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1 Introduction

Discovering the exact activities of a compound in drug development is important. A single data
source only provides insight into the behavior on one layer of the underlying biology. Therefore
it is encouraged to rely on multiple data source simultaneously. The R package IntClust is the
result of an integrated data analysis project where several multi-source clustering procedures have
been investigated. Further, differential gene expression, pathway analysis and visualization tools
for the results are available. This vignette is a user guide for the package but does not show all
possible functions and tricks. It contains a general overview, several examples and is accompanying
the helpfiles of the IntClust package.

2 Data

First, we load the package and the included data set. The data set is the publically available CMAP
MCF7 data set containing 56 compounds. Further, information on 250 fingerprints, 477 target
predictions and gene expression of 2434 genes is included. The fingerprint and target prediction
matrices are the available data sources of the MCF7 data and are both binary. It is noted that the
number of data sources is not limited and that any type (binary, continuous, discrete) of data can
be used. It is important to check that the compounds are in the rows of the data sources and in
the columns of the gene expression matrix.

library(IntClust)
data(fingerprintMat)
data(targetMat)
data(geneMat)
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3 Primary Analysis

The primary analysis consist of performing several clustering, single and mult-source, techniques.
The single clustering results will reveal whether or not there is a high degree of resemblance
between the data sources. If multi-source clustering are executed, the results can be compared and
the influence of each data source can be seen.

3.1 Single Source Clustering

Clustering can be performed on each data source separately with the Cluster function. The avail-
able distance measures are euclidean for continuous data and jaccard or tanimoto for binary data.
The function can be easily extended to contain more distance metrics. The implemented method
for clustering is agglomerative hierarchical clustering (Hastie et al.| (2009))) as coded by the agnes
of the cluster package with the ward link. The option for normalizing the data is readly avail-
able. Normalization is performed with the Normalization function and can be called on separately.
The normalzing methods are: Quantile-Normalization, Fisher-Yates Normalization, standardiza-
tion and range normalization. See the helpfiles for more information. No normalization is necessary
for the example since both data matrices are binary and their distances will all fall between zero
and one.

> MCF7_F <- Cluster(Data=fingerprintMat,type="data",distmeasure="tanimoto",
normalize=FALSE,method=NULL,clust="agnes",linkage="flexible",
gap=FALSE,maxK=55,StopRange=FALSE)

> MCF7_T <- Cluster(Data=targetMat,type="data",distmeasure="tanimoto",
normalize=FALSE,method=NULL,clust="agnes",linkage="flexible",
gap=FALSE,maxK=55, StopRange=FALSE)

If the number of clusters to work with is unknown, the option gap in the Cluster function can be
put to TRUE. Relying on the gap statistic (Hastie et al.| (2009)), an optimal number of clusters
will be determined. Another option is to determine the number of clustes with SelectnrClusters.
Medoid clustering is performed for a sequence of numbers of clusters for each provided data source.
The number correspinding with maximal average silhouette widths over the data sources can be
taken as an optimal number of clusters.



> List=1list (fingerprintMat,targetMat)
> NrClusters=SelectnrClusters(List=List,type="data",distmeasure=c("tanimoto",
"tanimoto") ,nrclusters=seq(5,20),normalize=FALSE,
method=NULL,names=c ("FP", "TP") ,StopRange=FALSE,
plottype="sweave",location=NULL)

silhouette-optimal number of clusters: 20
silhouette-optimal number of clusters: 10
silhouette-optimal number of clusters: 20

In the specific case of these data sources, the average silhouette width will only increase as the
number of clusters increases. Therefore, we will rely on the gap statistic and conclude on 7 clusters.

Colors are an important aspect of the visualization tools. The function ColorPalette provides
us with the HEX codes of shades if colors and a desired number of colors are given. It is necessary
to provide a color for each cluster and in some cases extra colors might be necessary.

> Colors <- ColorPalette(colors=c("chocolate","firebrick2", "darkgoldenrod2",
"darkgreen", "blue2", "darkorchid3", "deeppink") ,ncols=7)

One method to plot clustering results is to plot their dendrograms. A function called ClusterPlot
is available to plot the results from the Cluster and any other clustering function. The option is
available to color the leaves according to another clustering results. An example is presented for
further clarification.

