
rtkpp: R and stk++ integration using Rcpp

Serge Iovleff

1 Introduction

stk++ is a versatile, fast, reliable and elegant collection of C++ classes for statistics, clustering, linear algebra
(using native methods or Lapack), arrays (with an Eigen-like API [1]), regression, dimension reduction, etc.
Some functionalities provided by the library are available in the R environment as R functions.

The rtkpp package provides the header files composing the stk++ C++ library (thus users do not need to
install stk++ itself in order to use rtkpp), along with implementations of Rcpp::as and Rcpp::wrap for the C++

classes defined in stk++. In this sense it is similar to the RcppEigen [2, 1] and RcppArmadillo [3] packages.
The current version of the stk++ library is given below

> .Call("stk_version", FALSE, PACKAGE="rtkpp")

major minor patch

0 8 6

2 Wrapping R data by stk++ arrays

Rcpp facilitates conversion of objects from R to C++ through the templated functions Rcpp::as. The function
Rcpp::as is implemented in stk++ but it is not strictly necessary to use it. You can rather use this kind of code

Rcpp:: NumericMatrix m_data = data; // data is SEXP representing a R-matrix

STK::RMatrix <double > mat(m_data); // STK :: RMatrix <double > mat(data) will work

The templated class STK::RMatrix wrap the Rcpp matrix (which itself wrap the R SEXP structure). You can
access directly (and eventually modify) the R data in your application.

The second templated class you can use is the STK::RVector which allow to wrap Rcpp::NumericVector.

3 Converting stk++ arrays and expressions to R data

Rcpp facilitates data conversion from C++ to R through Rcpp::wrap. This function is extended by rtkpp for the
stk++ arrays and vectors.

The following example is taken from the STK::ClusterLauncher class

Array2D <Real > mean(K, nbVariable), sigma(K, nbVariable);

// get estimated parameters

//

// and save them

NumericVector m_mean = Rcpp::wrap(mean);

NumericVector m_sigma = Rcpp::wrap(sigma);

Note that the Rcpp::wrap is rather limited in its usage and if you need, for example, to convert expression
rather than arrays then you can use the STK::wrap function (see example below).

4 An example

The package countMissings can be downloaded at the www.stkpp.org url. It is basically composed of one
R-script file (countNA.R) and one C++ file (countNA.cpp).

Given a R matrix, it is possible to get a list composed of two vectors constaining respectively the number of
missing values in each rows and the number of missing values in each columns of the R matrix.

The R-script countNA.R looks

1

countNA <- function(data)

{

if (!is.matrix(data)) { stop("in countNA , data must be a matrix.")}

.Call("countNA", data , PACKAGE = "countMissings")

}

and the C++ files looks

#include "RTKpp.h"

RcppExport SEXP countNA(SEXP r_matrix)

{

BEGIN_RCPP

STK::RMatrix <double > m_data(r_matrix);

// use STK :: wrap function (Rcpp :: wrap function will not work)

return Rcpp::List:: create(Rcpp::Named("rows")= STK::wrap(STK:: countByRow(m_data.isNA()))

, Rcpp::Named("cols")= STK::wrap(STK::count(m_data.isNA()))

);

END_RCPP

}

5 Linking with rtkpp

The only thing to do is to include the header file

// Rcpp.h will be include by rtkpp

#include <RTKpp.h>

in the code. When compiling the sources, you indicate the location of the stk++ library using rtkpp:::CxxFlags(),
rtkpp:::CppFlags() and rtkpp:::LdFlags() in package Makevars file.

If you are building a package with a lot of cpp files, you may find convenient to locate your sources in a
separate directory. Hereafter we give an example of a Makevars you can modify at your convenience in order
to handle this situation.

#---

Purpose: Makevars for the R packages using rtkpp (stk++)

#---

PKGNAME = NAME_OF_YOUR_PACKAGE

PKGDIR = FULL_PATH_TO_YOUR_PACKAGE

PKGLIBDIR = $(PKGDIR)/lib

PKGLIB = $(PKGLIBDIR)/lib$(PKGNAME).a

Use the R_HOME indirection to support installations of multiple R version.

use $(SHLIB_OPENMP_CXXFLAGS) if you want openmp.

It is not necessary to use Rcpp:::CxxFlags() if there is already

LinkingTo: Rcpp in your DESCRIPTION file

PKG_CXXFLAGS = `${R_HOME}/bin/Rscript -e "Rcpp:::CxxFlags()"` \

`${R_HOME}/bin/Rscript -e "rtkpp:::CxxFlags()"`

PKG_CPPFLAGS = `${R_HOME}/bin/Rscript -e "rtkpp:::CppFlags()"` \

$(SHLIB_OPENMP_CXXFLAGS)

use $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS) if you want lapack

PKG_LIBS = `${R_HOME}/bin/Rscript -e "Rcpp:::LdFlags()"` \

`$(R_HOME)/bin/Rscript -e "rtkpp:::LdFlags()"` \

$(SHLIB_OPENMP_CFLAGS) $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS) $(PKGLIB)

Define any flags you need for compiling your sources

PKGNAME_CXXFLAGS = $(PKG_CXXFLAGS)

PKGNAME_CPPFLAGS =

2

export

.PHONY: all pkglib

$(SHLIB) is the usual default target that is built automatically from all source

files in this directory. pkglib is an additional target for the package

that will be found in $(PKGDIR).

all: $(SHLIB)

$(SHLIB): pkglib

build the PKGLIB (lib$(PKGNAME).a)

pkglib:

(cd $(PKGDIR) && $(MAKE) all)

(cd $(PKGDIR) && $(MAKE) clean)

References

[1] Douglas Bates and Dirk Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen
package. Journal of Statistical Software, 52(5):1–24, 2013.

[2] Douglas Bates, Romain François, and Dirk Eddelbuettel. RcppEigen: Rcpp integration for the Eigen tem-
plated linear algebra library, 2014. R package version 0.3.2.0.2.

[3] Romain François, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo
templated linear algebra library, 2014. R package version 0.4.000.2.

3

