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Abstract

In a second-order cone program (SOCP) a linear function is minimized over the intersec-
tion of an affine set and the product of second-order (quadratic) cones. SOCPs are nonlinear
convex problems that include linear and (convex) quadratic programs as special cases, and
arise in many engineering problems, such as filter design, antenna array weight design, truss
design, robust estimation, and problems involving friction (e.g., robot grasp).

In this paper we describe the basic theory of SOCPs, a variety of engineering applica-
tions, and an efficient primal-dual interior-point method for solving SOCPs. The algorithm
we describe shares many of the features of primal-dual interior-point methods for linear pro-
gramming (LP): Worst-case theoretical analysis shows that the number of iterations required
to solve a problem grows at most as the square root of the problem size, while numerical
experiments indicate that the typical number of iterations ranges between 5 and 50, almost
independent of the problem size.
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anonymous FTP to isl.stanford.edu in pub/boyd/socp. This includes an implementation in Mat-
lab and C, with a Matlab interface.

e Future versions of the paper will also be made available at the same URL and FTP-site
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1 Introduction

1.1 Second-order cone programming

We consider the second-order cone problem (SOCP)
minimize fTx (1)
subject to ||Aix +b)| <z +d; i=1,...,L,

where x € R" is the optimization variable, and the problem parameters are f € R", A; €
RM—xn p e R%™! ¢ € R", and d; € R. The norm appearing in the constraints is the

. : 1/2 .
standard Euclidean norm, i.e., ||u|| = (uTu) . The constraint

is called a second-order cone constraint of dimension n;, for the following reason. The
standard or unit second-order (convex) cone of dimension k is defined as

o= {1}

(which is also called the quadratic, ice-cream, or Lorentz cone). For k = 1 we define the unit
second-order cone as

uwe RN teR, |ul St}

C={t|teR,0<t}.
A second-order cone constraint is the inverse image of a second-order cone under an affine
mapping:

and hence is convex. Thus, the SOCP (1) is a convex programming problem since the
objective is a convex function and the constraints are convex.
To simplify notation, we will often use

so that we can rewrite the problem (1) as
minimize Tz
subject to ||u;|| < t; i=1,...,L (3)
UZ:AZ$+bZ, tZ:CZT.’L‘—{—dZ 7,21,,L,

with u; € R" ! and t € R~

Second-order cone constraints can be used to represent several common convex con-
straints. For example, when all constraints are linear, i.e., when n;, =1 fori =1,..., L, the
SOCP reduces to the linear program (LP)

minimize Tz
subject to 0<clz+d; i=1,...,L.
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Another interesting special case arises when ¢; = 0, and the ith second-order cone con-
straint reduces to ||A;x + b;|| < d;, which is equivalent to the (convex) quadratic constraint
|A;z+b;]|> < d?. When all ¢; vanish, the SOCP reduces to a quadratically constrained linear
program (QCLP). We will soon see that (convex) quadratic programs (QPs), quadratically-
constrained quadratic programs (QCQPs), and many other nonlinear convex optimization
problems can be reformulated as SOCPs as well.

We will say x € R" is feasible if it satisfies the second-order constraints in (1) and strictly
feasible if it satisfies the constraints with strict inequality, i.e., ||A;x + b|| < ¢/ @ + d; for
i = 1,...,L. The SOCP is (strictly) feasible if there exists a (strictly) feasible z. The
optimal value of (1) will be denoted as p*, with the convention that p* = 400 if the problem
is infeasible.

1.2 The dual SOCP
The dual of the SOCP (1) is given by

L
maximize —»_ (bZTzZ + diwi)
i=1
| Lo 4)
subject to Y (Ai Zi + Ciwi) =f

i=1
||Zz|| S Wy, 1= 1,...,L.

The dual optimization variables are the vectors z; € R"™™", and w € R*. We denote a
set of z;’s, i = 1,..., L, by z. The dual SOCP (4) is also a convex programming problem
since the objective (which is maximized) is concave, and the constraints are convex. Indeed,
by eliminating the equality constraints we can recast the dual SOCP in the same form as
the SOCP (1). We will refer to the original SOCP as the primal SOCP when we need to
distinguish it from the dual.

The vectors z and w are called dual feasible if they satisfy the constraints in (4) and
strictly dual feasible if in addition they satisfy ||z]| < w;, i = 1,..., L. We say the dual
SOCP (4) is (strictly) feasible if there exist (strictly) feasible z;, w. The optimal value of
the dual problem will be denoted d* (with d* = —oo if the dual problem is infeasible).

The basic facts about the dual problem are:

1. (weak duality) p* > d*;

2. (strong duality) if the primal or dual problem is strictly feasible, then p* = d*;

3. if the primal and dual problems are strictly feasible, then there exist primal and dual
feasible points that attain the (equal) optimal values.

We only prove the first of these three facts; for a proof of 2 and 3, see, e.g., Nesterov and
Nemirovsky [NN94, §4.2.2].

The difference between the primal and dual objectives is called the duality gap associated
with z, z, w, and will be denoted by 7n(z, z, w), or simply #:

n(x, z,w) = Tz + EL: (bZTzZ + diwi) ) (5)
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Weak duality corresponds to the fact that the duality gap is always nonnegative, for any
feasible x, 2z, w. To see this, we observe that the duality gap associated with primal and
dual feasible points x, z, w can be expressed as a sum of nonnegative terms, by writing it in
the form

Mh

n(zx, z,w) ( Aa:+b)+wi(ciTm+d) EL:(Z uz+wt) (6)

1=1 =1

Each term in the right-hand sum is nonnegative:

The first inequality follows from the Cauchy-Schwarz inequality. The second inequality
follows from the fact that ¢; > ||u;|| > 0 and w; > ||z]|| > 0. Therefore n(z, z,w) > 0 for any
feasible x, z, w, and as an immediate consequence we have p* > d*, i.e., weak duality.

We can also reformulate part 3 of duality result (which we do not prove here) as follows:
If the problem is strictly primal and dual feasible, then there exist primal and dual feasible
points with zero duality gap. By examining each term (6), we see that the duality gap is
zero if and only if the following conditions are satisfied:

luil| < i = w; = ||z =0, (7)
|zill <wi = t;=||u]| =0, (8)

These three conditions generalize the complementary slackness conditions between optimal
primal and dual solutions in LP. They also yield a sufficient condition for optimality: a
primal feasible point z is optimal if, for u; = A;x + b; and t; = ¢l x + d;, there exist z, w,
such that (7)—(9) hold. (The conditions are also necessary if the primal and dual problems
are strictly feasible.)

1.3 Point and outline of the paper

The main goal of the paper is to present an overview of examples and applications of second-
order cone programming. We have already mentioned that linear programming is a special
case; in §2 we describe several other general convex optimization problems that can be cast
as SOCPs. These problems include QP, QCQP, problems involving sums and maxima of
norms, and hyperbolic constraints. In §3 we describe a wide variety of engineering applica-
tions, including examples in filter design, antenna arrays, robust estimation, and structural
optimization.

