
c060: Extended Inference with Lasso and Elastic-Net

Regularized Cox and Generalized Linear Models

Martin Sill Thomas Hielscher

Division of Biostatistics (C060)

German Cancer Research Center, Heidelberg

Natalia Becker Manuela Zucknick

Abstract

We have developed the R package c060 (Sill, Hielscher, Becker, and Zucknick 2013) with

the aim of improving R software functionality for high-dimensional risk prediction modelling,

e.g., for prognostic modelling of survival data using high-throughput genomic data. Penalized

regression models provide a statistically appealing way of building risk prediction models from

high-dimensional data. The popular CRAN package glmnet package (Friedman, Hastie, and Tib-

shirani 2013) implements an efficient algorithm for fitting penalized Cox and generalized linear

models. However, in practical applications the data analysis will typically not stop at the point

where the model has been fitted. One is for example often interested in the stability of selected

features and in assessing the prediction performance of a model and we provide functions to deal

with both of these tasks. Our R functions are computationally efficient and offer the possibility of

speeding up computing time through parallel computing. Another feature which can drastically

reduce computing time is an efficient interval-search algorithm, which we have implemented for

selecting the optimal parameter combination for elastic net penalties. These functions have been

useful in our daily work at the Biostatistics department (C060) of the German Cancer Research

Center where prognostic modelling of patient survival data is of particular interest. Although we

focus on a survival data application of penalized Cox models in this article, the functions in our

R package are in general applicable to all types of regression models implemented in the glmnet

package, with the exception of prediction error curves, which are specific to time-to-event data.

Keywords: glmnet, penalized log-likelihood method, stability selection, interval search, prediction

error.

1. Introduction

Penalized regression models provide a statistically appealing method to build prediction models from

high-dimensional data sources, where it is the aim to simultaneously select features and to fit the model

(Fan and Lv 2010; Benner, Zucknick, Hielscher, Ittrich, and Mansmann 2010). Since the introduc-

tion of the lasso for linear regression models (Tibshirani 1996), the methodology has been extended

to generalized linear regression models and time-to-event endpoints (Tibshirani 1997) among others.

In addition to the well-known L1-norm (lasso) and L2-norm (ridge) penalty functions, various other

penalties have been proposed in recent years to select features and/or estimate their effects. In partic-

ular, we will use the elastic net penalty function (Zou and Hastie 2005), which is a linear combination

of the L1- and L2-norms.

With ever increasing data, the properties of the algorithm used for fitting the model have become

2 c060: Extended Inference with Regularized Cox and Generalized Linear Models

almost as important as the statistical model itself. Friedman, Hastie, and Tibshirani (2010) proposed

a coordinate descent algorithm for generalized linear regression models, which has since then been

extended to penalized Cox proportional hazards (PH) regression models (Simon, Friedman, Hastie,

and Tibshirani 2011). Due to its efficiency this algorithm is considered one of the state-of-the-art

approaches to estimate penalized regression models with lasso, ridge or elastic net penalty terms,

especially in high-dimensional data scenarios. First references about coordinate descent algorithms

date back to Fu (1998).

This algorithm has been implemented in R (R Development Core Team 2011) in the glmnet package

(Friedman et al. 2013). The package provides functions to tune and fit regression models, plot the re-

sults, and make predictions. However, in practical applications, where often an independent validation

data set is lacking, some additional features and routines are desirable as part of a complete data analy-

sis. We have assembled some functions that enhance the existing functionality of the glmnet package

or allow to use it within the framework of other existing R packages. These functions have been use-

ful in our daily work at the Biostatistics department (C060) of the German Cancer Research Center

where prognostic modelling of patient survival data is of particular interest. Therefore, for illustration

purposes we focus on penalized Cox PH regression models in this article. But the R functions are

generally applicable to all types of regression models implemented in the glmnet package.

Computational efficiency is an important requirement of the software to make applications feasible for

real-life data analysis tasks in fields such as molecular oncology, where one aims to develop sparse risk

prediction models based on very large numbers of molecular features measured with high-throughput

technologies such as microarrays or next-generation sequencing. Therefore, we provide functionality

to speed up computations, in particular through parallel computing.

We provide R functions to perform stability selection (Meinshausen and Bühlmann 2010) in a compu-

tationally efficient way which allows to select the most stable features at a given Type I error level. We

have also implemented an approach to select the optimal parameter combination (α , λ) for elastic net

penalties using an interval-search algorithm (Froehlich and Zell 2005) which is often faster and more

accurate than a standard grid search (Jones, Schonlau, and Welch 1998). Another very useful addition

for real-life applications of glmnet for building risk-prediction models is the provision of wrapper

functions to allow the computation of resampling-based prediction errors within the framework of the

R package peperr (Porzelius, Binder, and Schumacher 2009). The peperr package makes it compu-

tationally feasible to assess the predictive accuracy of a penalized regression model via resampling

methods even for very large-scale applications by employing parallel computing. We also provide the

possibility to speed up stability selection by parallel computing using the functionalities of the R base

package parallel (R Development Core Team 2011).

Stability selection and interval search are currently defined for Gaussian, binomial, Poisson, multino-

mial and Cox models, prediction error curves for Cox models and classification errors for binomial

models. Since all functions are basically wrapped around the glmnet fitting or cross-validation func-

tion calls, the type of response is always specified by the family argument.

The software is available as R package c060 on CRAN (URL http://cran.r-project.org/web/

packages/c060/, version 0.2-3 at time of manuscript publication) and on R-forge (URL https:

//r-forge.r-project.org/projects/c060/, version 0.2-3 at the time of publication).

http://cran.r-project.org/web/packages/c060/
http://cran.r-project.org/web/packages/c060/
https://r-forge.r-project.org/projects/c060/
https://r-forge.r-project.org/projects/c060/

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 3

2. Methods and algorithms

2.1. Penalized generalized linear models and Cox models

An efficient implementation for fitting generalized linear models and Cox proportional hazards models

with regularization by the lasso or elastic net penalty terms is provided by the R package glmnet.

This implementation uses a coordinate descent algorithm for fitting the models for specified values of

penalty parameters λ > 0 and α ∈ (0,1]. The computation of an entire regularization path across a

range of values Λ = {λ1,λ2...,λK} at fixed α with glmnet is generally very fast, because previously

computed solutions for {λ1, ...,λk−1} are used as ’hot’ starting values for the computation of λk. This

implies that it is often more efficient to compute the models for the entire regularization path of Λ

rather than just individual models. We use this feature in all of our implemented algorithms to make

most use of the computational speed of glmnet.