> ClusterPlot(Datal=MCF7_F,Data2=MCF7_F,nrcluster=7,cols=Colors,main="Clustering on
Fingerprints: Dendrogram",ylim=c(-0.1,1.8))

> ClusterPlot(Datal=MCF7_T,Data2=MCF7_F,nrcluster=7,cols=Colors,main="Clustering on
Targets: Dendrogram",ylim=c(-0.1,2.5))

Clustering on Clustering on
Fingerprints: Dendrogram Targets: Dendrogram

Height

Figure 1: FP - MCF7 Figure 2: TP - MCF7

Figure on the left is the results of the fingerprint clustering of the MCF7 data colored by the
result of the fingerprint clustering. This implies that the dendrogram was cut into 7 clusters and
each cluster was given a color. On the right in figure [2] the result of the target prediction clustering
is depicted. The dendrogram was also cut into 7 clusters but each leaf (each compound) was
given the same color it had in the fingerprint clustering to make a comparison possible. We could
for example investigate the green cluster determined by figure It is seen that in figure [2| the
cluster does not undergo a lot of changes under the influence of the target predicions. The group
is reformed but one compound has dissapeared and has been replaced by a compound of the what
was the yellow cluster in figure

3.2 Multi-Source Clustering

Several multi-source clustering procedures have been implemented in the IntClust package. A brief
overview is provided here.



3.2.1 Aggregated Data Clustering (ADC)

Aggregated data clustering can only be applied if all data sources are of the same type. This is
because the first step is to fuse all data matrices into one larger matrix such that in the end only
one data matrix remains. Next, clustering is performed on this single matrix.

> L=list(fingerprintMat,targetMat)
> MCF7_ADC=ADC(List=L,distmeasure="tanimoto",normalize=FALSE,method=NULL,
clust="agnes", linkage="flexible")

3.2.2 Aggregated Data Ensemble Clustering (ADEC)

Aggregated data ensemble clustering starts as ADC with the fusion of the data matrices and can
thus only be performed if all data matrices are of the same type. Then ensemble clustering is per-
formed on the fused data matrix. This comes down to repeatedly applying hierarchical clustering.
The original version of the method (Fodeh et al. (2013))) is implemented as version ADECa and
two adaptions were made as ADECb and ADECc. A more detailed explanation follows.

Call m the number of features of the fused data matrix A.

1. In every iteration, a random sample of features r of A is taken and form matrix A’. The

number of features is randomly set between 3 and m — 1 each time.

2. Hierarchical clustering is performed on A’. The dendrogram is cut into a specific number of
clusters k.

3. The incidence matrix C' is computed. This binary matrix has as rows and columns the objects
of the data set. A value of 0 indicates that these objects belong to the same cluster while
1 implies that they do not. This seems counterintuitive but was done to ensure distances
rather than similarities.

4. The co-association matrix S is iteratively computed as
S+ — g 4 &
and indicates the number of times a pair of objects belong to the same cluster.
5. The steps in 1-4 are repeated ¢ times.

6. Finally, hierarchical clustering is performed on the resulting co-association matrix S which
yields the result of the ensemble clustering.

This is the description of ADECa. In version b a random sample of features will not be taken but
instead all features will be used in every iteration. Variation is ensured by cutting the resulting
dendrogram multiple times for a range of values for k. Version c is a combination of version a and
b. Every iteration a random sample of features will be taken and each resulting dendrogram will
be cut into cluster several times for a range of values for k.

> L=list(fingerprintMat, targetMat)

> MCF7_ADECa=ADECa(List=L,distmeasure="tanimoto",normalize=FALSE,method=NULL,
t=20,r=NULL,nrclusters=7,clust="agnes",linkage="flexible")

> MCF7_ADECb=ADECb (List=L,distmeasure="tanimoto",normalize=FALSE,method=NULL,
nrclusters=seq(5,25,1),clust="agnes",linkage="flexible")

> MCF7_ADECc=ADECc(List=L,distmeasure="tanimoto",normalize=FALSE,method=NULL,
t=20,r=NULL, nrclusters=seq(5,25),clust="agnes",linkage="flexible")

3.2.3 Complementary Ensemble Clustering (CEC)

Complementary ensemble clustering (Fodeh et al.| (2013)) shows similarities with ADEC. Instead
of merging the data matrices, ensemble clustering is performed on each data matrix separately
as described for ADEC. After the iterative procedure, the co-association matrices are combined
via a weigted linear combination into a final weigted co-association matrix. On this final matrix
clustering is performed once more which yields the final result. The version CECa, CECb and
CECc differ respectively from each other as where ADECa, ADECb and ADECc differ.