A second goal of the paper is to describe an efficient primal-dual interior-point algorithm
for solving SOCPs. In §4 we describe a primal-dual potential reduction method which is
simple, robust, and efficient. This method is certainly not the only possible choice: most of
the interior-point methods that have been developed for linear (or semidefinite) programming
can be generalized (or specialized) to handle SOCPs as well. The concepts underlying
other primal-dual interior-point methods for SOCP, however, are very similar to the ideas



behind the method presented here. An implementation of the algorithm (in C, with calls to
LAPACK, and including Matlab interface) is available via WWW or FTP [LVB97].

The main reference on interior-point methods for SOCP is the book by Nesterov and
Nemirovsky [NN94]. The method we describe is the primal-dual algorithm of [NN94, §4.5]
specialized to SOCP. Adler and Alizadeh [AA95] and Nemirovsky and Scheinberg [NS96]
also discuss extensions of interior-point LP methods to SOCP. SOCP also fits the framework
of optimization over self-scaled cones, for which Nesterov and Todd [NT94| have developed
and analyzed a special class of primal-dual interior-point methods. Other researchers have
worked on interior-point methods for special cases of SOCP. One example is convex quadratic
programming; see, for example, Den Hertog [dH93], or Vanderbei [Van97]. As another
example, Andersen has developed an interior-point method for minimizing a sum of norms,
(which is a special case of SOCP; see §2.2), and describes extensive numerical tests in [And96].
See also Andersen and Andersen [AA97] for software for convex quadratic programs. Xue
and Ye present another treatment of the minimization of a sum of norms, with applications
to facility location and shortest network problems, in [XY].

One of the best known engineering applications of SOCP is truss design, which was
studied by Ben-Tal and Nemirovsky [BTN95], Zowe [BBTZ94|, and others. Lebret and
Boyd have applied interior-point methods for SOCP to problems of antenna array weight
design [Leb94, LB97]. Hansson, Boyd, Vandenberghe and Lobo [HBVL97], discuss control
applications involving yield objectives.

We conclude this introduction with some general comments on the place of SOCP in
convex optimization relative to other problem classes. SOCP includes several important
standard classes of convex optimization problems, such as LP, QP and QCQP. On the other
hand, it is itself less general than semidefinite programming (SDP), i.e., the problem of
minimizing a linear function over the intersection of an affine set and the cone of positive
semidefinite matrices (see, e.g., [VB96]). This can be seen as follows: The second order cone
can be embedded in the cone of positive semidefinite matrices since

tI u

||u||§t<:>luT : > ()

— Y

i.e., a second-order cone constraint is equivalent to a linear matrix inequality. Using this
property the SOCP (1) can be expressed as an SDP

minimize ffx

(10)

subject to l >0, t=1,...,L.

Solving SOCPs via SDP is not a good idea in practice, however. Interior-point methods that
solve the SOCP directly have a much better worst-case complexity than an SDP method ap-
plied to (10): the number of iterations is bounded above by O(v/L) for the SOCP algorithm,
and by O(y/3; n;) for the SDP algorithm (see [NN94]). In addition and more importantly
in practice, each iteration is much faster: the amount of work per iteration is O(n? ¥, n;) in
the SOCP algorithm and O(n? 3>, n?) for the SDP. The difference between these numbers is
significant if the dimensions n; of the second-order constraints are large. A separate study
of (and code for) SOCP is therefore warranted.
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2 Problems that can be cast as SOCPs

2.1 Quadratically constrained quadratic programming

We have already seen that an LP is readily expressed as an SOCP with 1-dimensional cones
(i.e., n; = 1). Let us now consider the general convex quadratically constrained quadratic

program (QCQP)

minimize x7 Pyx + 2¢1 x + rg

(11)

subject to ' Px +2¢fx+1r, <0 i=1,...,p,

where Py, Py, ..., P, € R"™" are symmetric and positive semidefinite. We will assume for
simplicity that the matrices P; are strictly positive definite, although the problem can be
reduced to an SOCP in general. This allows us to write the QCQP (11) as

minimize HPOI/Q.Z‘ + P0_1/2q0H2 + 70— q3 Py lqo

_ 2
Pa+ P g + =g PTla; <0, i= 1,0,

subject to )
which can be solved via the SOCP with p + 1 constraints of dimension n + 1

minimize ¢

subject to ||P01/2x + P0_1/2q0|| <t, (12)

_ _ /2
||Pil/2x+Pz' 1/2%'|| < (QZTPZ Yg — TZ') , 1=1,...,p,

where ¢ € R is a new optimization variable. The optimal values of (11) and (12) are equal
up to a constant and a square root. More precisely, the optimal value of (11) is equal to
p*? + 19 — ¢l Py 'qo, where p* is the optimal value of (12).

As a special case, we can solve a convex quadratic programming problem (QP)

minimize 27 Pyz + 2¢ x + ro
subject to alz <b;, i=1,...,p,

(Py > 0) as an SOCP with one constraint of dimension n+ 1 and p constraints of dimension
one:
minimize ¢
subject to ||P01/2x + P0_1/2q0|| <t
alr <b;, i=1,...,p,

where the variables are z and t.

2.2 Sum and maximum of norms
Problems involving sums of norms are readily cast as SOCPs. Let F; € R™*" and ¢; € R™,
t=1,...,p, be given. The unconstrained problem
p
minimize Y [|[F;z + g;|

=1
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can be expressed as an SOCP by introducing auxiliary variables ¢, ..., ¢,:

p
minimize Zti

i=1
subject to ||Fjz + gl <t;, j=1,...,p.

The variables in this problem are x € R" and ¢; € R. We can easily incorporate other
second-order cone constraints in the problem, e.g., linear inequalities on x. Specialized
methods for minimizing a sum of norms and applications of this problem are discussed

in [And96, ACO94, CO94, DO96).
As an interesting special case, consider the complex /;-norm approximation problem:

minimize |[Ax — b

where x € C?, A € CP*? b € CP, and the ¢; norm on CP? is defined by ||v||; = >%_; |v;|]. This
problem is a sum-of-norms problem, and can be expressed as an SOCP with p constraints
of dimension three:

P
minimize Z t;
=1

T Ra? —Sa? b
subject to H?EGZT N ]z+[§£2 <t i=1,...,p.

T
Sa;  Ra; Sb;

in the variables z = [Rz” Sz7]T € R*, and t,.
Similarly, problems involving a maximum of norms can be expressed as SOCPs: the
problem
minimize max | Fiz + gi|

is equivalent to the SOCP

minimize t
subject to ||Fix +gi|| <t, i=1,...,p,

in the variables z € R" and t € R.
As a special case, we consider the complex /o, norm approximation problem:

minimize |[|Az — b||

where x, A, and b are as above, and the {,, norm on C? is defined by ||v]|, = maxi_; |v;].
This problem can be expressed as the SOCP

minimize ¢

: Ral —Sal Rb;

subject to Hl ARG I PN I
Sq, :

with variables z = [Rz” 3z7]7 € R?, and t € R.



As an extension that includes as special cases both the maximum and sum of norms,
consider the problem of minimizing the sum of the k largest norms ||Fjx + g¢;||, i.e., the
problem

k

minimize ;ym (13)

subject to [|Fox +gi|| =vi, i=1,...,p,
where y;) denotes the ith largest component of y, i.e., yuj, v, ..,y are the numbers
Y1, Y2,-..Yp sorted in decreasing order. It can be shown that the objective function in (13)
is convex and that the problem is equivalent to the SOCP

p
minimize kt + > y;

i=1
suject to  ||Fiz +gil| <t+wy, i=1,...,p
yzZO, izla"'apa

where the variables are z, y € R?, and t. (See, e.g., [VBW] or [BV97] for further discussion.)