Models are fitted by maximizing the penalized log-likelihood function for generalized linear mod-

els and the penalized partial log-likelihood for Cox models. The penalized (partial) log-likelihood

function is given by

ln(β)−
p

∑
j=1

pα,λ (|β j|) (1)

where ln(β) denotes the (partial) log-likelihood given n observations. The dimension of the parameter

vector β is p and pα,λ (| · |) is the penalty function with tuning parameters λ and α .

Cross-validation can be performed to decide which model, i.e., which penalty parameter values, to

choose by using the negative cross-validated penalized (partial) log-likelihood as the loss function.

Actually, within the glmnet package, the penalized (partial) log-likelihood deviance is used as the

loss function rather than the log-likelihood function itself. The deviance is equal to -2 times the log-

likelihood ratio of the model of interest compared to the saturated model, which has one free parameter

per observation. Obviously, both versions will result in the same optimization result.

2.2. L2-penalized Cox regression

Penalized maximum likelihood estimation in Cox regression with the ridge penalty

pλ (|β j|) = λβ 2
j (2)

was introduced by Verweij and van Houwelingen (1994). The ridge penalty results in parameter esti-

mates that are biased towards zero, but does not set values exactly to zero, and hence does not perform

feature selection. On the other hand, it has been found to produce models with good prediction perfor-

mance in high-dimensional genomic applications (e.g., Bøvelstad, Nygård, Størvold, Aldrin, Borgan,

Frigessi, and Lingjærde 2007), in particular if predictors are highly correlated.

2.3. L1-penalized Cox regression

Tibshirani (1997) proposed to use an L1-penalized Cox model with

pλ (|β j|) = λ |β j| (3)

and described a technique, called the lasso for “least absolute shrinkage and selection operator”, for

parameter estimation. The L1-penalty has the advantage over the L2-penalty of shrinking some of the

coefficients to zero, i.e., it performs automatic feature selection.

4 c060: Extended Inference with Regularized Cox and Generalized Linear Models

2.4. The elastic net

Zou and Hastie (2005) introduced the elastic net, which employs a combination of the L1- and L2-

penalty. Like lasso the elastic net performs automatic feature selection by setting some coefficient

estimates to zero. But the additional L2-penalty term distributes the weight to more features, so that

the elastic net tends to select more features than the lasso. This is especially the case in situations with

high correlation, since the lasso would select only one feature of a set of perfectly correlated features,

while the ridge penalty would give them equal weight.

Throughout this manuscript we use the same parametrization of the elastic net penalty function as the

formulation used in the glmnet package:

pα,λ (|β j|) = λ × (α|β j|+(1−α)
1

2
β 2

j). (4)

Here, α ∈ (0,1] determines the influence of the L1 penalty relative to the L2 penalty. Small α values

will result in models with many features, getting closer to the non-sparse ridge solution as α tends to

zero.

The interval-search algorithm to select the optimal elastic net parameter combination

The elastic net penalty function contains two tuning parameters which are data-dependent and hence

cannot be set to some a priori values. The challenge is to find a set of tuning parameters (α,λ), for

which the k-fold cross-validated loss function of the model is minimal.

The commonly used fixed grid search has its major disadvantage in the need to systematically compute

the penalized log likelihood deviance at each point of the grid, which implies that the grid density

affects the accuracy and the time complexity of the algorithm. Furthermore, the choice of the grid is

highly arbitrary and the solution depends on the choice of grid as well as on grid density.

Froehlich and Zell (2005) proposed an efficient algorithm for finding a global optimum on the tuning

parameter space called Efficient Parameter Selection via Global Optimization (EPSGO). The main

idea of the algorithm is to treat the task of finding the optimal tuning parameter values as a global op-

timization problem. For that purpose one learns a Gaussian process model of the loss function surface

in parameter space and samples systematically at points where the so-called expected improvement

criterion reaches the maximum.

The interval search can be divided into two phases. In the initial phase, a set of uniformly distributed

points is randomly selected throughout the parameter space. Then, in the iteration phase, the algorithm

learns the Gaussian process model from the points which have already been visited. By adding new

points one updates the Gaussian process model. New points in the parameter space are sampled by

using the expected improvement criterion as described by Jones et al. (1998). The EPSGO algorithm

stops when one of the stopping criteria is met, i.e., if either convergence of the algorithm has been

reached or if there was no change in the solution during the last ten iterations.

Froehlich and Zell (2005) showed that the algorithm is robust against local minima. One can observe

an immense improvement in the training time for the Gaussian process model compared to more

commonly used fixed grid search methods (Froehlich and Zell 2005). This is because the number of

training points for the Gaussian process (and hence the number of evaluations of the loss function

surface of the regression model) mainly depends on the dimensionality of the tuning parameter space,

which is very small compared to the number of training points on the grid.

Summing up, the EPSGO algorithm provides two main advantages when compared to grid search

methods:

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 5

• Robustness against starting values: EPSGO solutions are not dependent on an arbitrary choice

of a grid.

• Scalability of accuracy improvements: The accuracy of EPSGO solutions can be easily im-

proved without the need for a massive increase in computing time implied by an increase in the

grid density.

2.5. Stability selection

The penalized regression models that we have described above are typically used to find sparse models

with good predictive performance. In contrast, the stability selection proposed by Meinshausen and

Bühlmann (2010) aims to find stable features which show strong association with the outcome. The

stability selection is a general approach that combines feature selection methods such as L1 penalized

models with resampling. By applying the corresponding feature selection method to subsamples that

were drawn without replacement, selection probabilities for each feature can be estimated as the pro-

portion of subsamples where the feature is included in the fitted model. These selection probabilities

are used to define a set of stable features. Meinshausen and Bühlmann (2010) provide a theoretical

framework for controlling Type I error rates of falsely assigning features to the estimated set of stable

features. The selection probability of each feature along the regularization path, e.g., along the range

of possible penalization parameters Λ = {λ1,λ2...,λK}, is called stability path. Given an arbitrary

threshold πthr ∈ (0.5,1) and the set of penalization parameters Λ, the set of stable features estimated

with stability selection is:

Ŝstable
β =

{

j : max
λk∈Λ

Π̂
λk

j ≥ πthr

}

, (5)

where Π̂
λk

j denotes the estimated selection probability of the jth feature at λk. Then according to

Theorem 1 in Meinshausen and Bühlmann (2010), the expected number of falsely selected features

E(V) will be bounded by:

E(V)≤ 1

(2πthr −1)

q2
Λ

p
, (6)

where qΛ is the average of the number of non-zero coefficients with respect to the drawn subsamples.