> L=list(fingerprintMat,targetMat)
> MCF7_CECa=CECa(List=L,distmeasure=c("tanimoto","tanimoto") ,normalize=FALSE,
method=NULL, t=20,r=NULL,nrclusters=c(7,7),clust="agnes",
linkage=c("flexible", "flexible"),StopRange=FALSE)
> MCF7_CECb=CECb(List=L,distmeasure=c("tanimoto", "tanimoto"),normalize=FALSE,
method=NULL,nrclusters=seq(5,25,1),clust="agnes",
linkage=c("flexible","flexible") ,StopRange=FALSE)
> MCF7_CECc=CECc(List=L,distmeasure=c("tanimoto", "tanimoto") ,normalize=FALSE,
method=NULL, t=20,r=NULL,nrclusters=seq(5,25),clust="agnes",
linkage=c("flexible", "flexible"),StopRange=FALSE)

3.2.4 Similarity Network Fusion (SNF)

Similarity network fusion (Wang et al| (2014)) consists of two stages and results in a sharing of
information over all available data sources.

Stage I - The initial step A similarity network is set up for each data matrix. First, the
distances between the objects are calculated. These are then rescaled to similarities relying on
the kernel of normal distribution. This results in a matrix with a similarity value for each pair
of objects. The similar objects were found, the higher their similarity value. The connection to a
network is made when the matrix is visualized as weighted graph with the objects as nodes and
the pairwise similarities as weights on the edges.

Stage II - The network fusion step To perform a fusion of the networks, two more matrices
are necessary. The first is a normalized version of the similarity matrix and is referred to as a
global matrix. The second is also a normalized version of the similarity matrix but only considers
the points in the vicinity of objects. This implies that the normalization is performed for a specific
number of neighbours and all other values in the row are set to 0. This matrix is called the local
matrix. The assumption is that objects in the neighbourhood bring more reliable information
forward than objects further away. Each global matrix is now updated via a matrix multiplication
of the corresponding local matrices and the average of all other global matrices. After a number
of iterations, the average of the updated global matrices is taken as the final fused network. The
similarities are converted to distances and a final clustering is performed.

The R package SNFtool accompagnies the paper by [Wang et al.|(2014)). Its functions are combined
into SNFa. However, it was noticed that the functions do not coincide with the method described in
the paper. Therefore SNFb was written which performs the steps as these were outlined. Versions
SNFc shows a high degree of similarity with version b but instead of performing the normalization
of the local matrix separately, the local matrix is taken as a submatrix of the global matrix.

> L=list(fingerprintMat,targetMat)

> MCF7_SNFa=SNFa(List=L,type="data",distmeasure=c("tanimoto", "tanimoto"),normalize=FALSE,
method=NULL, NN=5,mu=0.5,T=20, clust="agnes",linkage="ward",StopRange=FALSE)

> MCF7_SNFb=SNFb(List=L,type="data",distmeasure=c("tanimoto", "tanimoto"),normalize=FALSE,
method=NULL,NN=10,mu=0.5,T=20, clust="agnes",linkage="ward",StopRange=FALSE)

> MCF7_SNFc=SNFc(List=L,type="data",distmeasure=c("tanimoto", "tanimoto"),normalize=FALSE,
method=NULL,NN=10,mu=0.5,T=20, clust="agnes",linkage="ward",StopRange=FALSE)

3.2.5 Weighted Clustering (WeightedClust)

Weighted clustering is a straigtforward method. From each data matrix, a distance matrix ic
calculated. The distance matrices are than combined via a weighted linear combination into one
weighted distance matrix on which clustering is performed.

> L=list(fingerprintMat,targetMat)

> MCF7_Weighted=WeightedClust (L, type="data",distmeasure=c("tanimoto", "tanimoto"),
normalize=FALSE,method=NULL,weight=seq(0,1,0.1),
WeightClust=0.5,clust="agnes",linkage="ward",
StopRange=FALSE)



3.2.6 Weighted Similarity Clustering (WeightedSim)

Weighted similarity clustering (Perualila-Tan et al.| (in press)) is practically the same as weighted
clustering but an optimal weight is determined first. Each single source clustering is compared to
every weighted clustering and the jaccard index is calculated as a representative of their similarity.
For every weight combination, each pair of jaccard indices is compared to each other by takin
their ratios. The weight combinations for which the ratios is closests to 1 is taken as the optimal
combination.

