
Introduction to ppstat data
containers

Niels Richard Hansen1, University of Copenhagen

Contents

1 Summary 1

2 Getting started 2

2.1 The first object . 2

2.2 Combining more information . 4

2.3 Including point process data . 5

3 Plotting 7

4 Subsetting 8

5 Summary of the interface 12

6 Technical details 13

1 Summary

The package ppstat implements a hierarchy of S4 classes for storing data for discretely
observed, multivariate stochastic processes.

The most important feature of the implemented classes is to provide an interface to data
sets that contain components that are not easily or conveniently stored in a standard
way, e.g. as a single matrix or data frame. In particular, joint data of event times (point
process data) and discretely observed continuous processes is supported. Moreover, the
data structures handle process data for multiple units (e.g. longitudinal data), and the
joint representation of different types of data allows for a simple interface to subscription
and subsetting that does not rely on knowledge about the actual implementation.

1Postal address: Department of Mathematical Sciences, University of Copenhagen Universitetsparken
5, 2100 Copenhagen Ø, Denmark.
Email address: Niels.R.Hansen@math.ku.dk

2

Why do we need yet another data structure in R? Because no data structure currently
exists that can handle the data described without either excessive amounts of redundant
information or a lot of bookkeeping. It is possible to implement the S4 classes in ppstat

based on a single data frame representation of the data, but that representation will
include redundant information, and for the intended applications this will often make it
prohibitively large. The alternative is that we keep the data in several different data frames
to avoid the redundancies, but this will impose an error prone responsibility for the user
to maintain that the different parts of the data are always linked correctly together.

Using the classes ContinuousProcess and MarkedPointProcess in ppstat we can, con-
ceptually, view the data as a single big data frame while the implementation attempts to
minimize redundancies. The classes are responsible for keeping track of the links between
the internal representations, but for the end user this is irrelevant. A range of standard
methods for subscription and subsetting is implemented for the classes, which, together
with sensible default methods for plotting the data, provides the fundamental framework
in R for handling data that combine discrete events with continuous process data.

2 Getting started

2.1 The first object

A bivariate Brownian motion can be represented in R as a n× 2 matrix, e.g.

> n <- 2001

> p <- 2

> X <- apply(matrix(rnorm(n*p), n, p), 2, cumsum)

We can turn this matrix into an object of class ContinuousProcess by a call of the
constructor continuousProcess.

> processX <- continuousProcess(X)

The resulting object can be printed, which only shows minimal structural information, and
it can be summarized, which provides additional information – in the case of continuous
variables the default is to compute the median per variable.

> print(processX)

Class: ContinuousProcess

Dimensions: 2001 x 2

Index variable: time

Overview of processdata 3

2 variables.

V1 V2

> summary(processX)

Class: ContinuousProcess

Dimensions: 2001 x 2

Index variable: time

2 variables.

V1 V2

grid-points time-range median(V1) median(V2)

1 2001 [0;2000] -16.06047 4.330141

The constructor makes a number of decisions, since the raw data set in X does not contain
any information on variable names, time points of observations etc. In this case it auto-
matically labels the variables V1 and V2, and assumes that the observations are equidistant
and observed at time points 0, 1, ..., 2000. The summary tells us that the data set
contains 2001 observations (the number of grid points in the observation grid) in the
observation window from 0 to 2000.

We can instead provide the information for the constructor.

> X <- cbind(seq(0, 1, length.out = n), X)

> colnames(X) <- c("time", "Brownian", "Motion")

> processX <- continuousProcess(X)

> summary(processX)

Class: ContinuousProcess

Dimensions: 2001 x 2

Index variable: time

2 variables.

Brownian Motion

grid-points time-range median(Brownian) median(Motion)

1 2001 [0;1] -16.06047 4.330141

The class handles an equidistant and a non-equidistant observation grid equally well.

4

2.2 Combining more information

Besides the formatting of the print and summary information, the ContinuousProcess

object seems to be just a wrapped up version of the data matrix. This is, from a conceptual
point of view, correct. The more useful features of the class are first discovered when we
have more complicated data sets.

We extend the data set to hold information of the sampling of two bivariate Brownian
motions. To do this we introduce an id variable and change the data format for the “raw”
data to a data frame.

> XX <- apply(matrix(rnorm(n*p), n, p), 2, cumsum)

> XX <- cbind(seq(0, 1, length.out = n), XX)

> X <- as.data.frame(rbind(X, XX))

> X <- cbind(data.frame(id = rep(c("A", "B"), each = n)), X)

> processX <- continuousProcess(X)

Summarizing the data set reveals the structure we now have.

