
easydb, a simple database interface for SQLite,

MS Access, MS Excel and MySQL

Julien Moeys

November 15, 2014

Contents

1 Forewords 2
1.1 What is easydb? . 2
1.2 Credits and License . 2
1.3 Disclaimer . 2

2 Working with easydb 3
2.1 Install and load easydb . 3
2.2 SQLite and RSQLite . 3
2.3 ODBC and Access . 3
2.4 ODBC and Excel . 3
2.5 ODBC and MySQL . 4
2.6 Example databases . 4

2.6.1 SQLite . 4
2.6.2 MS Access (< 2007) . 4
2.6.3 MS Access (2007) . 4
2.6.4 MS Excel (< 2007) . 5
2.6.5 MS Excel (2007) . 5
2.6.6 MySQL . 5
2.6.7 Copy the example database to the working directory . . . 5

2.7 First step: ’describe’ you database 6
2.7.1 SQLite . 6
2.7.2 MS Access (< 2007) . 7
2.7.3 MS Access (2007) . 7
2.7.4 MS Excel (< 2007) . 8
2.7.5 MS Excel (2007) . 8
2.7.6 MySQL . 8

2.8 Second step: ’inspect’ you database (table and column names) . 9
2.8.1 List tables . 10
2.8.2 Column names (in a table) 10
2.8.3 Dimensions (of a table) 10

2.9 Retreive and subset tables from a database 10
2.9.1 Retrieve a complete table 11
2.9.2 Retrieve a table subset (column constrains) 11
2.9.3 Retrieve a table subset (row constrains) 12

2.10 Write data . 15

1

2.10.1 Append data to a table: 15
2.10.2 Update data in a table: 16

2.11 Delete records and drop tables 16
2.11.1 Delete records in a table 16
2.11.2 Drop a table in a database 16

3 Advanced usage 17
3.1 Fetch AUTOINCREMENT primary keys attributed by the database 17
3.2 ’On-the-fly’ transformation of variables when reading from or

writing to the database . 17
3.3 About dates and boolean in SQLite databases 17
3.4 Database operation log table . 17

4 Misc: Session info 18

1 Forewords

1.1 What is easydb?

easydb is an R[2] package providing functions to easily read and write data from
/ to SQLite, MS Access, MS Excel and MySQL databases, and perform a few
other operations. easydb provide the same interface (set of functions) for all
these databases. It is build on top of RSQLite[1] and RODBC[3], but tries to hide
tedious operations such as opening and closing database connections, or writing
SQL queries. easydb provides S3 classes functions to manipulate databases in a
similar way as a data.frame (single square brackets [] subsetting). Nonetheless
it does not work exactly as a data.frame (because a data.frame have rows and
columns, while a databases have tables, rows and columns).

1.2 Credits and License

easydb is licensed under an Affero GNU General Public License Version 3.

This package and this document is provided with NO responsibil-
ities, guarantees or automatic supports from the author or his em-
ployer (SLU / CKB).

Many ideas behind easydb have been introduced before by John Fox and
Oswaldo Cruz in their package dfdb, in a very similar form as in this package.

1.3 Disclaimer

The author of this package is neither a database/SQL specialist (rather a self
taught database user), nor an R guRu. Some functions in easydb might be
coded in a sub-optimal way. They should nonetheless work as expected. Please
let me know if that is not the case!

2

http://www.gnu.org/licenses/agpl.html
http://www.slu.se
http://www.slu.se/CKB
http://r-forge.r-project.org/projects/dfdb-rodbc/

2 Working with easydb

2.1 Install and load easydb

Method 1: If you have the latest R version, open R, and then type:

install.packages(

pkgs = c("easydb", "easyrsqlite", "easyrodbcexcel",

"easyrodbcaccess"),

repos = "http://R-Forge.R-project.org")

Method 2: Otherwise, try to install the package from the binaries. First
download the binaries from http://r-forge.r-project.org/R/?group_id=

1200. Save the package binaries in your working directory, and then open R
and type:

install.packages(

pkgs = "easydb_0.3.1.zip", # add more package names

repos = NULL)