> L=list(fingerprintMat, targetMat)
> MCF7_Weight=DetermineWeight_SimClust (List=L,type="data",weight=seq(1,0,by=-0.01),
nrclusters=7,distmeasure=c("tanimoto", "tanimoto"),
normalize=FALSE,method=NULL,clust="agnes",
linkage=c("flexible", "f
names=c ("FP","TP") ,StopRange=FALSE,
plottype="sweave",location=NULL)
> L=1ist (MCF7_F,MCF7_T)
> MCF7_WeightedSim=WeightedSimClust (List=L,type="clusters",weight=MCF7_Weight$Weight,
clust="agnes",linkage=c("flexible", "flexible"),distmeasure=
c("tanimoto", "tanimoto") ,normalize=FALSE,
method=NULL, gap=FALSE,maxK=50,nrclusters=7,
names=c ("FP","TP"),A11Clusters=FALSE, StopRange=FALSE)

An optimal weight can alternatively be determined by the function Determine Weight_SilClust. For
each provdided weight, the distance matrices are combined in a weighted combination and medoid
clustering with the pam function is performed. Based on the silhouette widths and the cluster
membership an optimal weight is determined. See the helpfiles for more details.

> L=list(fingerprintMat, targetMat)

> MCF7_Weight=DetermineWeight_SilClust(List=L,type="data",weight=seq(0,1,by=0.01),
distmeasure=c("tanimoto", "tanimoto"),
normalize=FALSE,nrclusters=7,names=c("FP","TP"),
nboot=1000, StopRange=FALSE,
plottype="sweave",location=NULL)

3.2.7 Weighting on Membership Clustering (WonM)

Weighting on membership performs hierarchical clustering on each data source separately. With k
the number of clusters, the resulting dendrograms are cut into clusters for a range of values for k.
Each time, an incidence matrix is set up. This is a matrix with as rows and columns the objects
of the data set. Its values are 0 and 1 with 0 indicating that a pair of object resides in the same
cluster to ensure distances. The incidence matrices are first summed over all values of k£ per data
source and then these of the different data sources are added as well. On the resulting consensus
matrix, hierarchical clustering is performed once again to obtain the final clustering taking into
account information of all data sources.

> L=list(fingerprintMat,targetMat)
> MCF7_WonM=WonM(List=L,type="data",distmeasure=c("tanimoto", "tanimoto"),
normalize=FALSE,method=NULL,nrclusters=seq(5,25),clust="agnes",
linkage=c("flexible", "flexible"),StopRange=FALSE)

3.3 Comparison of the results

The clusters of the multi-source methods consist of objects that are similar on multiple layers of
the underlying biology represented by the multiple data sources. The interest lies in those clusters
that remain stable over the applied methods. If a cluster does not undergo too many changes and
is found multiple times, confidence can be put into those objects belonging together. Further, it
can be hypothesized that the used data sources are related for those clusters. This can provide
more insight into the mechanism of action of the compounds.

A comparison of the results is not done on sight. Different methods cluster the compounds in



a different order and this results in non-corresponding cluster numbers. Therefore, it was decided
to take one method as reference and rearrange the cluster numbers of the other results to this
reference. The re-appointing of the cluster numbers is based on finding the cluster that relatively
has the most in common with one of the reference clusters and taking over this number. The
function MatrizFunction was written for this purpose and its algorithm is partly based on the
Gale- Shapley algorithm (?).. It creates a matrix of which the columns are the compounds in the
order of clustering by reference method. The rows are the different methods and the values of the
cells are the rearranged cluster numbers. If each value is associated with a colour, a visualization
of the matrix can be made. A similarity measure is handy for the comparison of multiple methods.
Given a method to be used as reference, it is observed which compounds are residing in the same
cluster for a second method after applying MatrizFunction. The number of compounds that belong
to the same cluster is summed and divided by the total number of objects in the data set. This is
computed by the SimilarityMeasure function.

The MatrizFunction and SimilarityMeasure functions are combined in the ComparePlot function.