2.3 Problems with hyperbolic constraints

Another large class of convex problems can be cast as SOCPs using the following fact:

2
wZSfcy,xZO,yZWEH[xiﬂy <zH4y, x,y>0, (14)
and, more generally, when w is a vector,
T 2w
ww<zy, x>0, y>0<+— c—y <z+y, z,y>0. (15)

We refer to these constraints as hyperbolic constraints, since they describe half a hyperboloid.
As a first application, consider the problem

P
minimize Y 1/(a; x + b;)
i=1

subject to alz+0b; >0, i=1,...,p
drz+d; >0, i=1,...,q,

which is convex since 1/(alz + b;) is convex for afz + b; > 0. This is the problem of
maximizing the harmonic mean of some (positive) affine functions of z, over a polytope.
This problem can be cast as an SOCP as follows. We first introduce new variables ¢; and
write the problem as one with hyperbolic constraints:

P
minimize Z t;
=1

subject to t;(alx +0b)>1, t;, >0, i=1,...,p
dz+d; >0, i=1,...,q
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By (14), this can be cast as an SOCP in z and t:
p
minimize Zti
i=1

subject to <alz+b+t;, i=1,...,p

2
alz +b; —t;
alx+b;>0, t;,>0, i=1,...,p
dr+d; >0, i=1,...,q
As an extension, the quadratic/linear fractional problem

L P || Fyx + gil|?

minimize —_—
Zz:; alz +b;

subject alz+b;>0, i=1,...,p,
where F; € R%*" g; € R%, can be cast as an SOCP by first expressing it as
p
minimize Zti
=1
subject to (Fyx + g;)7 (Fw + ¢;) < ti(alz +0b;), i=1,...,p
alz+b;>0, i=1,...,p,

and then applying (15).
As another example, consider the logarithmic Chebychev approximation problem,

minimize max |log(a] z) — log(b;)], (16)

where A = [a;---a,)" € RP*", b € RP. We assume b > 0, and interpret log(alz) as —oo

when alz < 0. The purpose of (16) is to approximately solve an overdetermined set of

equations Axr = b, measuring the error by the maximum logarithmic deviation between the
numbers a! x and b;. To cast this problem as an SOCP, first note that

|log(aiTx) — log(b;)| = log max(aiTx/bi, bi/a;frx)

(assuming a] x > 0). The log-Chebychev problem (16) is therefore equivalent to minimizing
max; max(a; x/b;, b;/al z), or:

minimize ¢
subject to 1/t <alz/b;<t, i=1,...,p.
This can be expressed as the SOCP
minimize ¢
subject to alz/b; <t, i=1,...,p

<t+alz/b, 1=1,...,p.

2
t—alz/b;



As a final illustration of the use of hyperbolic constraints, we consider the problem of

maximizing a product of nonnegative affine functions (from Nesterov and Nemirovsky [NN94,
§6.2.3, p.227]):

P
maximize H(aiTa: + b;)
i=1
suject to  alx+0; >0, i=1,...,p.
For simplicity, we consider the special case p = 4; the extension to other values of p is

straightforward. We first reformulate the problem by introducing new variables ¢, t5, and
t3, and by adding hyperbolic constraints:

maximize t3
subject to (alx + by)(alz +by) > 13, (alx + b3)(alx + by) >
alx +0,>0, alz+b,>0

tity > 13, t1,ty > 0.
Applying (14) yields an SOCP.

2.4 Matrix-fractional problems

The next class of problems are matriz-fractional optimization problems of the form

minimize (Fz 4 ¢)" (Py+ 1Py + -+ -+ 2,B,) " (Fz + g)
subject to Py +x1 P+ -+ 1x,P, >0 (17)
x>0,

where P, = P € R™" F € R"? and g € R", and the problem variable is z € R”.
We first note that it is possible to solve this problem as an SDP
minimize ¢
P(x) Fr+g |
(Fz +g)" t =

where P(z) = Py + 1P + -+ + x,P,. The equivalence is readily demonstrated by using
Schur complements, and holds even when the matrices P; are indefinite. In the special case
where P; > 0, we can reformulate the matrix-fractional optimization problem more efficiently
as an SOCP, as shown by Nesterov and Nemirovsky [NN94, §6.2.3, p.227]. We assume for
simplicity that the matrix P, is nonsingular (see [NN94] for the general derivation).

subject to 0,

We claim that (17) is equivalent to the following optimization problem in %, ..., ¢, € R,
Yo, Y1, ---, Yp € R", and a:
minimize o +1 + -+,
. 1/2 1/2 . 1/2, _
subject to Py""yo+ P""y1 + -+ P,%y, = Fo + g
1oll? < to (18)

Nyill> < tiwyy, 1=1,...,p
ti: szO izl,...,p,

9



which can be cast as an SOCP using (15):
minimize o+t +---+1,

subject to P/ o+z:Pl/2yZ Fx+g
2yo
to— 1

2y;
ti — T

The equivalence between (17) and (18) can be seen as follows. We first eliminate the variables
t; and reduce problem (18) to

<tg+1,

Sti+xi7 221,,])

minimize yoTyo + y1/$1 + e+ yfyp/wp
subject to P01/2y0 + PPy Ppl/2yp =Fr+g
x>0

(interpreting 0/0 = 0). Since the only constraint on y; is the equality constraint, we can
optimize over y; by introducing a Lagrange multiplier A € R" for the equality constraint,
which gives us y; in terms of u and z:

2yp = —POI/Z)\ and 2y; = _«Tipilﬂ)\; i=1,...,p.

Next we substitute these expressions for y; and obtain a minimization problem in A and x:

1
minimize Z)\T (Po+x P4+ 2,Pp) A

subject to  (Py + 21 P 4+ + 2,P,)A = =2(Fx + g)
x> 0.

Finally, eliminating A yields the matrix-fractional problem (17).

2.5 SOC-representable functions

The above examples illustrate several techniques that can be used to determine whether a
convex optimization problem can be cast as an SOCP. In this section we formalize these
ideas with the concept of a second-order cone representation of a set or function, introduced
by Nesterov and Nemirovsky [NN94, §6.2.3].

We say a convex set C' C R" is second-order cone representable (abbreviated SOC-
representable) if it can be represented by a number of second-order cone constraints, possibly
after introducing auxiliary variables, i.e., there exist 4; € RM—Ux(m) . c Rri=l ¢ ¢
R"*™ d,, such that

z €0 JyecR"st. “Ai[§]+bi < ﬂﬂii, i=1,..., L.

10



We say a function f is second-order cone representable if its epigraph {(z,t) | f(z) < t}
has a second-order cone representation. The practical consequence is that if f and C are
SOC-representable, then the convex optimization problem

minimize  f(z)
subject to = € C

can be cast as an SOCP and efficiently solved via interior-point methods.