Then you can load easydb:

library("easydb")

library("easyrsqlite")

library("easyrodbcexcel")

library("easyrodbcaccess")

library("easyrodbcmysql")

2.2 SQLite and RSQLite

To work with SQLite databases, you need to install the R package RSQLite:

install.packages("RSQLite")

library("RSQLite")

2.3 ODBC and Access

If you want to use MS Access databases with easydb, you need a computer with
ODBC (installation not covered by this manual), and the R package RODBC.

install.packages("RODBC")

library("RODBC")

2.4 ODBC and Excel

If you want to use MS Excel files with easydb, you need a computer with ODBC
(installation not covered by this manual), and the R package RODBC.

install.packages("RODBC")

library("RODBC")

3

http://r-forge.r-project.org/R/?group_id=1200
http://r-forge.r-project.org/R/?group_id=1200

2.5 ODBC and MySQL

If you want to use MySQL with easydb, you need a computer with ODBC
(installation not covered by this manual). You also need to install a MySQL
driver for ODBC, that you can find here: http://dev.mysql.com/downloads/
connector/odbc/. You also need the R package RODBC:

install.packages("RODBC")

library("RODBC")

2.6 Example databases

Some example databases are provided with the package. They are located in
the folder:

system.file(package = "easydb")

[1] "/home/rforge/lib/R/3.1/easydb"

Here is the list of files you can find in that folder:

list.files(system.file(package = "easydb"))

[1] "DESCRIPTION" "INDEX" "Meta" "NAMESPACE"

[5] "NEWS" "R" "help" "html"

All the example databases are the same (but for diffferent database systems).
They are pseudo-databases containing the physico-chemical properties of some
soil profiles (but data are dummy).

At present, you can not create databases with easydb, but that feature
should come sooner or later (except for MySQL).

2.6.1 SQLite

The example SQLite database is:

system.file("soils.db", package = "easyrsqlite")

[1] "/tmp/RtmpFLp1I3/Rinst42ea22501f97/easyrsqlite/soils.db"

2.6.2 MS Access (< 2007)

The example MS Access database is:

system.file("soils.mdb", package = "easyrodbcaccess")

2.6.3 MS Access (2007)

The example MS Access database is:

system.file("soils.accdb", package = "easyrodbcaccess")

4

http://dev.mysql.com/downloads/connector/odbc/
http://dev.mysql.com/downloads/connector/odbc/

2.6.4 MS Excel (< 2007)

The example MS Excel file is:

system.file("soils.xls", package = "easyrodbcexcel")

2.6.5 MS Excel (2007)

The example MS Excel file is:

system.file("soils.xlsx", package = "easyrodbcexcel")

2.6.6 MySQL

The example MySQL database can be created using the following SQL code file
(dump that in a blank database, using PhPMyAdmin for example):

system.file("create_MySQL_db.sql", package = "easyrodbcmysql")

2.6.7 Copy the example database to the working directory

In order to avoid altering the original example database, it is better to copy
them in the working directory. In this tutorial, we will work with the SQLite
database only:

file.copy(

from = system.file("soils.db", package = "easyrsqlite"),

to = "soils.db",

overwrite = TRUE)

[1] TRUE

#

Check that the file has been copied:

file.exists("soils.db")

[1] TRUE

For an MS Access (< 2007) database you would do:

file.copy(

from = system.file("soils.mdb", package = "easyrodbcaccess"),

to = "soils.mdb",

overwrite = TRUE)

For an MS Access 2007 database you would do:

file.copy(

from = system.file("soils.accdb", package = "easyrodbcaccess"),

to = "soils.accdb",

overwrite = TRUE)

For an MS Excel (< 2007) file you would do:

5

file.copy(

from = system.file("soils.xls", package = "easyrodbcexcel"),

to = "soils.xls",

overwrite = TRUE)

For an MS Excel 2007 file you would do:

file.copy(

from = system.file("soils.xlsx", package = "easyrodbcexcel"),

to = "soils.xlsx",

overwrite = TRUE)

2.7 First step: ’describe’ you database

The path and name of the database you are using is not enough for easydb,
because (a) it is not possible to know from the file name which database type
it is and (b) not all databases are described by a file path and name (MySQL
for instance).