> L=1ist (MCF7_F,MCF7_ADC,MCF7_ADECa,MCF7_ADECb,MCF7_ADECc,MCF7_CECa,MCF7_CECD,
MCF7_CECc,MCF7_SNFa,MCF7_SNFb,MCF7_SNFc,MCF7_WonM,MCF7_Weighted,
MCF7_WeightedSim,MCF7_T)
> names=c("FP","ADC","ADECa", "ADECb", "ADECc", "CECa", "CECb", "CECc", "SNFa", "SNFb",
"SNFc", "WonM", "Weighted", "WeightedSim", "TP")



> ComparePlot (List=L,nrclusters=7,cols=Colors,fusionsLog=TRUE,WeightClust=TRUE,
names=names,margins=c(9.1,4.1,4.1,4.1),plottype="sweave",location=NULL)
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Figure 3: Comparison of the results for the CMAP MCF7 data

Figure [3] shows a comparison of all executed clustering procuderes with the fingerprint clustering
as a reference. All other methods were reordered accordingly. We notice that the green cluster
remains stable over all other methods since all but one are grouped together every time. Under
the influence of the target predictions one compound dissapears and is replaced by another. For
the weighted procedures, the result for a weight of 0.5 is shown. This figure could also have been
made over the weights in the weighted clusterings procedures as presented below.

> L=1ist (MCF7_F,MCF7_ Weighted, MCF7_ T)
> names=c("FP",seq(1,0,-0.1),"TP")
>



> ComparePlot (List=L,nrclusters=7,cols=Colors,fusionsLog=TRUE,WeightClust=FALSE,
names=names,margins=c(9.1,4.1,4.1,4.1),plottype="sweave",location=NULL)
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Figure 4: Comparison of the weights in the weighted clustering for the CMAP MCF7 data

It is seen that again, as soon as target prediction information is involved, one compound dissapears
from the cluster while all others remain. For higher weights, another compound joins the cluster.

Further, it is possible to cluster the single source clusterings and multi-source clustering next
to each other such that a visual comparison is possible. This is mostly interesting of more than 2
data sources are available. The function will here be demonstrated for 2 nonetheless. It is made
sure that for both comparison plots the same reference has been used, namely the first element of
ListM.

> LS=1ist (MCF7_F,MCF7_T)
> LM=1ist (MCF7_ADC,MCF7_ADECa,MCF7_ADECb,MCF7_ADECc,MCF7_CECa,MCF7_CECb,
MCF7_CECc,MCF7_SNFa,MCF7_SNFb,MCF7_SNFc,MCF7_WonM,MCF7_Weighted,
MCF7_WeightedSim)
> IIS=C("FP”, HTPH)
> nM=c("ADC", "ADECa", "ADECb", "ADECc", "CECa", "CECb", "CECc", "SNFa", "SNFb",
"SNFc", "WonM", "Weighted", "WeightedSim")
> CompareSvsM(ListS=LS,ListM=LM,nrclusters=7,cols=Colors,fusionsLogS=TRUE,
fusionsLogM=TRUE, WeightClustS=TRUE, WeightClustM=TRUE,
namesS=nS,namesM=nM,margins=c(8.1,3.1,3.1,4.1) ,plottype="sweave",
location=NULL)



Figure 5: Comparison of single source and multi-source clustering

Further, an interactive function exists as well. In this function a comparison plot will be made
with the ComparePlot function of the results provided in ListM. Then, there exists the opportunity
to click on this figure to either indicate one specific cluster or an entire method. To indicate a
cluster, we click on the color of that cluster for the method of choice. To indicate an entire method,
we click on the name of the method on the left of the figure. The indicated cluster/method will
then be compared to the elements provided in ListS in a new plot. It is made sure that for both
comparison plots the same reference has been used, namely the first element of ListM.