> summary(processX)

Class: ContinuousProcess

Dimensions: 4002 x 2

Index variable: time

2 units.

id: A B

2 variables.

Brownian Motion

grid-points time-range median(Brownian) median(Motion)

A 2001 [0;1] -16.06047 4.330141

B 2001 [0;1] -2.97718 14.940415

There are two units named A and B, respectively, and we get summary information per
unit. Still, the new object is conceptually just a layer around the data frame that provides
a print and a summary method. A real advantage is first gained when we, in addition to
the observed processes, have unit specific data. The two units may be at different locations,
say.

> unitData <- data.frame(id = c("A", "B"),

+ location = c("town", "country"))

> processX <- continuousProcess(X, unitData = unitData)

Overview of processdata 5

> summary(processX)

Class: ContinuousProcess

Dimensions: 4002 x 3

Index variable: time

2 units.

id: A B

3 variables.

location Brownian Motion

grid-points time-range location median(Brownian) median(Motion)

A 2001 [0;1] town -16.06047 4.330141

B 2001 [0;1] country -2.97718 14.940415

The additional, unit specific, information on location is now integrated into the data
set. Conceptually it looks as if we added a location column to the data frame X, which
contains 2001 repeated values of town and 2001 repeated values of country. However, the
data structure does actually not make this wasteful copy of entries, which would be a real
burden for large data sets. Instead it just maintains the relation between the process data
and the unit data without the actual copying of data.

2.3 Including point process data

A primary motivation for implementing the ppstat package was to combine the previously
described data structures with time points of events. This is implemented by the S4 class
MarkedPointProcess, which is an extension of the ContinuousProcess class.

Having constructed the processX data set already, we can easily augment the data set
with event times.

> pointData <- data.frame(id = c("A", "A", "A", "B", "B"),

+ time = c(0.2413, 0.7622, 0.9724, 0.1100, 0.6414))

> processX <- markedPointProcess(pointData, continuousData = processX)

> summary(processX)

Class: MarkedPointProcess

Dimensions: 4006 x 4

Index variable: time

2 units.

id: A B

6

4 variables.

location Brownian Motion point

grid-points time-range location median(Brownian) median(Motion) #point

A 2004 [0;1] town -16.050565 4.316669 3

B 2002 [0;1] country -2.976267 14.955649 2

The summary shows that we have added a column with variable name point, that the
dimensions have changed to 4006 × 4, and that the column providing the summary of
points shows the number of points per unit – with 3 points observed for unit A and 2
points observed for unit B.

We can think of the data structure as appending a point column consisting of 0-1 values
to the remaining data set, where 1 represents an event. However, to do that we need to
modify the observation grid to include all time points where we have observed events. This
is done by augmenting the observation grid with the time points of events not already in
the observation grid and extrapolating the values of process data to the agumented grid
points from the left. In the example above, there are five points, but only four new time
points as 0.1100 is already in the observation grid.

As with the unit specific data for the ContinuousProcess data structure, the MarkedPointProcess
data structure does not append a wasteful 0-1 column consisting mostly of 0’s. The data
structure is keeping track of the relations between the different types of data and allows us
to work with the data as if the data set is a 4006× 4 dimensional matrix of observations.

With equidistant observations for the original data set the inclusion of event times can
result in a non-equidistant observation grid. This may or may not be desirable. It retains
the precision of the event times, but for the down-stream analysis it may be desirable to
coarsen these time points to the equidistant grid. This is done by the coarsen argument
to the constructor. We do the construction of the process object here in one go from the
three data frames.

> processX <- markedPointProcess(pointData, continuousData = X,

+ unitData = unitData, coarsen = 'right')
> summary(processX)

Class: MarkedPointProcess

Dimensions: 4002 x 4

Index variable: time

2 units.

id: A B

4 variables.

Overview of processdata 7

location Brownian Motion point

grid-points time-range location median(Brownian) median(Motion) #point

A 2001 [0;1] town -16.06047 4.330141 3

B 2001 [0;1] country -2.97718 14.940415 2

3 Plotting

The package provides a plot method based on the ggplot2 package.

> print(plot(processX)) ##print only needed for Sweave

● ● ●

● ●

−60

−40

−20

0

20

40

60

point

−60

−40

−20

0

20

40

60

point

A
B

0.00 0.25 0.50 0.75 1.00
time

variable

●

●

●

Brownian

Motion

point

A call of plot as above is all that is needed to plot the data in a sensible way. However,
depending upon the structure and size of the data set, various modifications of the plot
may be desirable. In particuar, we can modify the plot using the possibilities implemented
in ggplot2, or we can plot a subset of the data only using the subsetting functionality
described below.