So you need to ’describe’ a bit your database, using the function edb().
Notice that edb() does not create any connection to the database (so no need
to close any connection after edb()). It just creates an R object containing the
database description that will be recognised by R as an ”easydb database” (with
so called S3 classes).

This step is the only step that has database-specific requirements. The rest
of the database handly will use the same set of functions, whatever the database
system.

2.7.1 SQLite

To describe an SQLite database (here the example database), type:

sDb <- edb(dbName = "soils.db", dbType = "RSQLite_SQLite")

edb() arguments are:

• dbName: Name and path of the database, as a text string;

• dbType: Database type. Here the string RSQLite_SQLite should be un-
derstood as ”An SQLite database managed (internally) by the RSQLite
package”;

We now have an object called sDb that can be used for all our database
operations.

Object class:

class(sDb)

[1] "edb" "RSQLite_SQLite"

6

2.7.2 MS Access (< 2007)

To describe an MS Access database (here the example database), type:

aDb <- edb(dbName = "soils.mdb", dbType = "RODBC_Access")

edb() arguments are:

• dbName: Name and path of the database, as a text string;

• dbType: Database type. Here the string RODBC_Access should be un-
derstood as ”An Access database managed (internally) by the RODBC
package”;

We now have an object called aDb that can be used for all our database
operations.

Object class:

class(aDb)

[1] "edb" "RODBC_Access"

2.7.3 MS Access (2007)

To describe an MS Access 2007 database (here the example database), type:

aDb2 <- edb(dbName = "soils.accdb", dbType = "RODBC_Access",

accessVersion = 2007)

edb() arguments are:

• dbName: Name and path of the database, as a text string;

• dbType: Database type. Here the string RODBC_Access should be un-
derstood as ”An Access database managed (internally) by the RODBC
package”;

• accessVersion: Single integer. Access version. Must be set to 2007 for
MS Access 2007. Can be ignored for earlier versions of MS Access.

We now have an object called aDb2 that can be used for all our database
operations.

Object class:

class(aDb2)

[1] "edb" "RODBC_Access"

7

2.7.4 MS Excel (< 2007)

To describe an MS Excel file (here the example database), type:

eDb <- edb(dbName = "soils.xls", dbType = "RODBC_Excel")

edb() arguments are:

• dbName: Name and path of the database, as a text string;

• dbType: Database type. Here the string RODBC_Excel should be under-
stood as ”An Excel file managed (internally) by the RODBC package”;

We now have an object called eDb that can be used for all our database
operations.

Object class:

class(eDb)

[1] "edb" "RODBC_Excel"

2.7.5 MS Excel (2007)

To describe an MS Excel 2007 database (here the example database), type:

eDb2 <- edb(dbName = "soils.xlsx", dbType = "RODBC_Excel",

excelVersion = 2007)

edb() arguments are:

• dbName: Name and path of the database, as a text string;

• dbType: Database type. Here the string RODBC_Excel should be under-
stood as ”An Excel file managed (internally) by the RODBC package”;

• excelVersion: Single integer. Excel version. Must be set to 2007 for MS
Excel 2007. Can be ignored for earlier versions of MS Excel.

We now have an object called eDb2 that can be used for all our database
operations.

Object class:

class(eDb2)

[1] "edb" "RODBC_Excel"

2.7.6 MySQL

It is a bit more complicated to describe a MySQL database. Type:

8

mDb <- edb(

dbType = "RODBC_MySQL",

dbSourceName = "nameOfODBCSource", # or any name you like

dbName = "nameOfDatabase",

dbLogin = "yourUserName",

dbPwd = "yourPassword",

dbHost = "127.0.0.1",

dbPort = 3306

) #

edb() arguments are:

• dbSourceName: Name of the ODBC connection to the database. That
connexion does not need to exist yet. You can create it manually, or
create it using edbDataSource() (see below);

• dbName: Name of the database in the MySQL system (not in ODBC);

• dbType: Database type. Here the string RODBC_MySQL should be under-
stood as ”A MySQL database managed (internally) by the RODBC pack-
age”;

• ...: Replace all the login, password and IP/Host values by values relevant
for your database;

We now have an object called mDb that will be used for all our database
operations. You need to register you database first in ODBC. You can do it
with edbDataSource(), but please notice that this functions is experimental
(be careful)1:

edbDataSource(mDb, verbose = TRUE)

We now have an object called mDb that can be used for all our database
operations.

