

0 0 0

Session Info

> toLatex(sessionInfo())

• R version 3.2.5 Patched (2016-04-18 r70508), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: Matrix 1.2-6

• Loaded via a namespace (and not attached): grid 3.2.5, lattice 0.20-33,
tools 3.2.5

> if(identical(1L, grep("linux", R.version[["os"]]))) { ## Linux - only ---

+ Scpu <- sfsmisc::Sys.procinfo("/proc/cpuinfo")

+ Smem <- sfsmisc::Sys.procinfo("/proc/meminfo")

+ print(Scpu[c("model name", "cpu MHz", "cache size", "bogomips")])

+ print(Smem[c("MemTotal", "SwapTotal")])

+ }

_

model name Intel(R) Xeon(R) CPU X5650 @ 2.67GHz

cpu MHz 2666.866

6



cache size 12288 KB

bogomips 5333.73

_

MemTotal 4110288 kB

SwapTotal 524284 kB

References

John M. Chambers. Programming with Data. Springer, New York, 1998. ISBN
0-387-98503-4.

Roger Koenker and Pin Ng. SparseM: A sparse matrix package for R. J. of
Statistical Software, 8(6), 2003.

7


	Linear least squares calculations
	A small example
	A large example
	Least squares calculations with Matrix classes