> LS=1ist (MCF7_F,MCF7_T)

> LM=1ist (MCF7_ADC,MCF7_ADECa,MCF7_ADECb,MCF7_ADECc,MCF7_CECa,MCF7_CECb,
MCF7_CECc,MCF7_SNFa,MCF7_SNFb,MCF7_SNFc,MCF7_WonM,MCF7_Weighted,
MCF7_WeightedSim)

> IIS=C("FP”, HTPH)

> nM=c("ADC", "ADECa", "ADECb", "ADECc", "CECa", "CECb", "CECc", "SNFa", "SNFb",
"SNFc", "WonM", "Weighted", "WeightedSim")

> Colors=c(Colors, "grey")

> CompareInteractive(ListM=LM,ListS=LS,nrclusters=7,cols=Colors,fusionsLogM=TRUE,

fusionsLogS=TRUE, WeightClustM=TRUE, WeightClustS=TRUE,
namesM=nM, namesS=nS,marginsM=c(8,4.5,2,2.5) ,marginsS
=c(8,4.5,2,2.5),Interactive=TRUE,N=2)
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Two clustering results X and Y can be compared with the help of a test statistic calculated by
the CompareSilCluster function. Single data sources can be provided in their data format. A
distance matrix is necessary for all multiple source clusterings. A medoid clustering is performed
of which the silhouette widths and cluster memberships are retrieved. The silhouette widths of
data X are regressed against the corresponding memberships but also against the memberships
determined by data Y. The R? values are obtained and the statistic is calculated as: A p-value is
obtained by bootstrapping the distance matrices.

> List=1list(fingerprintMat,targetMat)
> Comparison=CompareSilCluster (List=List,type="data",distmeasure=c("tanimoto",
"tanimoto"),normalize=FALSE,method=NULL,
nrclusters=7,names=c ("FP","TP") ,nboot=1000,
StopRange=FALSE,plottype="sweave",location=NULL)
> Comparison

3.4 Selection of a Specific Cluster

As mentioned above, interest lies in stable clusters. We can now select one specific cluster and
perform further analysis. We investigate of which compounds the cluster exists and how it was
formed over the different results and/or weights.

To find the compounds of a cluster, we can use the FindCluster function. Based on the ma-
trix produced by MatrizFunction, we can proivde the row and the cluster number (counting from
1 to 7 from left to right with every color being a new cluster in the first row) and the compounds
of that cluster will be returned. We will focus on the green cluster of the target predictions.

> L=1ist (MCF7_F,MCF7_ADC,MCF7_ADECa,MCF7_ADECb,MCF7_ADECc,MCF7_CECa,MCF7_CECb,
MCF7_CECc,MCF7_SNFa,MCF7_SNFb,MCF7_SNFc,MCF7_WonM,MCF7_Weighted,
MCF7_WeightedSim,MCF7_T)

> Comps=FindCluster (List=L,nrclusters=7,select=c(15,4))

> Comps
[1] "tioguanine" "LY-294002"
[3] "staurosporine" "imatinib"
[6] "nocodazole" "fasudil"
[7] "calmidazolium" "ciclosporin"

[9] "trichostatin A" "bucladesine"

Further, we can track how this cluster was formed with the help of the TrackCluster function.
We will indicate to follow the cluster specifically (followClust=TRUE) and not the largest group
of compounds of the orginally indicated cluster that remain together (followMaxComps=FALSE).
This might involve a change of cluster.

> L=1ist (MCF7_F,MCF7_ADC,MCF7_ADECa,MCF7_ADECb,MCF7_ADECc,MCF7_CECa,MCF7_CECb,
MCF7_CECc,MCF7_SNFa,MCF7_SNFb,MCF7_SNFc,MCF7_WonM,MCF7_Weighted,
MCF7_WeightedSim,MCF7_T)
> names=c ("FP","ADC","ADECa", "ADECb", "ADECc", "CECa", "CECb", "CECc", "SNFa", "SNFb",
"SNFc", "WonM", "Weighted", "WeightedSim", "TP")
> Tracking=TrackCluster(List=L,Selection=Comps,nrclusters=7,followMaxComps=FALSE,
followClust=TRUE, fusionsLog=TRUE, WeightClust=TRUE,
names=names,SelectionPlot=FALSE, Table=FALSE,
CompleteSelectionPlot=TRUE, cols=Colors,plottype="sweave",
location=NULL)
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Figure 7: Tracking of the green cluster over the methods

A selection of a specific cluster can also be made by inspecting the heatmap of the similarity values.
The function SimilarityHeatmap plots the similarity values among the compounds. The input can
be a clustering results but just as well the data source itself. The option to set a cutoff value is
provided. This way, one can but all values below a certain similarity cutoff to 0 while keeping the
other values. A more clearer heatmap will the result. We will draw here the similarity heatmap of
the weighted clustering result for a weight of 0.5.