Equation 6 shows that the bound on expected number of falsely selected features can be decreased by

either reducing the average number of selected features qΛ or by increasing the threshold πthr. Suppose

that πthr is fixed, then E(V) can be controlled by limiting qΛ by the length of the regularization path

Λ. In multiple testing the expected number of falsely selected features is also known as the per-family

error rate (PFER) and if divided by the total number of features p will become the per-comparison

error rate (PCER) (Dudoit, Shaffer, and Boldrick 2003). The stability selection allows to control

these Type I error rates. For instance, suppose the threshold πthr = 0.8 is fixed, then choosing Λ such

that qΛ ≤√
0.6p will control E(V)≤ 1. Moreover, choosing Λ so that qΛ ≤√

0.6pα will control the

family-wise error rate (FWER) at level α , P(V > 0)≤α . As mentioned before, according to Friedman

et al. (2010) the coordinate descent algorithm implemented in the glmnet package is most efficient

regarding the computational time, when used to calculate the full regularization path. To utilize this

property our algorithm calculates the stability path by first generating subsets by subsampling and

then calculating for each subsample the regularization path using the coordinate descent algorithm.

The resulting regularization paths are then averaged to form the stability path. Furthermore, since the

calculations of the regularization paths for each subset are independent of each other, the algorithm

can easily be parallelized using the package parallel.

6 c060: Extended Inference with Regularized Cox and Generalized Linear Models

2.6. Prediction error curves for survival models

The time-dependent Brier score (Graf, Schmoor, Sauerbrei, and Schumacher 1999) can be used to

assess and compare the prediction accuracy of prognostic models for time-to-event endpoints. The

Brier score at time point t is a weighted mean squared error between predicted survival probability

and observed survival status. Weighting depends on the estimated censoring distribution to account for

the observations under risk (Gerds and Schumacher 2006). Computing the error for each time point

over the entire follow-up horizon yields a prediction error curve. As a reference we use prediction

errors based on the Kaplan-Meier curves estimated without any covariate information.

The empirical time-dependent Brier score BS(t) is defined as a function of time t > 0 by

BS(t) =
1

n

n

∑
i=1

[

Ŝ(t|xi)
2I(ti ≤ t ∧δi = 1)

Ĝ(ti)
+

(1− Ŝ(t|xi))
2I(ti > t)

Ĝ(t)

]

,

with individual survival time ti, censoring indicator δi and estimated survival probability Ŝ(t|xi) at

time t based on the prognostic model given covariate values xi for subject i out of n patients (Graf

et al. 1999). Ĝ(t) denotes the Kaplan-Meier estimate of the censoring distribution at time t, which is

based on the observations (ti;1−δi), i = 1, ...,n. I signifies the indicator function.

In case no independent validation data are available, resampling-based prediction error curves are

used to adequately assess the model’s prediction accuracy. The .632+ bootstrap estimator (Efron and

Tibshirani 1997) is commonly used for these applications, which is a weighted mean of the apparent

error and the average out-of-bag bootstrap error. For the apparent error the same data is used to develop

the prognostic model and assess its performance. Due to overfitting, this error is far too optimistic,

particularly with high-dimensional data. The average out-of-bag bootstrap error is too conservative

since only a proportion of the entire data is used to develop the prognostic model in each bootstrap run.

The .632+ estimator balances both estimators, and additionally accounts for the relative overfitting

based on the no-information error rate. Further, in our application the .632+ bootstrap estimator is

calculated based on subsampling (without replacement) rather than classical bootstrap sampling with

replacement, as that has been demonstrated to lead to more accurate estimates in a high-dimensional

context (Binder and Schumacher 2008).

3. Application and demonstration of software

3.1. Data set

In the following we will demonstrate the use of the functions provided in the c060 package in an ap-

plication to a gene expression data set and corresponding clinical data of cytogenetically normal acute

myeloid leukemia (AML) patients (Metzeler, Hummel, Bloomfield, Spiekermann, Braess, Sauerland,

Heinecke, Radmacher, Marcucci, Whitman, Maharry, Paschka, Larson, Berdel, Buchner, Wormann,

Mansmann, Hiddemann, Bohlander, and Buske 2008). The data can be accessed from the Gene Ex-

pression Omnibus (GEO) data repository (http://www.ncbi.nlm.nih.gov/geo) by the National

Center for Biotechnology Information (NCBI). We find the data set under GEO accession number

GSE12417. To simulate the typical situation that only one data set is available for model training and

evaluation, we only use the data set that was used as validation data in the original publication. This

data set contains gene expression data for 79 patient samples measured with Affymetrix HG-U133

Plus 2.0 microarrays. The median survival time of these patients was 17.6 months with a censoring

rate of 40%.

http://www.ncbi.nlm.nih.gov/geo

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 7

For the sake of convenience we reduce the total number of 54675 gene expression features that have

been measured with the Affymetrix HG-U133 Plus 2.0 microarray technology to the top 10000 fea-

tures with largest variance across all 79 samples. For all computations the data set is stored as an

ExpressionSet (from Bioconductor package Biobase (Gentleman, Carey, Bates, and others 2004))

called eset. The gene expression data matrix can be accessed through the call exprs(eset) and

overall survival data and other patient-specific data (e.g., patient age) are stored within the phenoData

object pData(eset). Overall survival times are stored in the variable os, the corresponding survival

status variable is called os_status and the patient age variable is age.

3.2. Starting off: Fitting the lasso-penalized Cox model

Our goal is to develop a prognostic model for patient overall survival based on the gene expression

data. The purpose of this modelling exercise is not just to fit a prognostic model that is capable of

predicting overall survival rates, but we also want to find out which gene expression features are most

relevant for this task. Traditionally, this problem is solved by feature selection methods and we start

our data analysis exercise by fitting the lasso-penalized Cox model, which provides automatic feature

selection.

We can apply the glmnet function to fit a lasso-penalized Cox model to the AML data set. The

function call with default penalty parameter settings will fit the lasso model for 100 λ values within a

data-derived range of values:

R> fit <- glmnet(y=Surv(pData(eset)$os, pData(eset)$os_status),

+ x=t(exprs(eset)), family="cox")

In order to determine the optimal lasso penalty parameter value, we perform 10-fold cross-validation

using the cv.glmnet function.

8 c060: Extended Inference with Regularized Cox and Generalized Linear Models

R> set.seed(1234)

R> cvres <- cv.glmnet(y=Surv(pData(eset)$os, pData(eset)$os_status),

+ x=t(exprs(eset)), family="cox", nfolds=10)

R> res <- cvres$glmnet.fit

R> plot(cvres)

−5 −4 −3 −2 −1

50
10

0
15

0
20

0

log(Lambda)

P
ar

tia
l L

ik
el

ih
oo

d
D

ev
ia

nc
e

73 74 75 74 71 72 71 71 54 48 26 12 2

Figure 1: Cross-validated partial log-likelihood deviance, including upper and lower standard devia-

tions, as a function of logλ for the AML data set. The dotted vertical lines indicate the λ values with

minimal deviance (left) and with the largest λ value within one standard deviation of the minimal

deviance (right).