8

> p <- plot(processX) + facet_null() + aes(colour = id)

> print(p) ##print only needed for Sweave

● ● ●● ●

−60

−40

−20

0

20

40

60

point

0.00 0.25 0.50 0.75 1.00
time

id

●

●

A

B

Using simple tools from ggplot2 we can, as above, modify the way the data are plotted.
Instead of different panels for each unit, we can colour code the units and drop the colour
coding of the variables.

4 Subsetting

The standard square bracket, [,], notation for subsetting can be used with numeric,
logical and character vectors just as if the data set was a data frame. To this end,
a few things are important to know. First, the unit id and the observation grid are not
regarded as columns (variables) in the data set, but rather as the structure of the data
set. Thus processX has 4 columns, whose names are the 4 variable names listed in the
summary. Second, the rows do not have names, and character vector subsetting in the first
coordinate means subsetting to a set of unit ids.

Overview of processdata 9

> processX[,c(1,2)]

Class: MarkedPointProcess

Dimensions: 4002 x 2

Index variable: time

2 units.

id: A B

2 variables.

location Brownian

> processX[1:3000,]

Class: MarkedPointProcess

Dimensions: 3000 x 4

Index variable: time

2 units.

id: A B

4 variables.

location Brownian Motion point

> processX[-(3001:4000), c(1,4)]

Class: MarkedPointProcess

Dimensions: 3002 x 2

Index variable: time

2 units.

id: A B

2 variables.

location point

> summary(processX["A", c("location", "Brownian", "point")])

Class: MarkedPointProcess

Dimensions: 2001 x 3

Index variable: time

10

3 variables.

location Brownian point

grid-points time-range location median(Brownian) #point

A 2001 [0;1] town -16.06047 3

Bracket subsetting supports the drop argument, which by default is always FALSE. The
consequence of “dropping” depends upon the context. In all cases subsetting to a sin-
gle column with drop = TRUE returns a vector with the values of the column. For a
MarkedPointProcess object and subsetting to 2 or more columns containing unit data or
continuous process data with drop = TRUE results in a ContinuousProcess object.

> processX[, -4, drop = TRUE]

Class: ContinuousProcess

Dimensions: 4002 x 3

Index variable: time

2 units.

id: A B

3 variables.

location Brownian Motion

> head(processX[, 2, drop = TRUE])

[1] -0.876766973 -1.623156401 -0.247241610 -0.009659645 0.098967827

[6] 1.301689103

> processX[, 4, drop = TRUE]

[1] 0.2415 0.7625 0.9725 0.1105 0.6415

The combination of subsetting and plotting can be a useful for visual exploration of a
larger data set.

> print(plot(processX["A",c(2,4)])) ##print only needed for Sweave

Overview of processdata 11

● ● ●

−60

−40

−20

0

20

40

point

0.00 0.25 0.50 0.75 1.00
time

variable

●

●

Brownian

point

In addition to bracket subsetting there is a subset method, which extracts subsets of a
data set via expressions that evaluate to logical. The expressions are logical filters, which
can be specified in terms of column variables in the data set, the unit id (default id)
variable and the index variable (default time).

Subsetting using the time variable in the logical filter results in a zooming feature for the
plot method.

> ##print only needed for Sweave

> print(plot(subset(processX, time > 0.75 & time < 0.95)))

12

●

−40

−20

0

20

40

point

−40

−20

0

20

40

point

A
B

0.75 0.80 0.85 0.90 0.95
time

variable

●

●

●

Brownian

Motion

point

5 Summary of the interface

The sections above introduced the two constructors, continuousProcess and markedPointProcess,
the bracket subsetting, the subset method and the plot method.

The ContinuousProcess class has, furthermore, several methods for extracting the data
in the data set. The extractors getTime and getId extract the observation grid and the
unit ids, respectively, as vectors. The method getUnitData extracts the unit specific data
as a data frame.

For the MarkedPointProcess class there are additional extractor methods getPointTime
and getPointId that extract the event times and corresponding event unit ids, respec-
tively.

Both classes have the self-explaning dim and colNames methods.

A central method for data extraction is getColumns. It takes a character or numeric second
argument (which can be a vector), and returns the selected data column(s). If two or more

Overview of processdata 13

columns are selected, a list is returned with the columns. If one column is selected, the
return value is a vector by default.

In addition there are convenience extractors, getFactors and getNumerics that extract
the factor and numeric columns, respectively, for the continuous process data, together
with getMarkType and getMarkValue that extract marks and mark values, respectively,
for the event times. See their help pages for details on their return values.

