
The patchDVI package

Duncan Murdoch

January 19, 2015

Abstract

The patchDVI package works with Sweave [Leisch, 2002] and
knitr [Xie, 2013] and document previewers to facilitate editing: it
modifies the links that LATEX puts into the output so that they re-
fer to the original source. It also includes a few project management
functions to make large multi-file documents easier to handle.

1

Contents

1 Introduction 3

2 Quick Start Instructions 3

3 patchDVI History 5

4 Sweave Concordances 6

5 Patching .dvi Files 8

6 Patching .synctex Files 8

7 Project Management Function SweaveAll 8
7.1 The Complete Process 10

8 Conclusion 11

A Using patchDVI with TeXShop 13

B Using patchDVI with TeXWorks 14

C Using patchDVI with WinEdt 16

2

1 Introduction

Most implementations of LATEX allow source references to be emitted,
so that previewers of the .dvi or .pdf output file can link back to
the original source line. This has been a feature of the yap previewer
for .dvi files in MikTeX [Schenk, 2010] for many years. Support for
source references has appeared more recently for .pdf output, first
in pdfsync. Most recently Synctex [Laurens, 2008] links have been
implemented in pdflatex and other LATEX processors.

Unfortunately for Sweave users, these links point to the .tex source
that was processed, which is not the true source code in the Sweave
.Rnw or .Snw or other input file. (I will refer to all of these as .Rnw

files.) Clicking on “go to source” in a previewer will jump to the .tex

file; changes made there will be lost the next time the Sweave input
is processed.

I wrote the patchDVI package to address this problem. It works
as follows. If the Sweave file is processed with the option concor-

dance=TRUE, Sweave will output a record of the concordance between
the lines in the input file and the output file. When the file is processed
by LATEX, this information is embedded in the output. (Details of the
embedding are described in sections 4 to 6 below.) After producing the
.dvi or .pdf file, a patchDVI function is run to read the concordance
information and to patch the source reference information produced
by LATEX. Once this has been done, previewers will see references to
the original Sweave source rather than the LATEX intermediate file.

Besides the technical details mentioned above, this paper describes
the history of patchDVI in Section 3 and in section 7 some project
management functions. It concludes with a short discussion.

2 Quick Start Instructions

There are several ways to make use of patchDVI. This section de-
scribes some common ones.

In all cases the package needs to be installed first; the current
release is on CRAN and can be installed using

> install.packages("patchDVI")

Source code is maintained on R-forge, and the latest development
version can be installed using

> install.packages("patchDVI", repos="http://R-forge.r-project.org")

3

The document also needs to have an option set to produce the
“concordances” (links between the .Rnw source and the .tex output
of Sweave). Include these lines near the start of your document:
\usepackage{Sweave}

\SweaveOpts{concordance=TRUE}

The simplest way to proceed is from within R. Assuming doc.Rnw

is the Sweave document to process and it is in the current working
directory, run

> library(patchDVI)

> SweavePDF("doc.Rnw")

This runs doc.Rnw through Sweave, runs any other chapters in the
project through Sweave, then runs the main .tex file (typically doc.tex,
but not necessarily; see section 7 below) through pdflatex, and patches
the source links. To produce DVI output instead of PDF substitute
SweaveDVI for SweavePDF, and to use latex and dvipdfm to produce
PDF output, use SweaveDVIPDFM. If you are using MikTeX on Windows,
the functions are SweavePDFMiktex and SweaveMiktex correspond to
the first two of these respectively, and use a few MikTeX-specific fea-
tures.

These functions all have an optional argument preview, which can
contain a command line to run a .pdf or .dvi previewer (with the
filename replaced by %s). The .pdf previewer should be one that
can handle Synctex links; unfortunately, Acrobat Reader and MacOS
Preview are both deficient in this area. On Windows, SumatraPDF

works, as do the built-in previewers in TeXShop and TeXWorks on
MacOS X and other platforms.

MikTeX includes the yap previewer for .dvi files; the SweaveMik-

tex command sets it as the default.
Another way to proceed is directly from within your text editor.

The instructions here depend on your editor; I have included a few
in the Appendices: TeXShop in Appendix A, WinEdt in Appendix
C, and TeXWorks in Appendix B. Some editors (e.g. TeXShop and
TeXWorks) include a previewer that can handle the source links.