Object class:

class(mDb)

[1] "edb" "RODBC_MySQL"

2.8 Second step: ’inspect’ you database (table and column
names)

Notice: From this part of the tutorial, the examples will be given for the SQLite
database only. Nonetheless, the R code would be exactly the same for other
database type (MS Access, MS Excel, MySQL).

1The code below is not tested during vignette compilation. Just displayed

9

2.8.1 List tables

To list the tables in a database, type:

edbNames(edb = sDb)

[1] "HORIZON" "MISCFORMAT" "PROFILE"

[4] "WRB_SOIL_GROUP" "sqlite_sequence"

You can get more details, set the argument onlyNames = TRUE, but that
only works with MS Access, MS Excel and MySQL, not with SQLite.

2.8.2 Column names (in a table)

To list the columns in a table, use edbColnames2:

edbColnames(edb = sDb, tableName = "PROFILE")

[1] "ID_PROFILE" "NAME" "STUDY"

[4] "ID_WRB_SOIL_GROUP" "LATITUDE" "LONGITUDE"

[7] "COMMENTS"

2.8.3 Dimensions (of a table)

Similarly, you can obtain the number of row, the number of columns or the
dimension of a table, use edbNRow, edbNCol or edbDim3:

Number of rows:

edbNRow(edb = sDb, tableName = "PROFILE")

[1] 2

Number of columns:

edbNCol(edb = sDb, tableName = "PROFILE")

[1] 7

Dimenssions (rows x columns):

edbDim(edb = sDb, tableName = "PROFILE")

[1] 2 7

2.9 Retreive and subset tables from a database

Now that we know which tables we have in the database, and which columns
are in the table "PROFILE", we can retrieve the data we need.

Retrieving data from a table in an edb database works a like data.frame’s
single square brackets subsetting, but not exactly like data.frame.

2Technical remark: It is not possible to use colnames(). This function is not generic, and
can thus only be applied to data.frame and matrix. Moreover, edb class objects may contain
several tables, thus the need for an additional argument concerning the name of the table

3Technical remark: It is not possible to use textttnrow(), ncol() or dim(). edb class objects
may contain several tables, thus the need for an additional argument concerning the name of
the table

10

For data.frame, the subsetting pattern is:

myDataFrame[i, j]

Where i and j are either indexes, names or a vector of logical indicating
which rows and columns must be retreived, respectively.

For edb databases, we must also specify which table we are interested in, so
the subsetting pattern is:

myEdbDatabase[tableName, sRow, sCol]

So we have 3 slots instead of 2, separated by commas. tableName is the
name of the table (only one value), sRow is a list, containing one or several
constrains to be applied for selecting some rows only (see below), and sCol is a
vector of characters with the name of the columns to retrieve4.

2.9.1 Retrieve a complete table

To get the table ”PROFILE”, type:

sDb["PROFILE"]

ID_PROFILE NAME STUDY ID_WRB_SOIL_GROUP LATITUDE

1 1 My 1st profile Study_A 19 59.8179

2 2 My 2nd profile Study_A 14 59.8150

LONGITUDE COMMENTS

1 17.66042 No comments

2 17.67393 No comments

If you don’t like this subsetting style, you can use edbRead() instead:

edbRead(edb = sDb, tableName = "PROFILE")

ID_PROFILE NAME STUDY ID_WRB_SOIL_GROUP LATITUDE

1 1 My 1st profile Study_A 19 59.8179

2 2 My 2nd profile Study_A 14 59.8150

LONGITUDE COMMENTS

1 17.66042 No comments

2 17.67393 No comments

2.9.2 Retrieve a table subset (column constrains)

If you only want the columns ”ID PROFILE” and ”NAME”, type:

sDb["PROFILE", , c("ID_PROFILE","NAME")]