We have already encountered several examples of SOC-representable functions and sets.
SOC-representable functions and sets can also be combined in various ways to yield new
SOC-representable functions and sets. For example, if C'; an C5 are SOC-representable, then
it is straightforward to show that aC; (a > 0), C; N Cy and C; + Cy are SOC-representable.
If f1 and fy are SOC-representable functions, then af; (a > 0), fi + fo, and max{fi, fo} are
SOC-representable.

As a less obvious example, if fi, fo are concave with fi(z) > 0, fo(z) > 0, and —f; and
— fo are SOC-representable, then f; fo is concave and — f; fo is SOC-representable. In other
words the problem of maximizing the product of f; and fs,

maximize fi(x)fo(x)
SUbjeCt to fl(aj) > 07 f2($) > 07

can be cast as an SOCP by first expressing it as

maximize t
subject to ity >t

filz) >t foz) >ty
t1 >0, 19 >0,

and then using the SOC-representation of —f; and — fs.

SOC-representable functions are closed under composition. Suppose the convex functions
f1 and fy are SOC-representable and f; is monotone nondecreasing, so the composition g
given by g(z) = fi(f2(x)) is also convex. Then g is SOC-representable. To see this, note
that the epigraph of g can be expressed as

{(z, D)lg(z) <t} = {(2,1)[Fs € Rs:t. fi(s) <1, faw) < 5}

and the conditions fi(s) <t, fo(x) < s can both be represented via second-order constraints.

3 Applications

3.1 Antenna array weight design

In an antenna array the outputs of several antenna elements are linearly combined to produce
a composite array output. The array output has a directional pattern that depends on the
relative weights or scale factors used in the combining process, and the goal of weight design
is to choose the weights to achieve a desired direction pattern.

11



(25, ;) @

[ 3 7

Figure 1: Antenna array.

We will consider the simplest model, an array of omnidirectional antenna elements in
a plane, at positions (x;,1y;), i = 1,...,n (see figure 1). A unit plane wave, of frequency
w, is incident from angle #. We assume the wave number is one, i.e., the wavelength is
A = 27. This incident wave induces in the ith antenna element a signal e/ (®:cos+yisinf—wi)
(where j = v/—1). This signal is demodulated (i.e., multiplied by /“*) to yield the baseband
signal, which is the complex number e/(#:cs0+¥isin0) Thig haseband signal is multiplied by
the complex factor w; € C to yield

yi(0) = w; o (i cos 0+y; sin 0)
= (wre,i CcoSs 72(0) — Wim,; sin 72(9)) +7 (wre,z’ sin ’)/2(0) + Wim,; COS ’yl(e)) ,

where v;(6) = x; cos 0+ y; sin 0. The weights w; are often called the antenna array coefficients
or shading coefficients. The output of the array is the sum of the weighted outputs of the
individual array elements:

y(0) = _z”;yi(e).

For a given set of weights, this combined output is a function of the angle of arrival 6 of the
plane wave; its magnitude is often plotted on a polar plot to show the relative sensitivity of
the array to plane waves arriving from different directions. The design problem is to select
weights w; that achieve a desirable directional pattern y(0).

The crucial property is that for any 6, y() is a linear function of the weight vector w. This
property is true for a very wide class of array problems, including those in 3 dimensions, with
non-omnidirectional elements, and in which the elements are electromagnetically coupled.
For these cases the analysis is complicated, but we still have y(6) = a(6)w, for some complex
row vector a(f).

As an example of a simple design problem, we might insist on the normalization y(6;) = 1,
where 6, is called the look or target direction. We also want to make the array relatively
insensitive to plane waves arriving from other directions, say, for |6 — 6,] > A, where 2A is
called the beamwidth of the pattern.

12



Figure 2: Radial plot of |y(6;)|? on logarithmic scale, versus angle of incidence.
The specifications for sidelobe level are shown in dashed line type; the corresponding
optimal design is shown in solid line type. In this example 6; = 40°, A = 16° (i.e.,
beamwidth is 32°), and the sidelobe level is 9 x 1073,

To minimize the maximum array sensitivity outside the beam, we solve the problem

L 0
minimize ‘ggi§A|y( )|
subject to y(6;) = 1.

(19)

The square of the optimal value of this problem is called the sidelobe level of the array or
pattern. This is illustrated in figure2, which also shows a typical optimal design.

This problem can be approximated as an SOCP by discretizing the angle 6, e.g., at
01,...,0,,, where m > n. We assume that the target direction is one of the angles, say,
0; = 0. We can express the array response or pattern as

y = Aw,
where 5y € C™, A € C™", where
y(61) a(6h)

<
Il
s
Il

y(Orm) a(bm)
The problem (19) can then be approximated as
minimize ¢
subject to |y(6;)| <t, for |0, — Ok > A
y(O) =1

13



10

10k

Sidelobe level

10 “F

10’3 L L L L L
0 5 10 15 20 25 30

Half beamwidth A
Figure 3: Optimal tradeoff curve of sidelobe level versus half-beamwidth A.

which becomes an SOCP when expressed in terms of real and imaginary parts of the variables
and data.

This basic problem formulation can be extended in many ways. For example, we can
impose a null in a direction 6, by adding the equality constraint y(6;) = 0. We can also add
constraints on the coefficients, e.g., that w is real (amplitude only shading), or that |w;| <1
(attenuation only shading), or we can limit the total noise power o2 ¥, |w;|? in y.

Numerical example

The data for this example, i.e., the matrix A, was obtained from field measurements of an
antenna array with eight elements, and angle of incidence # sampled in 1° increments between
—60° and +60°. Thus, A € C?"*¥ the problem variables are w € C®, and the response or
pattern is given by § € C™!. (For more details on the array hardware and experimental
setup, see [SSO95].)

In addition to the sidelobe level and target direction normalization, a constraint on
each weight was added, i.e., |w;| < Wiax, @ = 1,...,8, which can be expressed as 8 SOC
constraints of dimension 3. (The value of W.x was chosen so that some, but not all,
of the weight constraints are active at the optimum.) The target direction was fixed as
0; = 40°, and the sidelobe level was minimized for various beamwidths. In fact, figure 2
above shows a typical design. As a result, we obtain the (globally) optimal tradeoff curve
between beamwidth and optimal sidelobe level for this array. This tradeoff curve is plotted
in figure 3.

14



3.2 FIR filter design

We denote by hg, hi, ..., h, 1 € R the coefficients (impulse response) of a finite impulse
response (FIR) filter of length n. This means the filter output sequence or signal y : Z — R
is related to the input u : Z — R via convolution:

n—1
y(k) = >_ hiu(k —1).
i=0
The frequency response of the filter is the function H : [0, 27| — C defined as
n—1 )
Hw) =) eIk,
k=0
where j = /—1 and w is the (discrete-time) frequency variable.

Minimax complex transfer function design

We first consider the problem of designing a filter that approximates a desired frequency
response as well as possible. We assume the desired frequency response is specified by the
complex numbers H{® i = 1,..., N, that are the desired values of the transfer function
at the frequencies w;, © = 1,..., N. The design problem is to choose filter coefficients that
minimize the maximum absolute deviation:

minimize max ‘H(wi) — H{*

i=1,...,

over all possible coefficients h;. This is a complex /,-approximation problem,

1 e dwi  pi2w1 ., e—j(n—l)wl hO Hiies

o . ]_ efjWQ 67]‘2“)2 P efj(n*l)"‘}2 hl ngs
minimize ) ) ) ) ) -

1 e JwN e—J2wN ... efj(nfl)wN By 1 H]({]es

o0

which can be cast as an SOCP using the results of §2.2.