Finally, you may want to run Sweave from the command line,
outside of R. This line (or the obvious variants with replacements for
SweavePDF) should do it:

Rscript -e 'patchDVI::SweavePDF("doc.Rnw")'

4

3 patchDVI History

Initially patchDVI only worked for .dvi files (hence the name). It
required changes to the Sweave function in R, which first appeared
around the release of R version 2.5.0. with incompatible changes in R
version 2.8.0 when .pdf support was added to patchDVI.

Using patchDVI requires a pre-processing step (Sweave), LATEX
processing, and a post-processing step (patching). This is usually fol-
lowed by a preview of the resulting output file. It quickly became
apparent that it was convenient to package these steps into a single
R function, so the user only needed to make a single call. But the
details of LATEX processing vary from platform to platform, so I wrote
functions SweaveMiktex and SweavePDFMiktex specific to the MikTex
platform, with the intention of adding others as I used them or users
told me what needed adding. This never happened, but in the mean-
time, Brian Ripley made the tools::texi2dvi function in R much
more flexible, and in version 1.7 of patchDVI I included a modified
version of it with the hope that patchDVI should be more nearly
platform neutral.

The 1.7 release was motivated by an attempt to support TeX-
Works [Kew, 2008], a cross-platform LATEX targetted editor. TeX-
Works was still in its early days (I was working with version 0.2
on Windows), and it did not have enough flexibility to handle large
Sweave projects, where for example, each chapter of a book requires
separate Sweave processing, but LATEX processes only a main wrapper
file. This prompted me to include more make-style capabilities into
patchDVI. It is now possible to specify a list of Sweave input files to
process (optionally only if they have changed since the last processing)
and the main wrapper file, all within Sweave chunks in a single file,
using the SweaveAll function.

The SweaveDVIPDFM function is a recent addition. For English lan-
guage processing, I find pdflatex to be the most convenient processor,
but it does not work well in languages like Japanese. During a visit
to the Institute of Statistical Mathematics in Tokyo I learned of the
issues, and with the help of Prof. H. Okumura and Junji Nakano I
worked out SweaveDVIPDFM to handle the two step conversion to PDF.

Finally, the latest version includes support for other non-Sweave
processors, such as knitr.

5

Table 1: Input file for simple example.

Line number Input text
1 \SweaveOpts{concordance=TRUE}

2 This is text
3 <<>>=

4 123

5 @

6 This is more text

4 Sweave Concordances

Sweave processes the code chunks in the .Rnw file, replacing each with
the requested output from the command. This means that the output
.tex file alternates between copied LATEX source and newly produced
blocks of output. Each line in the .tex file can thus be mapped to
one or more lines of input, and that is what the concordance does.

The concordance records are text records in the following format.
There are four parts, separated by colons:

1. The label concordance to indicate the type of record.

2. The output .tex filename.

3. The input .Rnw filename.

4. The input line numbers corresponding to each output line.

The third component is compressed using a simple encoding: The
first number is the first line number; the remainder of line numbers
are a run-length encoding of the differences. Thus if the input file
is as shown in Table 1, the output file would be as shown in Table
2, with the concordance as shown there in the second column. This
concordance would be recorded in the file sample-concordance.tex

as

\Sconcordance{concordance:sample.tex:sample.Rnw:%

1 1 1 1 2 7 0 1 2}

The numeric part of this file may be interpreted as shown in Table 3.

6

Table 2: Output file for simple example.

Output line Input line Output text
1 1 \input{sample-concordance}

2 2 This is text.
3 4 \begin{Schunk}

4 4 \begin{Sinput}

5 4 > 123

6 4 \end{Sinput}

7 4 \begin{Soutput}

8 4 [1] 123

9 4 \end{Soutput}

10 4 \end{Schunk}

11 6 This is more text

Table 3: Encoding of numeric part of concordance record.

Values Interpretation Expansion
1 line 1 1
1 1 1 increase of 1 2
1 2 1 increase of 2 4
7 0 7 increases of 0 4 4 4 4 4 4 4
1 2 1 increase of 2 6

7

5 Patching .dvi Files

The \Sconcordance macro expands to a \special macro when pro-
ducing a .dvi file. This is included verbatim in the .dvi file. The
“concordance:” prefix identifies it as a patchDVI concordance. The
patchDVI function scans the whole file until it finds this sort of record.
(There may be more than one, if multiple files make up the document.)
Source references are also recorded by LATEX in \special records; their
prefix is “src:”. The patchDVI function reads each “src:” special and if
it refers to a file in a “concordance:” special, makes the substitution.
At the end, it rewrites the whole .dvi file.