> SimilarityHeatmap (Data=MCF7_Weighted$Clust, type="clust",distmeasure="tanimoto",
normalize=FALSE,method="Q",cutoff=0.90,percentile=TRUE
,plottype="sweave",location=NULL)
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Figure 8: Similarity Heatmap of the Weighted Clustering Result.
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An experimental function was written to select a group of compounds directly from a heatmap. The
function HeatmapSelection draws the same heatmap as shown above but without the dendrograms
at the side. The user is now free to select two points on the heatmap. It is advised that these two
points are in opposite corners of a square that indicates a high similarity among the compounds.
The points do not have to be the exact corners of the group of interest, a little deviation is allowed
as rows and columns of the selected subset of the matrix with sum equal to 1 are filtered out. A
sum equal to one, implies that the compound is only similar to itself. The function is meant to
be explorative but is experimental. The goal was to make the selection of interesting compounds
easier as sometimes the labels of the dendrograms are too distorted to be read. If the figure is
exported to a pdf file with an appropriate width and height, the labels can be become readable
again. It will return the names of the compounds that are in the selected square provided that
these show similarity among each other.

> CompsHeat=HeatmapSelection(Data=MCF7_Weighted$Clust$DistM, type="dist",
cutoff=0.90,percentile=TRUE, dendrogram=
MCF7_Weighted$Clust,width=7,height=7)

> CompsHeat

Figure 9: Selection of a cluster via the Similarity Heatmap

Next, we perform secondary analysis on the cluster of interest.
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4 Secondary Analysis

4.1 Differential Gene Expression

Interesting genes are those that behave differently in the selected compounds. The gene may have
a higher variation or can be up-regulated or down-regulated. Several methods exist to find such
differentially expressed genes such as a two sample t-test or a permutation test. It was opted to
work with a method called Linear Models for Microarrays (limma) (Smyth|(2004))). The resulting
p-values were adapted for FDR and the significance level was chosen to be 0.05. Limma is in
fact a regular two sample t-test with an adjusted denominator. This adjustment is made to avoid
that genes that have a small fold change and a small variance will be considered significant by the
procedure. The denominator is estimated with an empirical bayesian approach.

We could test all clusters with the DiffGenes functions but will foucus only on our compounds
of interest. These will be tested against all other compounds combined and we ask to collect the
top 10 genes. Since we focus on our selection of compounds, there is no need to specify clustering
results as the result will be independent from the grouping of the compounds.

> MCF7_Genes=DiffGenes (List=NULL,Selection=Comps,GeneExpr=geneMat,
nrclusters=7,method="1imma",sign=0.05,
topG=10, fusionsLog=TRUE, WeightClust=TRUE, names=NULL)
> Genes=MCF7_Genes$Selection$Genes$TopDE$ID

Genes of interest can be plotted with the ProfilePlot.

> ProfilePlot(Genes=Genes[1:5],Comps=Comps,GeneExpr=geneMat,
Raw=FALSE,Order=MCF7_F,Color=MCF7_F,nrclusters=7,
Clusters=NULL, cols=Colors,AddLegend=TRUE,
margins=c(8.1,4.1,1.1,6.5),cex=0.75,plottype="sweave",
location=NULL)
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Figure 10: The Top 5 Genes
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4.2 Pathway Analysis

The final step in the analysis is to allocate the genes to a gene set or pathway. If a gene set is
enriched, i.e. the probability to see this many significant genes of this gene set by chance is low
in the selected compounds, one may be fairly sure that the compounds share an activity on this
pathway. The selected database for pathway analysis is the Gene Ontology (GO) database. This is
an hierarchical database which starts from more general terms (annotations) to very specific ones.
The pathway analysis performed was functional class scoring, also known as MLP. The search for
enriched gene sets starts from the p-values of all genes. For a predefined gene set, it calculates a
score that summarizes the significance of all the genes included in that specific set. This score is
the mean of the negative logarithm of the p-values (MLP).