The loss function, i.e., the cross-validated partial log-likelihood deviance, is shown in Figure 1 in-

cluding upper and lower standard deviations as a function of logλ for the AML data set. The penalty

parameter value minimizing the loss function is λ =0.265 (logλ =-1.329) and corresponds to a fi-

nal lasso model with the following 5 selected features and corresponding lasso regression coefficient

estimates:

203640_at 204419_x_at 222462_s_at 226169_at 233371_at

-0.1134 -0.0166 0.2742 0.0430 -0.0122

The selected features are highlighted as red lines in the coefficient paths shown in Figure 2, which

illustrate the development of the regression coefficient estimates with increasing regularization. While

the selected 5 features are the only features selected at the optimal λ value, they do not remain among

the features with largest effect sizes when the penalty is reduced and thus more and more coefficients

start to enter the model. In fact, for 4 out of the 5 features the coefficient estimates go back down

to zero for small values of logλ , indicating that these features get replaced by other gene expression

features in very large models.

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 9

R> cof <- coef(res, s=cvres$lambda.min)

R> Plot.coef.glmnet(cvfit=cvres, betas=rownames(cof)[which(cof!=0)])

−5 −4 −3 −2 −1

−
6

−
4

−
2

0
2

Log Lambda

C
oe

ffi
ci

en
ts

74 71 71 34 074 71 71 34 0

−5 −4 −3 −2 −1
−

0.
8

−
0.

4
0.

0
0.

2
Log Lambda

C
oe

ffi
ci

en
ts

74 71 71 34 0

0 20 40 60 80 100

−
6

−
4

−
2

0
2

L1 Norm

C
oe

ffi
ci

en
ts

0 70 71 72 74 730 70 71 72 74 73

0.0 0.2 0.4 0.6 0.8

−
6

−
4

−
2

0
2

Fraction Deviance Explained

C
oe

ffi
ci

en
ts

0 34 54 70 730 34 54 70 73

Figure 2: Coefficient paths for lasso-penalized Cox PH regression models applied to the AML data set.

The features with highlighted paths have non-zero coefficients in the model with the optimal λ value

as determined by ten-fold cross-validation. The top plots show the coefficient path scaled to reflect

log(λ) on the x-axis (top left: full path, top right: zoomed in to only show the selected features). The

bottom plots show the coefficient paths relative to the L1-norms of the estimated coefficient vector

(left) and to the fraction of the null partial log-likelihood deviance explained (right). The dotted

vertical lines indicate the λ values with minimal deviance and with the largest λ value within one

standard deviation of the minimal deviance.

3.3. Assessment of prediction performance with resampling-based prediction errors

Once the final prognostic model is selected, the next task is to assess its prediction accuracy for

future patients, where one is often particularly interested in a comparison with established clinico-

pathological prognostic markers. In many applications no independent validation data set is avail-

able, and thus the same data set needs to be used to both develop and assess the prognostic model.

10 c060: Extended Inference with Regularized Cox and Generalized Linear Models

This is especially problematic for high-dimensional data, where the risk of overfitting is very high.

Resampling-based methods can be used to unbiasedly estimate the predictive accuracy of the prog-

nostic model in this situation. This is also called internal validation.

For this purpose the R package peperr (Porzelius et al. 2009; Porzelius and Binder 2011) provides

a modular framework for survival and binary endpoints. Wrapper functions for new or customized

prediction model algorithms can be defined and passed to the generic call function peperr. In case

of prognostic models for survival endpoints, algorithm-specific wrapper functions are required for

model fitting, tuning and prediction. Wrapper functions for selected machine learning approaches are

already implemented, but not yet for the glmnet package.

With the peperr package prediction accuracy of survival models is by default assessed with predic-

tion error curves based on the time-dependent Brier score, but it is also possible to define and use

customized accuracy measures. We have implemented additional wrapper functions for the glm-

net algorithm for fitting (fit.glmnet) and tuning (complexity.glmnet) the model, and predicting

survival probabilities (predictProb.glmnet) based on the fitted model and the estimated baseline

hazard from the training data using the Breslow estimator. We here want to assess the prognostic value

of the L1-penalized Cox PH regression model fitted in the previous section. The .632+ subsampling-

based bootstrap estimator is calculated using 1000 bootstrap samples. The peperr package is designed

for high-dimensional covariates data and allows for various parallel computation setups. Also, addi-

tional arguments can be passed directly to the glmnet call by specifying additional arguments for the

corresponding fitting and/or tuning procedure. Here, we include patient age as a mandatory feature,

i.e., age is not subject to penalization, and run the calculation on 3 CPUs in parallel using a socket

cluster setup.

R> obj <- peperr(response=Surv(pData(eset)$os, pData(eset)$os_status),

+ x=data.frame(eset$age,t(exprs(eset))),

+ fit.fun=fit.glmnet, args.fit=list(standardize=FALSE, family="cox",

+ penalty.factor=rep(0:1, times=c(1,dim(eset)[1]))),

+ complexity=complexity.glmnet,

+ args.complexity=list(standardize=FALSE, nfolds=10, family="cox",

+ penalty.factor=rep(0:1, times=c(1,dim(eset)[1]))),

+ RNG="fixed", seed=0815, cpus=3, parallel=TRUE, clustertype="SOCK",

+ load.list=list(packages=c("c060")),

+ indices=resample.indices(n=dim(eset)[2],

+ sample.n=1000, method="sub632"))

Bootstrap results can be visualized with the plot.peperr function from the peperr package showing

the selected complexity parameters, out-of-bag prediction error curves as well as the prediction error

integrated over time, and the predictive partial log-likelihood (PLL) values. In order to calculate the

predictive PLL values again, an algorithm-specific wrapper (here PLL.coxnet) needs to be provided.

In addition, we provide a slightly modified version of the prediction error curves plot function from

the peperr package, which allows the display of the numbers of samples still at risk and pointwise

bootstrap quantiles (Plot.peperr.curves) as shown in Figure 3. By default, the .632+ bootstrap

estimate is calculated and displayed. Optionally, one can additionally display the .632 estimator, the

no-information error rate and the average out-of-bag bootstrap error in Plot.peperr.curves by set-

ting the option allErrors=TRUE.

