
Advanced R programming: solutions 1
Dr Colin Gillespie
November 27, 2014

1 Rprofile and Renviron

1. Create an .Rprofile file. Add the line

if(interactive()) {

suppressWarnings(require(colorout, quietly=TRUE))

message("Successfully loaded .Rprofile at ", date(), "\n")

}

to the file and restart R. Does the welcome message appear?

An easy way of creating the file is to use the R function file.create,
so

file.exists("~/.Rprofile")

file.create("~/.Rprofile")

2. Try adding my suggestions to your .Rprofile, e.g.

options(prompt="R> ", digits=4,

show.signif.stars=FALSE)

and setting the CRAN mirror:

r = getOption("repos")

r["CRAN"] = "http://cran.rstudio.com/"

options(repos = r)

rm(r)

3. Try adding a few functions to your .Rprofile. Use the hidden
environment trick. Also take a look at this stackoverflow question

http://goo.gl/TLFLQR

for ideas.

4. Create an .Renviron file and add the path to your packages.

2 Argument matching

R allows a variety of ways to match function arguments.1 We didn’t 1 For example, by position, by complete
name, or by partial name.cover argument matching in the lecture, so let’s try and figure out the

rules from the examples below. First we’ll create a little function to
help

http://goo.gl/TLFLQR

advanced r programming: solutions 1 2

arg_explore = function(arg1, rg2, rg3)

paste("a1, a2, a3 = ", arg1, rg2, rg3)

Next we’ll create a few examples. Try and predict what’s going to
happen before calling the functions One of these examples will raise an error

- why?

arg_explore(1, 2, 3)

arg_explore(2, 3, arg1 = 1)

arg_explore(2, 3, a = 1)

arg_explore(1, 3, rg = 1)

Can you write down a set of rules that R uses when matching argu-
ments?

SOLUTION

See http://goo.gl/NKsved for the offical document

To summeriase, matching happens in a three stage pass:

#1. Exact matching on tags

#2. Partial matching on tags.

#3. Positional matching

Following on from the above example, can you predict what will
happen with

plot(type="l", 1:10, 11:20)

and

rnorm(mean=4, 4, n=5)

SOLUTION

#plot(type="l", 1:10, 11:20) is equivilent to

plot(x=1:10, y=11:20, type="l")

#rnorm(mean=4, 4, n=5) is equivilent to

rnorm(n=5, mean=4, sd=4)

3 Functions as first class objects

Suppose we have a function that performs a statistical analysis

Use regression as an example

stat_ana = function(x, y) {

lm(y ~ x)

}

However, we want to alter the input data set using different trans-
formations2. In particular, we want the ability to pass arbitrary 2 For example, the log transformation.

transformation functions to stat_ana.

advanced r programming: solutions 1 3

• Add an argument trans to the stat_ana function. This argument
should have a default value of NULL.

SOLUTION

stat_ana = function(x, y, trans=NULL) {

lm(y ~ x)

}

• Using is.function to test whether a function has been passed
to trans, transform the vectors x and y when appropriate. For
example,

stat_ana(x, y, trans=log)

would take log’s of x and y.

SOLUTION

stat_ana = function(x, y, trans=NULL) {

if(is.function(trans)) {

x = trans(x)

y = trans(y)

}

lm(y ~ x)

}

• Allow the trans argument to take character arguments in addi-
tional to function arguments. For example, if we used trans =

’normalise’, then we would normalise the data3. 3 Subtract the mean and divide by the
standard deviation.

SOLUTION

stat_ana = function(x, y, trans=NULL) {

if(is.function(trans)) {

x = trans(x)

y = trans(y)

} else if (trans == "normalise") {

x = scale(x)

y = scale(y)

}

lm(y ~ x)

}

4 Variable scope

Scoping can get tricky. Before running the example code below,
predict what is going to happen

1. A simple one to get started

advanced r programming: solutions 1 4

f = function(x) return(x + 1)

f(10)

##Nothing strange here. We just get

f(10)

[1] 11

2. A bit more tricky

f = function(x) {

f = function(x) {

x + 1

}

x = x + 1

return(f(x))

}

f(10)

3. More complex

f = function(x) {

f = function(x) {

f = function(x) {

x + 1

}

x = x + 1

return(f(x))

}

x = x + 1

return(f(x))

}

f(10)

Solution: The easiest way to understand is to use print statements

f = function(x) {

f = function(x) {

f = function(x) {

message("f1: = ", x)

x + 1

}

message("f2: = ", x)

x = x + 1

return(f(x))

}

message("f3: = ", x)

x = x + 1

advanced r programming: solutions 1 5

return(f(x))

}

f(10)

f3: = 10

f2: = 11

f1: = 12

[1] 13

4. f = function(x) {

f = function(x) {

x = 100

f = function(x) {

x + 1

}

x = x + 1

return(f(x))

}

x = x + 1

return(f(x))

}

f(10)

##Solution: The easiest way to understand is to use print statements as above

5 Function closures

Following the examples in the notes, where we created a function
closure for the normal and uniform distributions. Create a similar
closure for

• the Poisson distribution,4 4 Hint: see rpois and dpois.

poisson = function(lambda) {

r = function(n=1) rpois(n, lambda)

d = function(x, log=FALSE) dpois(x, lambda, log=log)

return(list(r=r, d=d))

}

• and the Geometric distribution.5 5 Hint: see rgeom and dgeom.

geometric = function(prob) {

r = function(n=1) rgeom(n, prob)

d = function(x, log=FALSE) dgeom(x, prob, log=log)

return(list(r=r, d=d))

}

advanced r programming: solutions 1 6

6 Mutable states

In chapter 2, we created a random number generator where the state,
was stored between function calls.

• Reproduce the randu generator from the notes and make sure that
it works as advertised.

• When we initialise the random number generator, the very first
state is called the seed. Store this variable and create a new function
called get_seed that will return the initial seed, i.e.

r = randu(10)

r$r()

[1] 0.0003051898

r$get_state()

[1] 655390

r$get_seed()

[1] 10

##Solutions - see below

• Create a variable that stores the number of times the generator has
been called. You should be able to access this variable with the
function get_num_calls

r = randu(10)

r$get_num_calls()

[1] 0

r$r()

[1] 0.0003051898

r$r()

[1] 0.001831097

r$get_num_calls()

[1] 2

advanced r programming: solutions 1 7

##Solutions

randu = function(seed) {

state = seed

calls = 0 #Store the number of calls

r = function() {

state <<- (65539*state) %% 2^31

Update the variable outside of this enviroment

calls <<- calls + 1

state/2^31

}

set_state = function(initial) state <<- initial

get_state = function() state

get_seed = function() seed

get_num_calls = function() calls

list(r=r, set_state=set_state, get_state=get_state,

get_seed = get_seed, get_num_calls=get_num_calls)

}

r = randu(10)

r$r()

[1] 0.0003051898

r$get_state()

[1] 655390

r$get_seed()

[1] 10

Solutions

Solutions are contained within the course package

library("nclRadvanced")

vignette("solutions1", package="nclRadvanced")

	Rprofile and Renviron
	Argument matching
	Functions as first class objects
	Variable scope
	Function closures
	Mutable states