It is then determined how likely it is to see the MLP value by chance. This is done by a comparison
with the empirical null distribution. To attain this distribution, the labels are permuted across the
samples and the MLP is recalculated. This is repeated a few times for all gene sets. The null dis-
tribution of MLP and the observed value of MLLP are compared and if there is a small probability
to find the observed MLP (a small p-value for this distribution), the score is deemed significant.
The MLP method to perform pathway analysis is based on resampling of the data. Therefore it is
recommended to perform the pathway analysis multiple times to observe how much the results are
influenced by a different sample. We will perform iterative pathway analysis for our selection of
compouds with the PathwaySelectionlter function. Finally, we will found out how many of these
were shared over the different iterations with the Genseset.intersectSelection function.

data(GeneInfo)

data(GS)

L=1ist (MCF7_Genes)

MCF7_Paths=PathwaysIter (List=L,Selection=Comps,names=NULL,
GeneExpr=genelMat ,nrclusters=7,method=
c("limma", "MLP"),GeneInfo=Genelnfo,
geneSetSource = "GOBP",topP=NULL, topG=NULL,
GENESET=GS,sign=0.05,niter=2,
fusionsLog=TRUE, WeightClust=TRUE)

> MCF7_Paths_Inter=Geneset.intersect(MCF7_Paths,Selection=TRUE,sign=0.05,

names=NULL, seperatetables=FALSE,

separatepvals=FALSE)

vV V. VvV
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4.3 Characteristic Features

It is seen that genes were found to be differential expressed for the selected compouds which
form the green cluster based on target predictions. We could now investigate whether there are
fingerprints or target predictions that define this cluster. This can be done with the ChooseFeatures
function. The function has the option to provide the input interactively. A dendrogram of a
provided clustering result will be produces and the user can identify the cluster of interest by
clicking. However, the input can also be provided manually as we will do now.

> MCF7_Feat=ChooseCluster (Interactive=FALSE, LeadCpds=Comps,ClusterResult=MCF7_F,
ColorLab=MCF7_F,BinData=list (fingerprintMat,
targetMat) ,ContData=NULL,Datanames=c ("FP","TP"),geneMat, topChar = 20,
topG = 20,sign=0.05,nrclusters=7,N=1)

>

>

>

We plot the top identified features with the FeaturesPlot.

> BinFeaturesPlot (LeadCpds=Comps,OrderLab=MCF7_F,Features=
MCF7_Feat$Characteristics$FP$TopFeat$Names,Data=fingerprintMat,
ColorLab=MCF7_F,nrclusters=7,cols=Colors,name=c("FP") ,plottype="sweave",
location=NULL)

> BinFeaturesPlot (LeadCpds=Comps,OrderLab=MCF7_F,Features=
MCF7_Feat$Characteristics$TP$TopFeat$Names,Data=targetMat,ColorLab=MCF7_F,
nrclusters=7,cols=Colors,name=c ("TP") ,plottype="sweave",
location=NULL)

Figure 11: Top 20 Fingerprints - MCF7 Figure 12: Top 20 target predictions - MCF7
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5 Software used

R version 3.2.3 Patched (2016-02-11 r70152), x86_64-pc-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

e Other packages: AnnotationDbi 1.32.3, Biobase 2.30.0, BiocGenerics 0.16.1, DBI 0.3.1,
TRanges 2.4.7, IntClust 0.0.1, MLP 1.18.0, RSQLite 1.0.0, S4Vectors 0.8.11, SNFtool 2.2,
affy 1.48.0, biomaRt 2.26.1, gdata 2.17.0, ggplot2 2.0.0, gmodels 2.16.2, gplots 2.17.0,
gtools 3.5.0, org.Hs.eg.db 3.2.3, plotrix 3.6-1

e Loaded via a namespace (and not attached): BiocInstaller 1.20.1, KernSmooth 2.23-15,
MASS 7.3-45, RCurl 1.96-0, Rcpp 0.12.3, XML 3.99-0, a4Base 1.18.0, a4dCore 1.18.0,
aded 1.7-3, affyio 1.40.0, bitops 1.0-6, caTools 1.17.1, class 7.3-14, cluster 2.0.3,
colorspace 1.2-6, e1071 1.6-8, grid 3.2.3, gridExtra 2.0.0, gtable 0.1.2, heatmap.plus 1.3,
lava 1.4.1, limma 3.26.8, munsell 0.4.3, pls 2.5-0, plyr 1.8.3, preprocessCore 1.32.0,
prodlim 1.5.7, scales 0.3.0, splines 3.2.3, survival 2.38-3, tools 3.2.3, zlibbioc 1.16.0
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