Minimax linear phase lowpass filter design

As a second filter design example, we consider the special case where the filter coefficients
are symmetric: hy = h,_r_1. For simplicity we assume n is even. The frequency response
simplifies to

n/2—1
Hw) = Z I (efjk“’+e’j("’k’1)“’)
k=0
n/2—1

= 2e 02NN pycos((k — (n— 1) /2)w).

15



This is called a linear phase filter because the transfer function can be factored into a pure

delay (which has linear phase),
efju)(nfl)/Z

and real-valued term,

n/2—1
T(w)=2 > hycos((k— (n—1)/2)w), (20)
k=0
which is a trigonometric polynomial with coefficients h;. Note that |H (w)| = |T'(w)].

It was observed already in the 1960s that many interesting design problems for linear
phase FIR filters can be cast as LPs. We illustrate this with a simple example involving
low-pass filter design, with the following specifications. In the stopband, wy, < w < 7, we
impose a minimum attenuation: |H(w)| < . In the passband, 0 < w < w,, we want the
magnitude of the transfer function to be as close as possible to one, which we achieve by
minimizing the maximum deviation ||H (w)|—1|. This leads to the following design problem:

minimize MmaXg<y<y, ||[H(w)| — 1|

subject to |H(w)| < f, ws<w <. (21)

where the variables are the coefficients h;, 1 =0,...,n/2 — 1, and w, < w, < 7, and § > 0,
are parameters.

In the form given, the design problem (21) is not a convex optimization problem, but it
can be simplified and recast as one. First we replace |H(w)| by |T(w)|, the trigonometric
polynomial (20). Since we can change the sign of the coefficients h; (hence, T') without
affecting the problem, we can assume without loss of generality that 7°(0) > 0. The optimal
value of the problem is always less than one (which is achieved by h; = 0), so in fact we can
assume that 7'(w) > 0 in the passband. This yields the following optimization problem:

minimize maxXo<y<a, [1'(w) — 1|

subject to |T'(w)| < f, ws<w <. (22)

This problem is convex, but has semi-infinite constraints. We can form an approximation
by discretizing the frequency variable w: let w;, @ = 1,..., N; — 1, be N; frequencies in the
passband, and w;, i = Ny, ..., N —1, be N — N; frequencies in the stopband. The discretized
version of (22) is the LP

minimize ¢

n/2—1
subject to 1 —¢ <2 > hycos((k—(n—1)/2)w;) <1+t i=1,...,N—1 (23)
n/27§:0
—6< > hycos((k—(n—1)/2)w;) < B, i=Ni,...,N,
k=0
with as variables hg, ..., hnja—1. (See also the course notes [BV97].)

Bounds on the deviation from specifications between sample points can be derived, show-
ing that the solution of the discretized problem converges to the solution of the continuous
problem as the discretization interval becomes small. See, e.g., [Che82] and [WBV96].
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Minimax dB linear phase lowpass filter design

We now describe a variation on the design problem just considered, in which the magnitude
deviation in the passband is measured on a logarithmic scale, which more accurately captures
actual filter design specifications. This problem cannot be formulated as an LP, but can be
cast as an SOCP.

We suppose the deviation of the transfer function magnitude from one, in the passband,
is measured on a logarithmic scale, i.e., we use the objective

pax |log|H(w)| —log1| = max [log|H(w)]|

This objective is, except for a constant factor, the minimax deviation of the filter magnitude
measured in decibels (dB) (which uses 201log,, instead of log).

We can handle the resulting problem in a way similar to the minimax lowpass filter
problem described above. The logarithmic deviation of 7" is handled using SOCP in a way
similar to the log-Chebychev approximation problem of §2.3: we introduce a new variable t,
and modify problem (23) as

minimize ¢
n/2-1
subject to 1/t <2 Y hycos((k—(n—1)/2)w;) <t, i=1,...,N -1

k=0 (24)
n/2—1

_ﬁ <2 Z hkCOS((k— (n_ 1)/2)(4)2) < ﬁ: L= Nl:"'aN'
k=0
Note that here, the objective t represents the fractional deviation of |H (w)| from one, whereas
in (23) t represents the absolute deviation. The optimal value (in dB) of the minimax dB
design problem is given by 20log,, t*, where t* is the optimal value of (24).
After reformulating the hyperbolic constraints as second-order constraints, we obtain the
SOCP:

minimize t

subject to H w—t <u—+t, u,t>0
n/2—1 925
W<2 S hpeos((k— (n—1)/2Qw) <t, i=1,...N—1 (%)
ki?zq
_ﬁ§2 Z hkCOS((k—(n_l)/Q)wZ)Sﬂ, i:Nla"'aN'
k=0

For more on this subject, see [BB91, p.380], [OS70, §5.6]. The topic of FIR filter design
using convex optimization and interior-point algorithms is pursued in much greater detail
in [WBV96).

3.3 Portfolio optimization with loss risk constraints

We consider a classical portfolio problem with n assets or stocks held over one period. z;
will denote the amount of asset ¢ held at the beginning of (and throughout) the period, and

17



p; will denote the price change of asset i over the period, so the return is 7 = p’z. The
optimization variable is the portfolio vector x € R". The simplest assumptions are x; > 0
(i.e., no short positions) and x; + - - - + x, = 1 (i.e., unit total budget).

We take a simple stochastic model for price changes: p € R" is Gaussian, with known
mean P and covariance X.. Therefore with portfolio z € R", the return r is a (scalar) Gaussian
random variable with mean 7 = p’z and variance o, = 27Xx. The choice of portfolio x
involves the (classical, Markowitz) tradeoff between return mean and variance.

Using SOCP, we can directly handle constraints that limit the risk of various levels of
loss. Consider a loss risk constraint of the form

Prob(r < a) < g, (26)

where « is a given unwanted return level (e.g., an excessive loss) and 3 is a given maximum
probability. This constraint can be written as

r—rT oa—T
Prob < <
0 (ﬁ : ﬁ)‘ﬁ’

which in turn can be expressed as

where

O(z —2/2 gt

1 z
- L[

21 J—o0
is the CDF of a unit Gaussian random variable. Thus the loss risk constraint (26) can be
expressed in terms of the portfolio vector = as

plz+ @7 (8) |52 > o (27)

Now, provided 8 < 1/2 (i.e., ®7!(3) < 0), this loss risk constraint is a second-order cone
constraint. (If 3 > 1/2, the loss risk constraint becomes concave in x.)

The problem of maximizing the expected return subject to a bound on the loss risk (with
B < 1/2), can therefore be cast as a simple SOCP with one second-order cone constraint:

maximize P’z
subject to pla + & 1(p) HZI/%H >«

n

x>0, inzl.