6 Technical details

The actual implementation is in principle irrelevant to the end user. Only the constructors
and the interface to access and extract the data, as summarized above, are needed. This
section gives a some more technical details for the interested on the implementation and
the internal design.

First, the actual data are regarded as immutable. The intention was to design a package
where the different data elements can be initially combined and then later accessed and
used, and for which sub data sets can be easily selected. The decision was to store the initial
data as immutable data objects and then provide extration and subsetting functionality.
It was never the intention that the data format should be suitable for altering entries in
the data set, e.g. in relation to data cleaning.

The current implementation relies on an internal representation of the data that are stored
in environments pointed to by slots in the objects. A practical consequence, important for
working with large data sets, is that the actual data are not copied around if copies of the
data set are made. Even subsetting does not require copying the data as these operations
rely on pointers to the subset of the full data set instead of actually copying the subset of
the data. This also allows for an unsubset function that resets all pointers and restores
the data set to the form of the orginal data set.

We can investigate the structure of the objects with the two methods object.size and
str.

> str(processX)

Formal class 'MarkedPointProcess' [package "ppstat"] with 18 slots

..@ markColNames : chr "point"

..@ markValueColNames : chr(0)

..@ iPointSubset : int -1

..@ jPointSubset : int -1

..@ pointPointer : int -1

..@ factorColNames : chr(0)

..@ numericColNames : chr [1:2] "Brownian" "Motion"

..@ iSubset : int -1

14

..@ jSubset : int -1

..@ positionVar : chr "time"

..@ equiDistance : num 0

..@ metaData : list()

..@ unitColNames : chr "location"

..@ idVar : chr "id"

..@ iUnitSubset : int -1

..@ jUnitSubset : int -1

..@ pointProcessEnv [environment] with 3 variables

..$ id : Factor w/ 2 levels "A","B": 1 1 1 2 2

..$ markType : Factor w/ 1 level "point": 1 1 1 1 1

..$ pointPointer : int [1:5] 484 1526 1946 2223 3285

..@ valueEnv [environment] with 5 variables

..$ id : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...

..$ position : num [1:4002] 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 ...

..$ unitData :'data.frame': 2 obs. of 1 variable:

..$ location: Factor w/ 2 levels "country","town": 2 1

..$ var_Brownian : num [1:4002] -0.87677 -1.62316 -0.24724 -0.00966 0.09897 ...

..$ var_Motion : num [1:4002] 0.285 1.173 0.276 -0.3 -0.358 ...

> object.size(processX)

117192 bytes

The str method is a slightly modified version of the default method, which digs into the
environments and lists the structures of their content. Likewise, object.size is a slightly
modified version of the default method that sums up the sizes of the slots as well as the
content of the environments.

A slightly odd consequence of the fact that the actual data are stored in environments is
that any subset points to the environments with the complete data. Hence, in addition
to the pointers in the subset, the sum of the sizes of objects in the environments and the
slots is larger for a subset than for the original data. In isolatation this is regarded as the
relevant way to measure the size of a subset, and if we, for instance, save the object using
save then everything in the environments is saved. On the other hand, with several objects
all being subsets of one data set, the actual memory consumption is (much) smaller than
the sum of the sizes of the objects as measured by object.size.

> processXsubset <- processX[1:1000, c(2,4)]

> object.size(processXsubset)

121176 bytes

Overview of processdata 15

The constructors continuousProcess and markedPointProcess can be called with a
ContinuousProcess and a MarkedPointProcess object, respectively, which will gener-
ate a true copy of the object. In particular, if we have a subset of the data set on which
we call the constructor, we create a true copy of the object with the subset of the data
now stored in a new environment.

> processXtruesubset <- markedPointProcess(processXsubset)

Class: MarkedPointProcess

Dimensions: 1000 x 2

Index variable: time

2 variables.

Brownian point

> object.size(processXtruesubset)

24272 bytes

> identical(unsubset(processXtruesubset), processXtruesubset)

[1] TRUE

> identical(unsubset(processXsubset), processX)

[1] TRUE

The current implementation is intended to be useful for working with medium sized data
sets. Some effort has been put into avoiding the storage of redundant information while
integrating event data and process data. Moreover, the avoidance of data copying may
be useful if we want to fit many statistical models, and each model needs to carry a
copy of the data, or if we want to fit the same model repeatedly to bootstrapped or
randomly subsetted data. However, the data representation still requires that the whole
data set fits into the physical memory. On the other hand, by providing an interface to
marked point process data we can write an extension, BigMarkedPointProcess, say, of
the MarkedPointProcess class that either rely on even more efficient internal storage of
the data or access to the data in a data base or in another disk based storage format.