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 11

0 200 400 600 800 1000 1200

0.0

0.1

0.2

0.3

Prediction error curves

Evaluation time points

P
re

di
ct

io
n

er
ro

r

Null model
.632+ estimate
Full apparent

79 58 44 34 30 26 14
at

risk

Figure 3: Prediction error curves based on time-dependent Brier score for the lasso-penalized Cox

PH regression model applied to the AML data set (evaluation time points reflect days). The gray

area indicates the pointwise 2.5% and 97.5% quantiles of the 1000 out-of-bag bootstrap samples.

The other lines show the prediction error curves of the null model (estimated by the Kaplan-Meier

estimator without covariate information), the full apparent error estimates (i.e., the errors as estimated

when applying the model to the entire training data set), and the .632+ bootstrap error estimates.

R> Plot.peperr.curves(obj, at.risk=TRUE, allErrors=FALSE, bootRuns=FALSE,

+ bootQuants=TRUE, bootQuants.level=0.95, leg.cex=0.7)

For classification models for binary endpoints, both tuning and fitting of the model are done with the

same wrapper functions as used for the Cox regression. Model performance measures for classifica-

tion tasks that are shipped with the peperr package are the misclassification rate and the Brier score.

The predicted class probability is calculated within each generic performance function by calling the

algorithm-specific predict function. Whenever a new algorithm/method is applied, the generic per-

formance/aggregation function needs to be adapted accordingly. Therefore for binary responses, the

peperr package does not provide quite the same modular flexibility as for time-to-event endpoints

where prediction and performance assessment are done in separate functions. We have extended the

functionality of the peperr functions for calculating the Brier score (aggregation.brier) and the

12 c060: Extended Inference with Regularized Cox and Generalized Linear Models

misclassification rate (aggregation.misclass) to allow their use with the glmnet algorithm. In ad-

dition, we have implemented the area under the receiver operating characteristic (ROC) curve (AUC)

(aggregation.auc) as an alternative performance measure for binary response classifications. An

example is included in the corresponding help file. For classification models, there are numerous al-

ternative R and Bioconductor packages available to assess models fitted with glmnet. A good starting

point is the package caret (Kuhn, Wing, Weston, Williams, Keefer, Engelhardt, and Cooper 2013).

An alternative implementation of the time-dependent Brier score for assessing the prognostic perfor-

mance of prognostic models for time-to-event endpoints can be found in the package pec (Mogensen,

Ishwaran, and Gerds 2012). The basic approach is similar to peperr, i.e. one has to define a wrap-

per for each fitting procedure in order to determine the estimated survival probabilities. Just as for

peperr, no wrapper for glmnet is available yet with the pec package. The main difference of peperr

compared to pec is that the tuning of the hyper-parameter and the fitting procedure are done in two

separate steps, which reflects the usual workflow for high-dimensional data analysis better. While

pec provides additional prediction accuracy measures for survival models, such as the time-dependent

c-index, it cannot be used to assess classification models for binary endpoints. One strong point of

the implementations of both peperr and pec is their easy-to-use setup for using resampling methods

for internal validation. In addition to the use of prediction error curves and time-dependent Brier

scores, another popular approach for assessing the prediction accuracy of survival models is the use of

time-dependent ROC and AUC curves, for which many implementations exist, for example in R pack-

ages timeROC (Blanche 2013), survivalROC (Heagerty and packaging by Paramita Saha-Chaudhuri

2013) and risksetROC (Heagerty and packaging by Paramita Saha-Chaudhuri 2012).

3.4. Stability selection

So far implementations of stability selection can be found in the packages s4vd, (Sill and Kaiser 2011;

Sill, Kaiser, Benner, and Kopp-Schneider 2011), mboost (Hothorn, Buehlmann, Kneib, Schmid,

Hofner, Sobotka, and Scheipl 2013), lol (Yuan 2011) and BioMark (Wehrens and Franceschi 2012).

While in the package s4vd the stability selection is applied to sparse singular value decomposition in

the context of biclustering, the mboost package offers stability selection for model based boosting.

The implementation in the lol package is based on penalized generalized linear models and penalized

Cox models available through the package penalized (Goeman, Meijer, and Chaturvedi 2012). As

both the penalized and the glmnet packages offer penalized models for survival, Poisson, binary and

Gaussian response variables, the stability selection in lol is comparable to our implementation. Due to

the computational efficiency of the coordinate descent algorithm in glmnet it is more appropriate for

complex resampling methods like stability selection. Moreover, the code for the stability selection in

the lol package is not yet parallelized and does not offer the possibility to compute the whole stability

path. The BioMark package offers an implementation of stability selection for partial least squares

(PLS), principal component regression (PCR), variable importance of projection (VIP) and logistic

and Gaussian glmnet models. Until now the BioMark package allows only to calculate selection

frequencies and does not provide type I error control nor the ’randomized lasso’ as described in Mein-

shausen and Bühlmann (2010).

Here we use stability selection to identify prognostic features, which have a relevant influence on the

survival times of the patients in the AML data set, while controlling Type I errors to ensure that the

features identified are truly associated with the survival times. To calculate the stability path for the

L1-penalized Cox regression we use the function stabpath from our R package. Via the weakness

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 13

argument of the function stabpath it is possible to induce additional randomization by reweighting

the penalization of each feature. In brief, in each subsampling step the individual penalization of each

feature is randomized such that it lies in the range of [λ ,λ/κ], where κ is represented by the weakness

parameter which indicates the amount of this additional randomization. The weights wi, · · · ,wp to

replace each λi by λi/wi are generated by sampling from a uniform distribution, i.e. wi ∼ U (κ,1).
Meinshausen and Bühlmann (2010) call this additional randomization ’randomized lasso’ and showed

that it greatly improves the variable selection performance of the stability selection. The function

stabpath draws subsets and calculates in parallel the stability path, e.g., the selection probabilities

of each feature along the range of possible penalization parameter values. For parallelization we use

the package parallel, which has been a base package since R version 2.14.0. On Unix-like systems

the parallelization is done by forking via the function mclapply whereas under Windows systems

socket clusters are used.

R> y <- cbind(time=pData(eset)$os, status=pData(eset)$os_status)

R> set.seed(1234)

R> spath <- stabpath(y=y, x=t(exprs(eset)), mc.cores=2,

+ family="cox", weakness=.8)

After calculating the stability path, the function stabsel can be called to estimate the stable set of

features. Controlling a per-family error rate (PFER) of 1, e.g., expecting one falsely selected feature,

the estimated set of stable features comprises a single feature (with Π̂ > 0.6).