ID_PROFILE NAME

1 1 My 1st profile

2 2 My 2nd profile

4Column subsetting using a vector of integers/indexes or logicals should be possible in the
near future

11

If you don’t like this subsetting style, you can use edbRead() instead:

edbRead(

edb = sDb,

tableName = "PROFILE",

sCol = c("ID_PROFILE","NAME"))

ID_PROFILE NAME

1 1 My 1st profile

2 2 My 2nd profile

You can also use vector of indexes (integers) or vector of logicals to subset
a table:

sDb["PROFILE", , c(1,2)]

ID_PROFILE NAME

1 1 My 1st profile

2 2 My 2nd profile

#

sDb["PROFILE", , c(T,T,F,F,F,F,F)]

ID_PROFILE NAME

1 1 My 1st profile

2 2 My 2nd profile

But indexes or logicals will not work for row subsetting (see below).

2.9.3 Retrieve a table subset (row constrains)

In the table ”WRB SOIL GROUP”, if you only want the row whose column
”ID WRB SOIL GROUP” are 1 to 10, type:

sDb["WRB_SOIL_GROUP", list("ID_WRB_SOIL_GROUP" = 1:10)]

ID_WRB_SOIL_GROUP ABBREV NAME

1 1 AC Acrisol

2 2 AB Albeluvisol

3 3 AL Alisol

4 4 AN Andosol

5 5 AT Anthrosol

6 6 AR Arenosol

7 7 CL Calcisol

8 8 CM Cambisol

9 9 CH Chernozem

10 10 CR Cryosol

As you can see, if we want to retrieve only some rows, we have to precise a
constrain on some of the columns.

You can add as many column constrains as you want:

sDb["WRB_SOIL_GROUP",

list("ID_WRB_SOIL_GROUP" = 1:10,

"ABBREV" = c("AL","AT","PL"))]

12

ID_WRB_SOIL_GROUP ABBREV NAME

1 3 AL Alisol

2 5 AT Anthrosol

If you don’t like this subsetting style, you can use edbRead() instead:

edbRead(

edb = sDb,

tableName = "WRB_SOIL_GROUP",

sRow = list("ID_WRB_SOIL_GROUP" = 1:10))

ID_WRB_SOIL_GROUP ABBREV NAME

1 1 AC Acrisol

2 2 AB Albeluvisol

3 3 AL Alisol

4 4 AN Andosol

5 5 AT Anthrosol

6 6 AR Arenosol

7 7 CL Calcisol

8 8 CM Cambisol

9 9 CH Chernozem

10 10 CR Cryosol

#

Multiple constrains (const1 AND const2):

edbRead(

edb = sDb,

tableName = "WRB_SOIL_GROUP",

sRow = list("ID_WRB_SOIL_GROUP" = 1:10,

"ABBREV" = c("AL","AT","PL")))

ID_WRB_SOIL_GROUP ABBREV NAME

1 3 AL Alisol

2 5 AT Anthrosol

It is of course possible to use both row and column subsetting.

sDb["WRB_SOIL_GROUP", list("ID_WRB_SOIL_GROUP" = 1:10),

c("ID_WRB_SOIL_GROUP","NAME")]

ID_WRB_SOIL_GROUP NAME

1 1 Acrisol

2 2 Albeluvisol

3 3 Alisol

4 4 Andosol

5 5 Anthrosol

6 6 Arenosol

7 7 Calcisol

8 8 Cambisol

9 9 Chernozem

10 10 Cryosol

You can also add some SQL constrains in the sRow list, for instance:

13

sDb["WRB_SOIL_GROUP", list("SQL" = "NAME LIKE 'Al%'")]

ID_WRB_SOIL_GROUP ABBREV NAME

1 2 AB Albeluvisol

2 3 AL Alisol

If you want to see how the arguments are internally translated into SQL
queries use the argument verbose = TRUE.

sDb["WRB_SOIL_GROUP", list("ID_WRB_SOIL_GROUP" = 1:10),

c("ID_WRB_SOIL_GROUP","NAME"), verbose = TRUE]

