
An introduction to RTF and the rtfSweave package

Stephen Weigand weigand@mayo.edu

April 13, 2015

Contents

1 Overview 1

2 Document prolog 2

3 Paragraphs 2

4 Figures 4

5 Tables 5

6 Using rtfSweave 5
6.1 File naming conventions . 6

1 Overview

In this document I try to provide some very basic information about RTF and show how
to use the rtfSweave package with Sweave to make RTF statistical reports. For me, the
key to understanding RTF was reading the excellent RTF Pocket Guide by Sean Burke[1].
It covers important aspects of RTF and only after reading it did I find that the RTF spec-
ifications published by Microsoft made some sense. The Pocket Guide can be downloaded
as a PDF from the publisher’s website (currently http://shop.oreilly.com/product/

9780596004750.do).
Rich Text Format (RTF) is a mark-up language in that RTF files are plain text files

containing document “content” such as text, tables, and figures along with commands in-
dicating how these should be displayed. In this sense, RTF is somewhat similar to HTML
or LATEX. RTF was developed by Microsoft and is tightly integrated into Microsoft Word
(MS Word), so much so that RTF is essentially a text-based interface to Word documents.
If you are creating a statistical report for an MS Word user, there may be an advantage to
writing the RTF directly rather than having to use a converter from LATEXor other format.
This should not be taken as arguing that RTF is a replacement for LATEX.

One important way that RTF differs in spirit from HTML or LATEX is that in the RTF
specification there is much less separation between content and presentation.For example,

1

headings in an RTF document are really just short paragraphs with special formatting and
not structural elements.

At this point, it may make sense to show an example of an RTF document. Here is the
“Hello, world!” example from the Pocket Guide. Note that RTF has no built-in comments
so I am using “//” to indicate “pseudo-comments” which annotate the file.

{\rtf1 // RTF version 1, your only choice

\ansi // Document is in the ANSI character set

\deff0 // Default font is font 0, defined below

\deflang1033 // Default language code 1033 = en-us

\plain \fs24 // Plain format has fontsize 24/2 = 12 points

{\fonttbl // Font table

{\f0 Times New Roman;} // Font 0 defined as Times New Roman

{\f1 Arial;} // Font 1 defined as Arial

}

{\pard \fs28 \b // Paragraph set at 28/2 = 14 pts in bold

Greeting // to resemble a level-1 heading

\par} // End paragraph

{\pard // New paragraph set with "plain" formatting

Hello, World!

\par} // End paragraph

}

Figure 1: An annotated RTF version of “Hello, World!”

2 Document prolog

The Guide has information on the prolog. In it you define some document defaults, a font
table, a color table (optional), and an info group containing metadata (optional).

3 Paragraphs

RTF has a paragraph entity, but no heading entities. This means that headings are just
paragraphs with special formatting such as boldface type. Following the Pocket Guide[1],
paragraphs are written using the following form.1

{\pard

1Note that there are no spaces at the end of these lines. If there were they would show up as extraneous
spaces in the document. Blank lines don’t matter in RTF but spaces do.

2

A short paragraph.

\par}

Formatting instructions for the paragraph can follow the \pard command on the same
line. For many size-related commands, the units are in “twips” where one twip equals
one twentieth of a point. (If 20 twips equals 1 point, and 72 points/inch, then there are
72×20 = 1440 twips per inch.2) One exception is that text sizes are specified in half points.
To illustrate, the following paragraph has 120 twips (six points) of space before and after
the paragraph and is set in font zero at 24 half points (12 points). A single space after the
RTF commands is optional but helps readability.

{\pard \sb120 \sa120 \f0 \fs24

A short paragraph.

\par}
If the paragraph you are writing is more than one line, a helpful way to handle spaces

is to indent everything after the first line with a space. That way, it will be easy to see that
there are no inadvertent spaces at the end of a line. This is an example.

{\pard \sb120 \sa120 \f0 \fs24

A short paragraph that

is written in multiple

lines.

\par}

A heading paragraph is similar but with additional formatting instructions. The fol-
lowing creates the appearance of a heading by being displayed in font 1 (\f1), at 16 points
(\fs32) and in bold (\b). The command \keepn keeps the headling-like paragraph on the
same page as the paragraph that follows it.

{\pard \sb120 \sa120 \f1 \fs32 \b \keepn

Introduction

\par}

The mark-up is readable but verbose. One simple solution is to come up with some
macro-like substitutions and write a function to “preprocess” the file to do search and
replace. For example, one could write \paragraph in documentation chunks and use R to
replace this pseudo command with valid RTF commands to specify, for example, 120/20 = 6
points of space before and after the paragraph, and text set in font zero at 12 points.