1=1

There are many extensions on this simple problem. For example, we can impose several loss
risk constraints, i.e.,
Prob(r < «;) < f;, i=1,...,k,

(where 3; < 1/2), which expresses the risks (;) we are willing to accept for various levels of
loss ().
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As another variation, we can handle uncertainty in the statistical model (p, X) for the
price changes during the period. Suppose we have L different possible scenarios, each of
which is modeled by a simple Gaussian model for the price change vector, with mean p and
covariance ;. We can then take a worst-case approach and maximize the minimum of the
expected returns for the L different scenarios, subject to a constraint on the loss risk for
each scenario. In other words, we solve the SOCP

maximize ming plx
subject to pfx + ®7(5) HE}C/%H >, k=1,...,L

x>0, sz =1.
i=1
Note that the constraints impose the loss risk limit under all L scenarios.
As another (standard) extension, we can allow short positions, i.e., z; < 0. To do this
we introduce variables Ziong and Tgnort, with

n n
Tlong >0, Tgort 20, == ZLlong — Tshorts Z Tshort < nzl‘long-
=1 i=1

(The last constraint limits the total short position to some fraction 7 of the total long
position.)

3.4 Robust linear programming

We consider a linear program,

minimize 'z

subject to alz <b;, i=1,...,m,

in which there is some uncertainty or variation in the parameters ¢, a;, b;. To simplify the
exposition we will assume that ¢ and b; are fixed, and that a; are known to lie in given
ellipsoids:

where P, = P! > 0. (If P, is singular we obtain ‘flat’ ellipsoids, of dimension rank (F;)).
In a worst-case framework, we require that the constraints be satisfied for all possible
values of the parameters a;, which leads us to the robust linear program

minimize 'z

subject to alz <b;, foralla; € &, i=1,...,m. (28)

The robust linear constraint aiTac < b; for all a; € &; can be expressed as
rnax{ CLZT.I‘ | a; € gz } = GZT.T + ||PZ.T|| S bi,

which is evidently a second-order cone constraint. Hence the robust LP (28) can be expressed

as the SOCP

minimize Lz

subject to alx + ||Px|| < by, i=1,...,m.
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Note that the additional norm terms act as ‘regularization terms’, discouraging large x in
directions with considerable uncertainty in the parameters a;.

The same problem can be considered in a statistical framework as well. Here we sup-
pose that the parameters a; are independent, with Gaussian distribution with mean @; and
variance 3;. We require that each constraint a! x < b; should hold with a probability (confi-
dence) exceeding 7, where n > 0.5. Exactly as in the portfolio optimization problem (§3.3),
these constraints are equivalent to the second-order constraints

als— o7 (1— )5z < by,
so the robust LP again becomes an SOCP.

We refer to Ben-Tal and Nemirovsky [BTN96], and Oustry, El Ghaoui, and Lebret [OEL96]
for a further discussion of robustness in convex optimization.

3.5 Robust least-squares

The idea of incorporating robustness to parameter variation into a problem can be extended
to many problems, e.g., least-squares.

Suppose we are given an overdetermined set of equations Az ~ b, where A € R™ ", b €
R™ are subject to unknown but bounded errors 0 A and 0b with [[0A| < p, ||6b]| < & (where
the matrix norm is the spectral norm, or maximum singular value). We define the robust
least-squares solution as the solution & € R" that minimizes the largest possible residual,
i.e., T is the solution of

minimize max;jsa| <y, [sf|< [|(A + 0A)z — (b + ). (29)

This is the robust least-squares problem introduced by El Ghaoui and Lebret [EL| and by
Chandrasekaran, Golub, Gu and Sayed [CGGS96]. The objective function in problem (29)
can be written in a closed form, by noting that

[(A+6A)z — (b+0b)|| = m max y' (Az — b) +y' 6 Az — y"6b

max ax
ll6AlI<p, [|db]|<& I6A][<p, l|0b]| <€ [lyl|<1

T T
= maX max Ar -0+ 2z +
s max g ( ) 3

= | Az = bl + pll]| + €.
Problem (29) is therefore equivalent to minimizing a sum of Euclidean norms:
minimize || Az — b|| + p||z|| + &.

Although this problem can be solved as an SOCP, there is a simpler solution via the SVD
of A. The SOCP-formulation becomes useful as soon as we add additional constraints on x,
e.g., nonnegativity constraints.

A variation on this problem is to assume that the rows a; of A are subject to independent
errors, but known to lie in a given ellipsoid: a; € &;, where

Ei={a+Pul |lul <1} (=P >0).
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We obtain the robust least squares estimate x by minimizing the worst-case residual:
o\ 1/2
minimize max,,cg, (Z?Zl (aiTx — bi) ) ) (30)

We first work out the objective function in a closed form:

max |a; « — b; + u’ P
lJul|<1

= HmHaX max {EiTx — b+ u' P, —a; v+ b; — uTPZ-x}
u||<1

= max{az — b + | Pixll, =]« + bi + || Pl }

Hence, the robust least-squares problem (30) can be formulated as

o\ 1/2
£ 1P )

n

minimize (Z (

=1

_T
a;  —b;

which can be cast as the SOCP
minimize s
subject to |[|t]] <'s
[l — b+ |Pal| < ti, i=1,....n.

These two robust variations on the least squares problem can be extended to allow for
uncertainty on b. For the first problem, suppose the errors A and 0b are bounded as
I[0A b]|| < p, Using the same analysis as above it can be shown that

T
A<, | (A F 0A)T = (b400) = Az =B +p'H 1 ] H '

The robust least-squares solution can therefore be found by solving
minimize ||[Az — b|| + p H [ 1 ] H .

In the second problem, we can assume b; is bounded by b; € [b; —p;, b;+p;]. A straightforward
calculation yields

_T T
a; v —b;

1/2
2
£ 1Pl + ) )

n
minimize (Z (

i=1

which can be easily cast as an SOCP.

3.6 Truss design

Ben-Tal and Bendsge in [BTB93] and Nemirovsky in [BTN92] consider the following problem
from structural optimization. A structure of k linear elastic bars connects a set of p nodes.
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The task is to size the bars, i.e., determine x;, the cross-sectional areas of the bars, that
yield the stiffest truss subject to constraints such as a total weight limit.

In the simplest version of the problem we consider one fixed set of externally applied
nodal forces f;, © = 1,...,p; more complicated versions consider multiple loading scenarios.
The vector of small node displacements resulting from the load forces f will be denoted d.
One objective that measures stiffness of the truss is the elastic stored energy %de, which is
small if the structure is stiff. The applied forces f and displacements d are linearly related:
f = K(z)d, where

k
i=1

is called the stiffness matrix of the structure. The matrices K; are all symmetric positive
semidefinite and depend only on fixed parameters (Young's modulus, length of the bars,
and geometry). To maximize the stiffness of the structure, we minimize the elastic energy,
i.e., fTK(z) 1f/2. Note that increasing any x; will decrease this objective, i.e., stiffen the
structure.

We impose a constraint on the total volume (or equivalently, weight), of the structure,
€., >ilir; < vpax, where [; is the length of the ¢th bar, and vy, is maximum allowed
volume of the (bars of the) structure. Other typical constraints include upper and lower
bounds on each bar cross-sectional area, i.e., z; < x; < Z;. For simplicity, we assume that
x; > 0, and that K (z) > 0 for all positive values of z;.

The optimization problem then becomes

minimize fTK(z)7'f

k
subject to Zliwi <w
i=1
lexZSTU 221,,k

where d and z are the variables. This problem can be cast as an SOCP since the objective
has the matrix-fractional form described in §2.4.