SQL statement:

SELECT ID_WRB_SOIL_GROUP, NAME

FROM [WRB_SOIL_GROUP]

WHERE ([ID_WRB_SOIL_GROUP] IN (1, 2, 3, 4, 5, 6, 7, 8, 9, 10));

ID_WRB_SOIL_GROUP NAME

1 1 Acrisol

2 2 Albeluvisol

3 3 Alisol

4 4 Andosol

5 5 Anthrosol

6 6 Arenosol

7 7 Calcisol

8 8 Cambisol

9 9 Chernozem

10 10 Cryosol

Finally, you can chose to combine row constrains with OR instead of AND
(the default), by using the argument sRowOp = "OR". Complex combinations
of AND and OR are not possible unfortunately (you have to use RSQLite or
RODBC queries).

sDb["WRB_SOIL_GROUP", list("ID_WRB_SOIL_GROUP" = 1:10,

"ABBREV" = c("AL","AT","PL")), sRowOp = "OR"]

ID_WRB_SOIL_GROUP ABBREV NAME

1 1 AC Acrisol

2 2 AB Albeluvisol

3 3 AL Alisol

4 4 AN Andosol

5 5 AT Anthrosol

6 6 AR Arenosol

7 7 CL Calcisol

8 8 CM Cambisol

9 9 CH Chernozem

10 10 CR Cryosol

11 23 PL Planosol

14

2.10 Write data

First lets get some data we want to write in the database:

profileTbl <- sDb["PROFILE"]

profileTbl

ID_PROFILE NAME STUDY ID_WRB_SOIL_GROUP LATITUDE

1 1 My 1st profile Study_A 19 59.8179

2 2 My 2nd profile Study_A 14 59.8150

LONGITUDE COMMENTS

1 17.66042 No comments

2 17.67393 No comments

2.10.1 Append data to a table:

We will try to write back / add this table to the table ”PROFILE”, as if it
was new data. But we need first to change the field ”ID PROFILE”, as it is a
PRIMARY KEY in the database (no duplicates allowed):

profileTbl[, "ID_PROFILE"] <- 3:4

Now the table can be written:

sDb["PROFILE"] <- profileTbl

This is the same as sDb["PROFILE", mode = "a"] <- profileTbl, which
mean we have *a*ppend the data at the end of the table.

Another way to do the same operation is:

First change the IDs:

profileTbl[, "ID_PROFILE"] <- 5:6

#

edbWrite(edb = sDb, tableName = "PROFILE", data = profileTbl)

[1] TRUE

We can check that the data has been written:

sDb["PROFILE", , c("ID_PROFILE","NAME")]

ID_PROFILE NAME

1 1 My 1st profile

2 2 My 2nd profile

3 3 My 1st profile

4 4 My 2nd profile

5 5 My 1st profile

6 6 My 2nd profile

15

2.10.2 Update data in a table:

If we want to update data in a table, we need to use edbWrite() (the square
bracket method will not work). We have to set the argument mode = "u" and
also the argument pKey = "ID_PROFILE" to state that pKey must be used as a
key to identify the fields that must be updated (it does not have to be a PRI-
MARY key in the database, but it is better if it is a unique indentifier).

But first lets modify the data we will write:

profileTbl[,"NAME"] <- c("My 5th profile","My 6th profile")

Then we can update this in the database:

edbWrite(

edb = sDb,

tableName = "PROFILE",

data = profileTbl,

mode = "u",

pKey = "ID_PROFILE")

NULL

And check what has been written:

sDb["PROFILE", list("ID_PROFILE" = 5:6),

c("ID_PROFILE","NAME")]

ID_PROFILE NAME

1 5 My 5th profile

2 6 My 6th profile

2.11 Delete records and drop tables

2.11.1 Delete records in a table

The function edbDelete() allows to delete all or a selection of records in a given
table. See ?edbWrite help page for an example and ?edbDelete for the list of
possible arguments for this function.

The function edbDelete() is not supported by (RODBC) MS Excel.

WORK ON PROGRESS!