6 Patching .synctex Files

When using pdflatex, the \Sconcordance macro expands to a \pdfobj
macro containing the concordance, which eventually is embedded in
the .pdf file. However, the Synctex scheme of source references does
not write the references to the .pdf file directly. Instead, they are writ-
ten to a separate file with extension .synctex, or a compressed version
of that file, with extension .synctex.gz. The patchSynctex function
reads the concordances from either the .pdf file (when pdflatex was
used) or the .dvi file, and the source references from the Synctex file.
It rewrites only the Synctex file when it makes its changes.

7 Project Management Function SweaveAll

As mentioned above, there are a number of steps involved in running
patchDVI with a complex Sweave project:

1. Run Sweave on each input file.

2. Run LATEX on the main wrapper file.

3. Run the appropriate patchDVI function on the output file.

4. Preview or print the result.

Moreover, step 1 needs to be repeated once for each Sweave file, but
only if the content has changed since the last run, while the other
steps need only be done once.

To manage this complication, the patchDVI package includes a
simple project management function, SweaveAll. This function runs

8

Sweave on multiple files and determines the name of the main wrapper
file. It is used internally by the functions described in Section 7.1
below, but can also be called directly by the user.

Here is how it works. SweaveAll takes a vector of filenames as in-
put, and runs Sweave on each. After each run, it examines the global
environment for four variables: .PostSweaveHook, .SweaveFiles, .SweaveMake
and .TexRoot.

A code chunk in a .Rnw file may produce a function (or the name of
a function; match.fun is used to look it up) named .PostSweaveHook.
If present, this should be a function taking a single argument. Immedi-
ately after running Sweave, SweaveAll will call this function, passing
the name of the .tex output file as the only argument. The hook can
do any required postprocessing, for example, it could remove local
pathnames from output strings.

The optional parameter PostSweaveHook to the SweaveAll func-
tion can provide a default hook function. Hooks specified via .PostSweaveHook
take precedence in any given input file.

SweaveAll will also check for a character vector named .SweaveFiles.
It should contain the names of .Rnw files in the project. If no corre-
sponding .tex file exists, or the .Rnw file is newer, they will be run
through Sweave. They may in turn name additional .Rnw files to
process; each file is processed only once, even if it is named several
times.

There is an optional parameter named make to the SweaveAll func-
tion. If make=1 (the default), things proceed as described above. If
make=0, the .SweaveFiles variable is ignored, and only the explicitly
named files in the call to SweaveAll are processed. If make=2, then
all files are processed, whether they are newer than their .tex file or
not. The .SweaveMake variable will override the value of make.

An .Rnw file may also set the value of .TexRoot to the name of
a .tex file. If it does, then that is the file that should be passed
to LATEX for processing. If none is given, then the first file in the
call to SweaveAll will be assumed to be the root file. (If multiple
different .TexRoot variables are specified by different .Rnw files, one
of them will be used, but it is hard to predict which: so don’t do that.)
Whichever file is determined to be the root file is the name returned
by the SweaveAll call.

SweaveAll is called by all of the functions described in subsection
7.1 below to do step 1 of the patchDVI steps.

9

The workflow this is designed for is as follows. Each .Rnw chapter
(named for example “chapter.Rnw”) in a large project should specify
the .TexRoot, e.g. using the code chunk

<<echo=FALSE>>=

.TexRoot <- "wrapper.tex"

@

Similarly, the wrapper file (named for example“wrapper.Rnw”) should
be a .Rnw file that sets .SweaveFiles to the complete list of files in the
project. Then one can build an initial copy of the entire document by
calling SweavePDF or SweaveDVI (or the MikTeX versions) with argu-
ment "wrapper.Rnw". Later, while one is working on “chapter.Rnw”,
one can call one of those functions with argument "chapter.Rnw"

and the chapter will be processed through the full sequence, without
running Sweave on the other chapters.

More complicated schemes are possible. For example:

• Each chapter can have subsections in separate files; then the
chapter would name the subsections, but the main wrapper would
only need to name the chapters if you can assume that only the
chapter being edited was changed.

• If one wants to “make” the full project every time, then include
"wrapper.Rnw" in .SweaveFiles in each chapter.

7.1 The Complete Process

The patchDVI package contains five functions designed to run all four
of the steps listed at the start of this section. The functions SweaveDVI
and SweaveMiktex produce .dvi output in the general case and for
MikTeX respectively; SweavePDF and SweavePDFMiktex do the same
for direct .pdf output from pdflatex. Finally, SweaveDVIPDFM runs
the two-step conversion using first latex and then dvipdfm.