R> stabsel(spath, error=1, type="pfer", pi_thr=0.6)$stable

206932_at

2823

Alternatively, the stabsel function allows to control the per-comparison wise error rate (PCER) and

family-wise error rate (FWER). In addition, we provide a plot function to visualize the stability path.

This function calls stabsel to estimate stable features and indicates them in the plot (Figure 4).

3.5. Parameter tuning for the elastic net Cox model

In the previous sections we have seen that the lasso-penalized Cox model does not seem to perform

very well in terms of predicting overall survival for the AML data set. The lasso model identified as the

optimal model by 10-fold cross-validation is very sparse and contains only 5 features. Furthermore,

we have observed that these features are not very stable and 4 of them do not even remain in the set of

selected features when the amount of regularization is decreased and more features start to enter the

model.

In this section we fit an elastic net model instead of lasso to the same data set. As outlined above,

fitting an elastic net model requires the simultaneous tuning of two parameters α and λ . For this

computationally challenging task, we use the interval search algorithm in an efficient implementation

in R function EPSGO. The EPSGO algorithm was originally implemented for support vector machines

in the R package penalizedSVM (Becker, Werft, Toedt, Lichter, and Benner 2009; Becker, Werft, and

Benner 2012). Here we provide a version for glmnet and in addition summary and plot functions to

illustrate the interval search results.

14 c060: Extended Inference with Regularized Cox and Generalized Linear Models

−5 −4 −3 −2 −1

−6

−4

−2

0

2

Penalization Path

log λ

β̂ i

−5 −4 −3 −2 −1

0.0

0.2

0.4

0.6

0.8

1.0

Stability Path

log λ

Π̂

Figure 4: Coefficient and stability paths for lasso penalized Cox PH regression model applied to the

AML data set. The feature with highlighted path is the only stable feature found by stability selection

with PFER=1 and Π̂ > 0.6.

The following code specifies the required objects and parameter values for optimizing the tuning

parameters of the elastic net Cox model. The balancedFolds function splits the data into balanced

folds for 10-fold cross-validation.

R> x <- t(exprs(eset))

R> y <- cbind(time=pData(eset)$os,status=pData(eset)$os_status)

R> bounds <- t(data.frame(alpha=c(0, 1)))

R> colnames(bounds)<-c("lower","upper")

R> nfolds <- 10

R> set.seed(1234)

R> foldid <- balancedFolds(class.column.factor=y[,2], cross.outer=nfolds)

Usually, the task is to find a setting of tuning parameter values (α,λ), for which the 10-fold cross-

validated penalized (partial) log likelihood deviance of the model is minimal. Here, however, the

optimal λ is chosen as the largest value of λ such that the loss function is within one standard error

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 15

of the minimum, which will result in a smaller model (a strategy suggested by the authors of the

glmnet package). That is, for each given α an optimal λ is found via the computation of the entire

regularization path with the glmnet function with option type.min =’lambda.1se’.

The wrapper function tune.glmnet.interval calculates the (partial) log likelihood deviance of a

model with given tuning parameter setting (α,λ).

R> fit <- epsgo(Q.func="tune.glmnet.interval",

+ bounds=bounds,

+ parms.coding="none",

+ seed = 1234,

+ fminlower = -100,

+ x = x, y = y, family = "cox",

+ foldid = foldid,

+ type.min = "lambda.1se",

+ type.measure = "deviance")

Summary information can be extracted from the fit object using the summary function.

R> sumint <- summary(fit, verbose=TRUE)

Summary interval search

show the first 5 out of 37 entries

alpha lambda deviance n.features

1 0.67605 0.4939544 9.711522 1

2 0.17194 1.5391420 9.662976 19

3 0.81895 0.4077635 9.708716 1

4 0.31188 0.9756053 9.699170 4

5 0.61671 0.5168716 9.700599 2

..............................

Optimal parameters found are:

alpha = 0.013 lambda = 14.722 deviance = 9.6329

At the initial step we sample 21 points in the parameter space for α as suggested for the original

algorithm by the authors of (Froehlich and Zell 2005). Those points are randomly distributed and

uniformly cover the whole interval (0,1]. A Gaussian process model is trained based on these initial

points. Then, iteratively, new points are added to the Gaussian process model in order to find an

optimal combination of tuning parameter values. In total, 37 iterations were needed to reach the

optimum.

The final elastic net model contains 220 selected features, which obviously reflects much less sparsity

than the final lasso model. The results are consistent in the sense, that the features contained in the

final lasso model are also contained in the elastic net model. Also, the individual feature selected by

the stability algorithm is in the set of selected elastic net features.

16 c060: Extended Inference with Regularized Cox and Generalized Linear Models

R> plot(sumint)

Cross−validated partial log likelihood deviance

α

lo
g

λ

−1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

1

19

1

4

2

2
2

2

59

24

1
1

1

8
2 0

1

13

232

2

1

41

2220

2221

223
142

60574561

249

332
391

61
66

9.64 9.65 9.66 9.67 9.68 9.69 9.70 9.71 9.72

Figure 5: Cross-validated partial log likelihood deviance as a function of both tuning parameters α

and logλ when fitting the elastic net Cox model for the AML data set. For each evaluated point in the

parameter space the number of selected features in the corresponding model is printed next to the data

point symbol. Rectangles correspond to initially selected α values. The solid red lines highlight the

final solution where the loss function is within one standard error of the minimum.

Figure 5 illustrates the relationship between both tuning parameters α and λ for the ’visited’ points

in the parameter space. The partial log likelihood deviance is color-coded with black for small values

and gray for large values. The number of features selected in the corresponding model is written near

each point. To distinguish between initial and iteration points, the initial points are plotted as squares

and iteration points as circles. One can observe that the iteration points were chosen in the regions

with lower deviance values.

The distribution of initial points (iteration=0) and visited points (iteration>0) in the parameter space

is plotted in Figure 6. This plot shows nicely that the interval search algorithm does not sequentially

cover the entire parameter space, but rather quickly finds promising regions and draws new samples

there. The optimal model contains with minimal log-likelihood deviance is found for α = 0.013 logλ

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 17

R> plot(sumint,type="points")

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

α

Ite
ra

tio
n

Figure 6: The distribution of initial and visited points of the interval search plotted in chronological

order. The interval search is employed to identify the optimal parameter value combination (α ,λ) for

the elastic net Cox model fitted to the AML data set.

= 2.689 and highlighted as a vertical line.

To our knowledge, the interval search algorithm has not yet been applied for the purpose of optimizing

the tuning parameters of elastic net models fitted with the glmnet package. The only previous R im-

plementation of this approach was in the R package penalizedSVM, which implements classification

and simultaneous feature selection with support vector machines.