2.11.2 Drop a table in a database

The function edbDrop() allows to drop / delete tables in a database. See ?edb-

Write help page for an example and ?edbDrop for the list of possible arguments
for this function.

The function edbDrop() is partially supported by (RODBC) MS Excel: All
rows are deleted, but not the table!.

WORK ON PROGRESS!

16

3 Advanced usage

3.1 Fetch AUTOINCREMENT primary keys attributed
by the database

When working with relational databases in which referential integrity is impor-
tant, tables are attributed a primary key, that has to be unique for each record.
You may decide yourself what is the value of this primary key, but it is sometimes
impossible (when several processes or computers write at the same time on the
table for instance). For this reason the primary is often set as AUTOINCREMENT

(or AUTO_INCREMENT), meaning that the database can attribute automatically a
primary key if it has not been provided by the user. When using that feature,
it is important be be able to know what primary key has been attributed to the
record we just wrote in the database (again, several processes may have written
at the same time on the database). SQL databases have special functions for this
(like LAST_INSERT_ID() in MySQL). These functions have been implemented
in edbWrite() to make it possible to retrieve the last inserted ID in R, without
typing complicated SQL code (it does it for you).

This function is not supported by MS Excel (as Excel does not have primary
keys).

The example below shows how to fetch the last inserted IDs. You need to
specify the primary key using getKey:

WORK ON PROGRESS!

3.2 ’On-the-fly’ transformation of variables when reading
from or writing to the database

See the argument formatCol in edbWrite()...

WORK ON PROGRESS!

3.3 About dates and boolean in SQLite databases

See the argument formatCol in edbWrite.RSQLite_SQLite()...

WORK ON PROGRESS!

3.4 Database operation log table

See the argument logOp and logMsg in edbWrite(), edbDelete() and edb-

Drop()...

WORK ON PROGRESS!

[1] TRUE

17

4 Misc: Session info

Information on R Session and packages versions (that were used to build this
vignette):

sessionInfo()

R version 3.1.2 Patched (2014-11-14 r66984)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] easyrsqlite_0.7.4 RSQLite_1.0.0 DBI_0.3.1

[4] easydb_0.7.5

loaded via a namespace (and not attached):

[1] tools_3.1.2

packageVersion(pkg = "easydb")

[1] âĂŸ0.7.5âĂŹ

packageVersion(pkg = "RODBC")

packageVersion(pkg = "DBI")

[1] âĂŸ0.3.1âĂŹ

packageVersion(pkg = "RSQLite")

[1] âĂŸ1.0.0âĂŹ

References

[1] David˜A. James. RSQLite: SQLite interface for R, 2010. R package version
0.9-2.

[2] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011.
ISBN 3-900051-07-0.

[3] Brian Ripley, , and from 1999˜to Oct 2002 Michael˜Lapsley. RODBC:
ODBC Database Access, 2010. R package version 1.3-2.

18

	Forewords
	What is easydb?
	Credits and License
	Disclaimer

	Working with easydb
	Install and load easydb
	SQLite and RSQLite
	ODBC and Access
	ODBC and Excel
	ODBC and MySQL
	Example databases
	SQLite
	MS Access (< 2007)
	MS Access (2007)
	MS Excel (< 2007)
	MS Excel (2007)
	MySQL
	Copy the example database to the working directory

	First step: 'describe' you database
	SQLite
	MS Access (< 2007)
	MS Access (2007)
	MS Excel (< 2007)
	MS Excel (2007)
	MySQL

	Second step: 'inspect' you database (table and column names)
	List tables
	Column names (in a table)
	Dimensions (of a table)

	Retreive and subset tables from a database
	Retrieve a complete table
	Retrieve a table subset (column constrains)
	Retrieve a table subset (row constrains)

	Write data
	Append data to a table:
	Update data in a table:

	Delete records and drop tables
	Delete records in a table
	Drop a table in a database

	Advanced usage
	Fetch AUTOINCREMENT primary keys attributed by the database
	'On-the-fly' transformation of variables when reading from or writing to the database
	About dates and boolean in SQLite databases
	Database operation log table

	Misc: Session info