In each case, the TEXprocessing functions are customizable.
For example, the text editor that I use allows me to call external

functions with arguments depending on the name of the current file
and the line number within it. I have it call a Windows batch file with
the line set as argument %1 and the filename set as argument %2; the
batch file invokes R using the command line

echo patchDVI::SweaveMiktex('%2',
preview='yap -1 -s"%1%2" "\x25s"')

10

| Rterm --slave

(all on one long line). This passes the current file to SweaveMiktex,
and sets the preview command to use the yap options -1 to update
the current view (rather than opening a new window), and to jump to
the line corresponding to the editor line. The code "\x25s" is simply
"%s" encoded without an explicit percent sign, which would be mis-
interpreted by the Windows command processor. When patchDVI
calls the previewer, the main .dvi filename will be substituted for %s.

8 Conclusion

As described in this paper, the patchDVI package is a convenient
way to work with Sweave in a modern setting, allowing fast switching
from source input to preview. It also offers some features to make the
management of larger projects easier.

Other possibilities may exist to make use of the code in this pack-
age. In order to read and patch .dvi, .pdf and .synctex files,
patchDVI includes code to work with each of those formats. Users
may find imaginative uses for this capability, which I’ve tried to leave
in general form. The low-level .dvi editing is done by C functions
called from R, while the PDF related work is done in pure R code.

References

Jonathan Kew. TEXworks: Lowering the barrier to entry. TUGBoat,
29:362–364, 2008. URL http://tug.org/texworks/.

Jerôme Laurens. Direct and reverse synchronization with SyncTEX.
TUGBoat, 29:365–371, 2008.

Friedrich Leisch. Sweave: Dynamic generation of statistical reports
using literate data analysis. In Wolfgang Härdle and Bernd Rönz,
editors, Compstat 2002 — Proceedings in Computational Statistics,
pages 575–580. Physica Verlag, Heidelberg, 2002. URL http://

www.stat.uni-muenchen.de/~leisch/Sweave. ISBN 3-7908-1517-
9.

Christian Schenk. About MikTeX, 2010. URL http://www.miktex.

org/about. Web page http://www.miktex.org/about, retrieved
August 13, 2010.

11

http://tug.org/texworks/
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.miktex.org/about
http://www.miktex.org/about
http://www.miktex.org/about

Yihui Xie. Dynamic Documents with R and knitr. Chapman and
Hall/CRC, 2013. URL http://yihui.name/knitr/. ISBN 978-
1482203530.

12

http://yihui.name/knitr/

A Using patchDVI with TeXShop

TeXShop is a nice TEX editor on MacOS. Dave Gabrielson of the
University of Manitoba helped me to work out these instructions. I
have updated them in December, 2013 for TeXShop 2.47.

1. In Preferences – Typesetting – Sync Method, choose “SyncTeX”.

2. (a) To use with Sweave, create a file called
Library/TeXShop/Engines/Sweave.engine

containing the lines

#!/bin/bash

export LC_ALL=<locale>

Rscript -e "patchDVI::SweavePDF('$1')"
in your home directory, and give it executable permissions.
Replace <locale> with your locale string, e.g. en_CA.UTF-8
for Canadian English using UTF-8 encoding. The locale line
can be omitted if you only use plain ASCII characters, but
is probably necessary for other cases.

(b) To use with knitr, create a file called
Library/TeXShop/Engines/knitr.engine

containing the lines

#!/bin/bash

export LC_ALL=<locale>

Rscript -e "patchDVI::SweavePDF('$1',\
weave = knitr::knit, envir = globalenv())"

in your home directory, and give it executable permissions.
Replace <locale> with your locale string, e.g. en_CA.UTF-8
for Canadian English using UTF-8 encoding. The locale line
can be omitted if you only use plain ASCII characters, but
is probably necessary for other cases.

(c) For other vignette engines, replace the weave argument in
the above, as appropriate.

3. Install the patchDVI package into R.

4. When editing a .Rnw file in TeXShop, choose the Sweave engine
from the menu.

5. If you have multiple files in your project, your main file must
be a Sweave file (e.g. Main.Rnw) which lists all Sweave files in a
.SweaveFiles variable, and you need to add the line

13

%!TEX root = Main.Rnw

to each subordinate file.