Several extensions can be developed, e.g., multiple loading scenarios. See also [ABBTZ92,
BBTZ94]. For a survey and further references, see Ben-Tal and Nemirovski [BTN95].

3.7 Equilibrium of system with piecewise-linear springs

We consider a mechanical system that consists of N nodes at positions =1, ..., z, € R? with
node 7 connected to node 141, fors =1,..., N — 1, by a nonlinear spring. The nodes z; and
xn are fixed at given values a and b, respectively. The tension 7; in spring 7 is a nonlinear
function of the distance between its endpoints, i.e., ||z; — T4 ||:

T, = k(|2 — ziall - o) (31)

where z, = max{z,0}. Here & > 0 denotes the stiffness of the springs and [y > 0 is its
natural (no tension) length. In this model the springs can only produce positive tension
(which would be the case if they buckled under compression). Each node has a mass of
weight w; > 0 attached to it. This is shown in figure (4).
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Figure 4: System of nodes (weights) connected by springs. The first and last node
positions, 4.e., £1 and xy, are fixed.

The problem is to compute the equilibrium configuration of the system, i.e., values of
Z1,...,xy such that the net force on each node is zero. This can be done by finding the
minimum energy configuration, i.e., solving the optimization problem

minimize ¥, wiel 2t + 3, (|| — z;||)
subject to z; =a, xny =0

where e, is the second unit vector (which points up), and ¢(d) is the potential energy stored
in a spring stretched to an elongation d:

d
o(d) = [ k(a—lo)sda = (k/2)(d = )%
This objective can be shown to be convex, hence the problem is convex. If we write it as
minimize Y, wyelx’ + (k/2)tTt
subject to ||1‘Z — xi—&—l” — l() S ti; 1= 1, .. .,N -1

0<t;,i=1,....N—1
r1=a, ry = b,

we can substitute y for t/'¢ and add the hyperbolic constraint

2t
tTt§y<:>H[1_y <1l+y,

thereby obtaining an SOCP.

Several extensions to this problem are possible, such as considering masses in R?, springs
connecting arbitrary nodes, or limits on extension of springs. In general, if the spring tension
versus extension function is piecewise linear and increasing, the equilibrium configuration can

be found via SOCP.
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4 Primal-dual interior-point method

We briefly describe an efficient method for solving second-order cone problems. The method
is the primal-dual potential reduction method of Nesterov and Nemirovsky [NN94, §4.5]
applied to SOCP. When specialized to LP, the algorithm reduces to a variation of Ye’s
potential reduction method [Ye91].

The underlying ideas and concepts are similar for most other primal-dual interior-point
methods, so the description in this section can serve as an introduction to other primal-dual
methods for SOCP as well. For example, the algorithm we describe can use (without any
other change) the symmetric primal-dual search directions developed by Nesterov and Todd
for self-scaled cones [NN94].

We first introduce some new notation that will simplify the formulas considerably. We
define A, b, X, and Z as

_Al_ _51_ _U1_ _21_

clT dy t1 wy
A= |, b= , X = , =

Ap br ur, <L

|l | | dy | |t | wy, |

This allows us to write the primal and dual SOCPs (1) and (4) more compactly as

minimize Tz )
subject to X =Az+beC™ xXC™ x -+ x C"L.

and _
maximize ijZ
subject to ATZ = f
Ze€Cm xC™ x---xCME,
Note also that in this notation the duality gap associated with a pair of primal and dual

feasible points z, Z is simply
n=X"Z.

4.1 Barrier for second-order cone

We define, for u € R™ !, t € R,

—log (t2 - IIUIIZ) Jul] <t
00 otherwise.

o) = { (32
The function ¢ is a barrier function for the second-order cone Cp,: ¢(u, t) is finite if and only
if (u,t) € Cy, (i-e., ||u|| < t), and ¢(u,t) converges to oo as (u,t) approaches the boundary
of C,,,. It is also smooth and convex on the interior of the second-order order cone. Its first
and second derivatives are given by

Vo(u,t) = _ l _“t]

t2 —uTy
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and

V2(u. 1) = 2 [ (t* —u'u)I + 2uu®™ —2tu ]

(12 — uTu)? —2tuT 2+ ulu

4.2 Primal-dual potential function

For strictly feasible (x, Z), we define the primal-dual potential function as
L
o(x,Z) = (2L +vV2L)logn+>_ (qﬁ(Aix + b, ¢l + d;) + (2, wz)) —2LlogL  (33)
i=1

where v > 1 is an algorithm parameter, and 7 is the duality gap (5) associated with (z, Z).
The most important property of the potential function is the inequality

n(x, Z) < exp ((p(:r, 7Z) /V\/ﬁ) , (34)

which holds for all strictly feasible x, Z. Therefore, if the potential function is small, the
duality gap must be small. In particular, if ¢ — —oc, then  — 0 and (x, Z) approaches
optimality.

The inequality (34) can be easily verified by noting the fact that

L
Y(z,2) 2 2L1ogn + Y ($(Aiw + bi, ¢ o + di) + ¢z, wy)) —2Llog L>0  (35)

=1

for all strictly feasible z, Z (see the appendix). This implies ¢(z, Z) > vv/2Llog(n(z, Z)),
and hence (34).

4.3 Primal-dual potential reduction algorithm

In a primal-dual potential reduction method, we start with strictly primal and dual z, 7, and
update them in such a way that the potential function ¢(z, Z) is reduced at each iteration by
at least some guaranteed amount. There exist several variations of this idea. In this section
we present one such variation, the primal-dual potential reduction algorithm of Nesterov and
Nemirovsky [NN94, §4.5].

At each iteration of the Nesterov and Nemirovsky method, primal and dual search direc-
tions dx, 0Z are computed by solving the set of linear equations

H' A 6Z | | —H Y(pZ+g)
A @
in the variables dx, 07, where
V2(ur,ty) --- 0 V(uy,t1)
0 - V2o(ug,tr) Vo(ur,tr)



and p is equal to p = (2L + vv2L)/n. (And as before, u; = A;x + b; and t; = ¢l v + d;.)
Note that (© — utw) .
o L (#F—v'u)] + 2uu 2tu
2 1_
and therefore forming H™' = diag (V¢ (ui,t1)7", ..., V2d(ur,t1)™") does not require a
matrix inversion.
The outline of the algorithm is as follows.

Primal-dual potential reduction algorithm
given strictly feasible z, Z, a tolerance ¢ > 0, and a parameter v > 1.
repeat

1. Find primal and dual search directions by solving (36).
2. Plane search. Find p, ¢ € R that minimize p(z + pdzx, Z + ¢0Z).
3. Update z :=x + pdzx, Z := Z 4+ ¢dZ.

until 7(z, 7) <e.

It can be shown that at each iteration of the algorithm, the potential function decreases by
at least a fixed amount:

p(a®HD, Z2¢0) < p(a®), Z0) — 5

where § > 0 does not depend on any problem data at all (including the dimensions). For
a proof of this result, see [NN94, §4.5]. Combined with (34) this provides a bound on the
number of iterations required to attain a given accuracy €. From (34) we see that n < € after

at most
vV2L1og(n® /e) 4 (2, Z(O)
o
iterations. Roughly speaking and provided the initial value of ¢ is small enough, this means
it takes no more than O(v/L) steps to reduce the initial duality gap by a given factor.
Computationally the most demanding step in the algorithm is solving the linear sys-
tem (36). This can be done by first eliminating 67 from the first equation, solving

ATHASx = —AT(pZ + g) = —pf — Alyg (37)
for 6z, and then substituting to find
67 = —pZ — g — HASw.