> preprocess <- function(original.rtf, new.rtf){

+ doc <- readLines(original.rtf)

+ doc <-

+ sub("^{\\paragraph$",

+ "{\\pard \\sb120 \\sa120 \\f0 \\fs24",

+ doc)

+ writeLines(doc, new.rtf)

+ }

2My guess is that twips were used to allow RTF commands to be specified in integer units.

3

With these kind of substitutions specifying paragraphs, sections, subsections, etc, the
document can be made more readable and much easier to write.

4 Figures

PNG, JPEG, or Windows enhanced metafile (EMF) images can be included in an RTF
document by converting the image file to text using a hexdump and wrapping it in some
RTF control commands. (See http://en.wikipedia.org/wiki/Hex_dump for details on a
hexdump.)

Here is a partial example of RTF that would display a PNG file in a paragrap by itself.

{\pard{\pict\pngblip

8950 4e47 0d0a 1a0a 0000 000d 4948 4452

0000 0064 0000 0064 0803 0000 0047 3c65

6600 0000 0650 4c54 4500 0000 ffff ffa5

...

5771 c762 1cd6 f1ed 15bf 211b b221 2b21

3f2f a623 9b76 0cff 8d00 0000 0049 454e

44ae 4260 8200}\par}

This type of hexdump can be generated as follows.

> tmp <- tempfile()

> png(tmp, height = 2, width = 2, units = "in", res = 10)

> plot(1:10)

> dev.off()

null device

1

> size <- file.info(tmp)$size

> hex <- readBin(tmp, what = "raw", size)

> cat(hex, fill = 60, sep = " ")

89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 14

00 00 00 14 08 03 00 00 00 ba 57 ed 3f 00 00 00 60 50 4c 54

45 86 86 86 88 88 88 8f 8f 8f 90 90 90 92 92 92 95 95 95 97

97 97 99 99 99 9b 9b 9b 9f 9f 9f a5 a5 a5 a9 a9 a9 ab ab ab

ae ae ae b1 b1 b1 b4 b4 b4 b7 b7 b7 bc bc bc bf bf bf c8 c8

c8 d8 d8 d8 e0 e0 e0 e4 e4 e4 ea ea ea ec ec ec ee ee ee ef

ef ef f2 f2 f2 f3 f3 f3 fd fd fd fe fe fe ff ff ff 1b 4f fa

f6 00 00 00 09 70 48 59 73 00 00 01 89 00 00 01 89 01 9e 2e

11 35 00 00 00 56 49 44 41 54 18 95 63 90 c7 02 18 06 58 50

0a 9b 20 23 90 94 91 e7 e7 13 11 16 e0 e5 e1 e1 92 05 0b 0a

01 49 21 79 31 56 66 16 36 0e 6e 41 41 88 4a 19 88 16 09 51

4

71 79 71 71 39 71 0c 8b a4 31 6c 17 92 91 e7 91 94 97 61 94

a2 a6 8f d8 99 18 38 29 d0 8e 00 00 de af 2d ef 1f 70 8e 89

00 00 00 00 49 45 4e 44 ae 42 60 82

5 Tables

Tables in RTF are defined by a sequence of independent table rows defined by the {\trowd

. . . \row} construct. Each row consists of some number of “cells.” Here is a simple two-row
table where each row has three cells (which are displayed as columns).

{\trowd

\cellx1440\cellx2880\cellx4320

\pard\intbl Aligator \cell

\pard\intbl Bear \cell

\pard\intbl Cat \cell

\row}

{\trowd

\cellx1440\cellx2880\cellx4320

\pard\intbl Dog \cell

\pard\intbl Elephant \cell

\pard\intbl Fox \cell

\row}

The \cellx control word specifies where the right margin of the cell is placed relative
to the page margin. In both rows above, the first cell’s right edge is at 1440 twips (1 inch)
from the page margin, the second cell’s right edge is at 2880 twips (2 inches), and the third
cell’s right margin is at 4320 twips (3 inches).

6 Using rtfSweave

At present, the rtfSweave simply provides a driver so that Sweave can process an RTF
file. Assuming that the file with text and code is myreport.Rnw, the commands to process
the file are

require("rtfSweave")

Sweave("myreport.Rnw", driver = RweaveRtf(),

syntax = SweaveSyntaxRtf)

Actually, the syntax argument is not necessary because Sweave is smart enough to find the
right syntax object, SweaveSyntaxRtf.

This syntax object closely follows the SweaveSyntaxNoweb object and therefore, code
chunks are defined by

5

<<optional label, various options >>=

Your code here

@

To include R code in text chunks, use {\Sexr <code> }.

6.1 File naming conventions

W

References

[1] Sean M Burke, RTF Pocket Guide. O’Reilly, 2003.

6