4. Conclusions and outlook

The programming language and statistical computing environment R provides a highly useful frame-

work for statistical data analysis and modelling. It is the dominating statistical software in many

18 c060: Extended Inference with Regularized Cox and Generalized Linear Models

Function Description

Plot.coef.glmnet Plot the glmnet coefficient path and highlight the path of a pre-specified

set of variables

PLL.coxnet Predictive partial log-likelihood for glmnet Cox PH model fit

aggregation.auc Determine the area under the ROC curve for a fitted model

complexity.glmnet Interface for determination of penalty lambda in glmnet models via

cross-validation

fit.glmnet Interface function for fitting a penalized regression model with glmnet

Plot.peperr.curves Plot method for prediction error curves of a peperr object

predictProb.coxnet Extract predicted survival probabilities from a coxnet fit

predictProb.glmnet Extract predicted survival probabilities from a glmnet fit

stabpath Calculate the stability path for Gaussian, binomial, Poisson, multino-

mial and Cox glmnet models

stabsel Estimate a stable set of variables and allows to control the PFER, PCER

or FWER

plot.stabpath Display stability path and indicates estimated stable features

epsgo Efficient Parameter Selection via Global Optimization

summary.intsearch Summary method for interval search models

tune.glmnet.interval Wrapper function to apply epsgo to glmnet objects

plot.sum.intsearch Plot sum.intsearch objects generated by summary.intsearch

Table 1: Overview of available functions in the c060 package.

areas, for example in molecular biology and molecular medicine, which is largely due to the highly

successful Bioconductor project (Gentleman et al. 2004), which provides tools for the analysis and in-

terpretation of high-throughput genomic data. Due to the open-source nature of R and Bioconductor,

many useful software packages have been developed by R users and made available for the R com-

munity. One example is the glmnet package, which implements an efficient state-of-the-art algorithm

for fitting penalized Cox and generalized linear models with lasso, ridge or elastic net penalties.

We have presented our R package c060, which provides extensions to glmnet and additional features,

which are essential for a complete data analysis in real-life applications, including stability selection,

estimation of prediction error (curves) and an efficient interval search algorithm for finding the optimal

elastic net tuning parameter combination. These extensions have proved useful in our daily work, in

particular for the task of performing prognostic modelling of patient survival data based on high-

dimensional molecular biology data. Table 1 lists all functions that are available as part of the c060

package.

The c060 package will be kept updated in the future to keep up with new developments in the field

of penalized regression methodology for feature selection and risk prediction modelling with high-

dimensional input data. One example are developments for the estimation of standard errors, confi-

dence intervals and the determination of p-values in high-dimensional regularized regression models,

e.g., through subsampling methods similar to the approach taken by Wasserman and Roeder (2009)

and Meinshausen, Meier, and Bühlmann (2009).

Acknowledgments

This work was partially funded by the Virtual Helmholtz Institute VH-VI-404.

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 19

References

Becker N, Werft W, Benner A (2012). penalizedSVM: Feature Selection SVM Using Penalty Func-

tions. R package version 1.1, URL http://CRAN.R-project.org/package=penalizedSVM.

Becker N, Werft W, Toedt G, Lichter P, Benner A (2009). “penalizedSVM: A R-package for Feature

Selection SVM Classification.” Bioinformatics, 25, 1711–1712.

Benner A, Zucknick M, Hielscher T, Ittrich C, Mansmann U (2010). “High-Dimensional Cox Models:

The Choice of Penalty as Part of the Model Building Process.” Biometrical Journal, 52(10), 50–69.

Binder H, Schumacher M (2008). “Adapting Prediction Error Estimates for Biased Complexity Selec-

tion in High-Dimensional Bootstrap Samples.” Statistical Applications in Genetics and Molecular

Biology, 7(1).

Blanche P (2013). timeROC: Time-dependent ROC curve and AUC for censored survival data. R

package version 0.2, URL http://CRAN.R-project.org/package=timeROC.

Bøvelstad HMM, Nygård S, Størvold HLL, Aldrin M, Borgan O, Frigessi A, Lingjærde OCC (2007).

“Predicting Survival from Microarray Data - a Comparative Study.” Bioinformatics, 23, 2080–2087.

Dudoit S, Shaffer JP, Boldrick JC (2003). “Multiple Hypothesis Testing in Microarray Experiments.”

Statistical Science, 18(1), 71–103. ISSN 08834237. doi:10.2307/3182872. URL http://dx.

doi.org/10.2307/3182872.

Efron B, Tibshirani R (1997). “Improvements on Cross-Validation: The. 632+ Bootstrap Method.”

Journal of the American Statistical Association, pp. 548–560.

Fan J, Lv J (2010). “A Selective Overview of Variable Selection in High-Dimensional Feature Space.”

Statistica Sinica, 20, 101–148.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via

Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. URL http://www.jstatsoft.

org/v33/i01/.

Friedman J, Hastie T, Tibshirani R (2013). glmnet: Lasso and Elastic-Net Regularized General-

ized Linear Models. R package version 1.9-5, URL http://CRAN.R-project.org/package=

glmnet.

Froehlich H, Zell A (2005). “Efficient Parameter Selection for Support Vector Machines in Classifi-

cationand Regression via Model-Based Global Optimization.” In Proceedings of the International

Joint Conference of Neural Networks, pp. 1431–1438.

Fu WJ (1998). “Penalized Regressions: The Bridge versus the Lasso.” Journal of Computational and

Graphical Statistics, 7(3), 397–416.

Gentleman RC, Carey VJ, Bates DM, others (2004). “Bioconductor: Open Software Develop-

ment for Computational Biology and Bioinformatics.” Genome Biology, 5, R80. URL http:

//genomebiology.com/2004/5/10/R80.

Gerds T, Schumacher M (2006). “Consistent Estimation of the Expected Brier Score in General

Survival Models with Right-Censored Event Times.” Biometrical Journal, 48(6), 1029–1040.

http://CRAN.R-project.org/package=penalizedSVM
http://CRAN.R-project.org/package=timeROC
http://dx.doi.org/10.2307/3182872
http://dx.doi.org/10.2307/3182872
http://dx.doi.org/10.2307/3182872
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
http://CRAN.R-project.org/package=glmnet
http://CRAN.R-project.org/package=glmnet
http://genomebiology.com/2004/5/10/R80
http://genomebiology.com/2004/5/10/R80

20 c060: Extended Inference with Regularized Cox and Generalized Linear Models

Goeman J, Meijer R, Chaturvedi N (2012). penalized: L1 (lasso and fused lasso) and L2 (ridge)

penalized estimation in GLMs and in the Cox model. R package version 0.9-42, URL http:

//CRAN.R-project.org/package=penalized.