Since AT6Z = 0, the updated dual point Z + ¢6Z satisfies the dual equality constraints, for
any g € R.
An alternative is to directly solve the larger system (36) instead of (37). This may be
preferable when A is very large and sparse, or when the equations (37) are badly conditoned.
We refer to the second step in the algorithm as the plane search since we are minimizing
the potential function over the plane defined by the current points x,7 and the current
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primal and dual search directions. This plane search can be carried out very efficiently using
some preliminary preprocessing. The objective function for the plane search is

fp,a) = oz +pde, Z+4¢62)
= (2L +wvV2L)log (n(:c, Z)+pZt5X + qéZTX)

L
— Y log (£ — [lusl® + 2p(t:6t: — uf'6u;) +p*(567 — [|6ui]*))
i=1

L
=Y log (w? — ||z + 2q(widw; — 27 62;) + ¢*(6w? — [|62])) ,
=1

where §X = Adx + b. This function of two variables can be very efficiently minimized if we
first compute the coefficients of p, ¢, p? and ¢? in the arguments of the logarithms. Once
those coefficients are available, the first and second derivatives of f at any given p and ¢ can
be computed very quickly, in O(L) operations, and therefore the minimum of f is readily
obtained by a (safe-guarded) Newton method.

We conclude this section by pointing out the analogy between (36) and the systems of
equations arising in interior-point methods for LP. We consider the primal-dual pair of LPs

minimize fTx
subject to ¢!z +d; >0, i=1,...,L
and
L
minimize — Z d;z;
i=1
L
subject to Zzici =f
i=1
5>0, i=1,...,L,

and solve them as SOCPs with n; = 1,7 =1,..., L. Using the method outlined above, we
obtain B B
A:[Cl CL]T, b:d,

and writing X = diag (clT:z: +dy,...,cte+ dL), the equation (36) reduces to

l Ly? A] l 5z ] B l —(p/2)X?z + Xe (38)

AT 0 ox | 0 ’

The factor 1/2 in the first block can be absorbed into 0z since only the direction of §z is
important, not its magnitude. Also note that p/2 = (L + v+/L)/n. We therefore see that
the equations (38) coincide with (one particular variation) of familiar expressions for LP.

4.4 Finding strictly feasible initial points

The algorithm of the previous section requires strictly feasible primal and dual starting
points. In this section we discuss two techniques that can be used when primal and/or dual
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feasible points are not readily available. We first show that any given SOCP can be modified
in such a way that it has an obvious dual strictly feasible solution. We then show how to
compute a primal feasible point for an SOCP by solving a related problem, known as the
phase-1 problem.

Bounds on the primal variables

As a general guideline, it is easy to find strictly dual feasible points in SOCPs where the
primal constraints include explicit bounds on the feasible set. Such bounds can include, for
example, componentwise upper and lower bounds [ < x < u, or a norm constraint ||z|| < R.
It can be verified that adding explicit bounds results in SOCPs with straightforward dual
feasible points.

For example, suppose that we modify the SOCP (1) by adding a bound on the norm of z:

minimize Tz
subject to || Az +b;|| < cfz+d;, i=1,...,L (39)
2]l < R.

If R is large enough, the extra constraint does not change the solution and the optimal value
of the SOCP. The dual of the SOCP (39) is

L
maximize — Z (b;‘FZZ + diwi) — Rwy
i=1

: N (40)
subject to Z (AZ- Zi + ciwi) +zrpi=f
i=1
Strictly feasible points for (40) can be easily calculated as follows. For i = 1,...,L, we

can take any z; and w; > ||z;|. The variable z; 41 then follows from the equality constraint
in (40), and for wy,; we can take any number greater than ||zz1]|.

This idea of adding bounds on the primal variable is a variation on the big-M method
in linear programming.

Phase-I method
A primal strictly feasible point can be computed by solving the SOCP

minimize ¢

subject to ||Ajz + bl <clv+di+t, i=1,...,L (41)

in the variables z and ¢. If (z, 1) is feasible in (41), and ¢ < 0, then x satisfies | A;x+b;|| < ¢!z,
i.e., it is strictly feasible for the original SOCP (1). We can therefore find a strictly feasible
x by solving (41), provided the optimal value t* of the SOCP (41) is negative. If t* > 0, the
original SOCP (1) is infeasible.
Note that it is easy to find a strictly feasible point for the SOCP (41). One possible
choice is
r=0, t> max |0:]] — d;.
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The dual of the SOCP (41) is

=~

maximize Z (bZTZZ + diwi)

L
subject to > (ATz + cw;) =0 (42)

—

If a strictly feasible (z, w) for (42) is available, one can solve the phase-I problem by applying
the primal-dual algorithm of the previous section to the pair of problems (41), and (42). If
no strictly feasible (z,w) for (42) is available, one can add an explicit bound on the primal
variable as described above.

4.5 Performance in practice

A C-implementation of the potential reduction method described in §4.3 is available via the
WWW! and numerical experiments with the algorithm are reported in the documentation of
the code [LVB97]. Our experience with the method is consistent with the practical behavior
observed in many similar methods for linear or semidefinite programming: the number of
iterations is only weakly dependent on the problem dimensions (n, n;, L), and typically lies
between 5 and 50 for a very wide range of problem sizes.

We can therefore say that for practical purposes the cost of solving an SOCP is roughly
equal to the cost of solving a modest number (5-50) of systems of the form (37). If no special
structure in the problem data is exploited, the cost of solving the system is O(n?), and the
cost of forming the system matrix is O(n? %, n;). In practice, special problem structure
(e.g., sparsity) often allows forming the equations faster, or solving the systems (37) and (36)
more efficiently.

We close this section by pointing out a few possible improvements. The most popular
interior-point methods for linear programming share many of the features of the potential
reduction method we presented here, but differ in three respects (see [Wri97]). First, they
treat the primal and dual problems more symmetrically (for example, the diagonal ma-
trix X2 in (38) is replaced by XZ!). A second difference is that common interior-point
methods for LP are one-phase methods that allow an infeasible starting point. Finally, the
asymptotic convergence of the method is improved by the use of predictor steps. These
different techniques can all be extended to SOCP. In particular, Nesterov and Todd [NT94]
and Adler and Alizadeh [AA95] have developed extensions of the symmetric primal-dual
LP methods to SOCP, and an implementation will be made available in the next version of
SDPPACK [AHNO97].

LAt http://www-isl.stanford.edu/people/boyd/SOCP.html
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5 Conclusions

Second-order cone programming is a problem class that lies between linear (or quadratic)
programming and semidefinite programming. Like LP and SDP, SOCPs can be solved very
efficiently by primal-dual interior-point methods (and in particular, far more efficiently than
by treating the SOCP as an SDP). Moreover, a wide variety of engineering problems can be
formulated as second-order cone problems.
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