6. For Sweave, add the \SweaveOpts{concordance=TRUE} line to
your document. For knitr, add a code chunk similar to this:

<<results='asis'>>=
patchDVI::useknitr()

@

somewhere near the start of your document.

The TeXShop previewer supports SyncTeX; you right click in the
preview, and choose Sync from the menu to jump to your source lo-
cation.

B Using patchDVI with TeXWorks

TeXWorks is an editor for multiple platforms, somewhat similar to
TeXShop. These instructions have been tested in version 0.4.5, with
MikTeX 2.9 on Windows, and MacTeX on MacOS.

NB: Some versions of TeXWorks have a bug in setting the HOME

directory of the user. With those versions, R will not find a lo-
cally installed copy of patchDVI. To work around the bug, set the
R_USER environment variable to your Windows home directory, e.g.
R_USER=C:/Users/Murdoch.

TeXWorks can work with the patchDVI project management fea-
tures using a script to tell it to process the current file through Sweave,
but preview the main file. See the instructions below for my current
best attempt at such a script. It can also use the TeXShop approach
of specifying the TEX root file to be a Sweave file.

The instructions are given first for Sweave, then below for knitr.

1. Add a new SweavePDF command: In

Edit | Preferences | Typesetting

click on the “+” sign near the bottom. Set the name of the
tool to be SweavePDF. Set the program to Rscript.

Add two arguments, one per line:

(a) -e

14

(b) patchDVI::SweavePDF('$fullname')

2. Install the patchDVI package into R.

3. Tell TeXWorks to open Sweave files by editing the file pat-
tern configuration file texworks-config.txt. This file is in the
configuration folder of the TeXWorks home directory. For ex-
ample, I have this line in my file:

file-open-filter: Sweave and TeX documents (*.Rnw *.tex)

4. When editing a .Rnw file in TeXWorks, choose the SweavePDF
engine from the menu.

5. Add the \SweaveOpts{concordance=TRUE} line to your docu-
ment.

6. If you are using the project management features of patchDVI

and are editing a subordinate file, TeXWorks will not open or
update the PDF preview after it processes changes. There are
four workarounds for this.

The simplest is to manually open the .pdf file the first time.
After that it will be updated automatically. Unfortunately, if
you happen to be editing the main file, the .pdf will be opened
automatically, and then updates won’t happen if you later edit
a subordinate file.

The next simplest is the TeXShop approach: include a line

%!TEX root = Main.Rnw

near the top of the file, and make sure that Main.Rnw refers to
all subordinate Sweave files.

To use TeXWorks with knitr, the instructions are very similar to
those above, but with two changes.

In step 1, replace the second line of the command (the SweavePDF

call) with the following longer command, all on one line:

patchDVI::SweavePDF('$fullname', weave = knitr::knit,

envir = globalenv())

In step 5, insert the following code chunk into your file:

<<results='asis'>>=
patchDVI::useknitr()

@

15

C Using patchDVI with WinEdt

WinEdt is a Windows editor with TEX support. The configuration
options have changed a number of times; I do not know how to imple-
ment these instructions in the latest version. These instructions apply
to version 5.5, and assume you are using it with MikTeX.

1. In Options – Execution Modes choose Texify, and click on Browse
for Executable. Find the Rscript executable in your R instal-
lation, directory bin/i386 or bin/x64, and choose it. In the
Switches line, put

-e

and in the Parameters line, put

"patchDVI::SweaveMiktex('%n%t', '%N.tex')"

The quotes are necessary!

2. Do the same for the PDF Texify command, replacing SweaveMiktex

with SweavePDFMiktex.

3. In Options – Execution modes, make sure Start Viewer and For-
ward Search are selected for LaTeX and PDF LaTeX.

When you preview a file in yap, double clicking should jump back
to the editor. If it doesn’t (or it opens the wrong editor), while you’re
in yap choose View – Options – Inverse DVI search. You should see
“WinEdt (auto-detected)” as an option; if so, select it. If not, create
a new entry for WinEdt, and for the command line, put in

"path\to\winedt.exe" "[Open(|%f|);SelPar(%l,8)]"

after editing the path as necessary.

16

	Introduction
	Quick Start Instructions
	patchDVI History
	Sweave Concordances
	Patching .dvi Files
	Patching .synctex Files
	Project Management Function SweaveAll
	The Complete Process

	Conclusion
	Using patchDVI with TeXShop
	Using patchDVI with TeXWorks
	Using patchDVI with WinEdt