Graf E, Schmoor C, Sauerbrei W, Schumacher M (1999). “Assessment and Comparison of Prognostic

Classification Schemes for Survival Data.” Statistics in Medicine, 18(17–18), 2529–2545.

Heagerty PJ, packaging by Paramita Saha-Chaudhuri (2012). risksetROC: Riskset ROC curve estima-

tion from censored survival data. R package version 1.0.4, URL http://CRAN.R-project.org/

package=risksetROC.

Heagerty PJ, packaging by Paramita Saha-Chaudhuri (2013). survivalROC: Time-dependent ROC

curve estimation from censored survival data. R package version 1.0.3, URL http://CRAN.

R-project.org/package=survivalROC.

Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B, Sobotka F, Scheipl F (2013). mboost: Model-

Based Boosting. R package version 2.2-3, URL http://CRAN.R-project.org/package=

mboost.

Jones D, Schonlau M, Welch W (1998). “Efficient Global Optimization of Expensive Black-Box

Functions.” Journal of Global Optimization, 13, 455–492.

Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T (2013). caret: Classifica-

tion and Regression Training. R package version 5.17-7, URL http://CRAN.R-project.org/

package=caret.

Meinshausen N, Bühlmann P (2010). “Stability Selection.” Journal of the Royal Statistical Society B,

72(4), 417–473.

Meinshausen N, Meier L, Bühlmann P (2009). “P-values for high-dimensional regression.” Journal

of the American Statistical Association, 104, 1671–1681.

Metzeler K, Hummel M, Bloomfield C, Spiekermann K, Braess J, Sauerland MC, Heinecke A, Rad-

macher M, Marcucci G, Whitman S, Maharry K, Paschka P, Larson R, Berdel W, Buchner T, Wor-

mann B, Mansmann U, Hiddemann W, Bohlander S, Buske C (2008). “An 86 Probe Set Gene Ex-

pression Signature Predicts Survival in Cytogenetically Normal Acute Myeloid Leukemia.” Blood,

112(10), 4193–4201.

Mogensen UB, Ishwaran H, Gerds TA (2012). “Evaluating Random Forests for Survival Analysis

Using Prediction Error Curves.” Journal of Statistical Software, 50(11), 1–23. URL http://www.

jstatsoft.org/v50/i11/.

Porzelius C, Binder H (2011). peperr: Parallelised Estimation of Prediction Error. R package ver-

sion 1.1-6, URL http://CRAN.R-project.org/package=peperr.

Porzelius C, Binder H, Schumacher M (2009). “Parallelized Prediction Error Estimation for Evalua-

tion of High-Dimensional Models.” Bioinformatics, 25(6), 827–829.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.

R-project.org/.

http://CRAN.R-project.org/package=penalized
http://CRAN.R-project.org/package=penalized
http://CRAN.R-project.org/package=risksetROC
http://CRAN.R-project.org/package=risksetROC
http://CRAN.R-project.org/package=survivalROC
http://CRAN.R-project.org/package=survivalROC
http://CRAN.R-project.org/package=mboost
http://CRAN.R-project.org/package=mboost
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret
http://www.jstatsoft.org/v50/i11/
http://www.jstatsoft.org/v50/i11/
http://CRAN.R-project.org/package=peperr
http://www.R-project.org/
http://www.R-project.org/

Martin Sill, Thomas Hielscher, Natalia Becker, Manuela Zucknick 21

Sill M, Hielscher T, Becker N, Zucknick M (2013). c060: Extended Inference for Lasso and Elastic-

Net Regularized Cox and Generalized Linear Models. R package version 0.2, URL http://CRAN.

R-project.org/package=c060.

Sill M, Kaiser S (2011). s4vd: Biclustering via sparse singular value decomposition incorporat-

ing stability selection Models. R package version 1.0, URL http://CRAN.R-project.org/

package=s4vd.

Sill M, Kaiser S, Benner A, Kopp-Schneider A (2011). “Robust biclustering by sparse singular value

decomposition incorporating stability selection.” Bioinformatics, 27(15), 2089–2097.

Simon N, Friedman J, Hastie T, Tibshirani R (2011). “Regularization Paths for Cox’s Proportional

Hazards Model via Coordinate Descent.” Journal of Statistical Software, 39(5), 1–13. URL http:

//www.jstatsoft.org/v39/i05/.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal

Statistical Society B, 58, 267–288.

Tibshirani R (1997). “The Lasso Method for Variable Selection in the Cox Model.” Statistics in

Medicine, 16, 385–395.

Verweij PJM, van Houwelingen HC (1994). “Penalized Likelihood in Cox Regression.” Statistics in

Medicine, 13, 2427–2436.

Wasserman L, Roeder K (2009). “High Dimensional Variable Selection.” The Annals of Statistics,

37(5A), 2178–2201.

Wehrens R, Franceschi P (2012). BioMark: Find biomarkers in two-class discrimination problems.

R package version 0.4.1, URL http://CRAN.R-project.org/package=BioMark.

Yuan Y (2011). BioMark: Lots Of Lasso. R package version 1.10.0, URL http://www.

bioconductor.org/packages/2.13/bioc/html/lol.html.

Zou H, Hastie T (2005). “Regularization and Variable Selection via the Elastic-Net.” Journal of the

Royal Statistical Society B, 67(2), 301–320.

Affiliation:

Martin Sill

Division of Biostatistics

DKFZ

German Cancer Research Center

69120 Heidelberg, Germany

E-mail: m.sill@dkfz.de

URL: http://www.dkfz.de/en/biostatistics

http://CRAN.R-project.org/package=c060
http://CRAN.R-project.org/package=c060
http://CRAN.R-project.org/package=s4vd
http://CRAN.R-project.org/package=s4vd
http://www.jstatsoft.org/v39/i05/
http://www.jstatsoft.org/v39/i05/
http://CRAN.R-project.org/package=BioMark
http://www.bioconductor.org/packages/2.13/bioc/html/lol.html
http://www.bioconductor.org/packages/2.13/bioc/html/lol.html
mailto:m.sill@dkfz.de
http://www.dkfz.de/en/biostatistics

	Introduction
	Methods and algorithms
	Penalized generalized linear models and Cox models
	L2-penalized Cox regression
	L1-penalized Cox regression
	The elastic net
	The interval-search algorithm to select the optimal elastic net parameter combination

	Stability selection
	Prediction error curves for survival models

	Application and demonstration of software
	Data set
	Starting off: Fitting the lasso-penalized Cox model
	Assessment of prediction performance with resampling-based prediction errors
	Stability selection
	Parameter tuning for the elastic net Cox model

	Conclusions and outlook

