
JSS Journal of Statistical Software
June 2012, Volume 49, Issue 7. http://www.jstatsoft.org/

The RcmdrPlugin.survival Package: Extending the

R Commander Interface to Survival Analysis

John Fox
McMaster University

Marilia Sá Carvalho
Escola Nacional de Saúde Pública

Abstract

The R Commander graphical user interface to R is extensible via plug-in packages,
which integrate seamlessly with the R Commander’s menu structure, data, and model
handling. The paper describes the RcmdrPlugin.survival package, which makes many
of the facilities of the survival package for R available through the R Commander, in-
cluding Cox and parametric survival models. We explain the structure, capabilities, and
limitations of this plug-in package and illustrate its use.

Keywords: graphical user interface, survival package, R.

1. Introduction

This paper describes the RcmdrPlugin.survival package, which augments the Rcmdr (“R
Commander”) package (Fox 2005, 2007) to provide a graphical user interface (GUI) to many
of the facilities of the survival package for R (Therneau 2012; Therneau and Grambsch 2000).
The initial impetus for developing a survival-analysis plug-in for the R Commander came
from a desire to introduce Brazilian medical researchers gently to the powerful facilities of
the survival package (as discussed in Carvalho, Andreozzi, Codeço, Barbosa, Serrano, and
Shimakura 2005). We anticipate that the capabilities of the RcmdrPlugin.survival package
will grow, and hope that it may provide at least some researchers with a bridge to writing
their own R commands.

After presenting a brief overview of the R Commander in Section 2 of the paper, meant to
orient readers who have not previously encountered the Rcmdr package, we describe the use
of the survival-analysis plug-in in Section 3. This section of the paper serves the dual function
of furnishing a basic manual for the RcmdrPlugin.survival package and of establishing a basis
for a discussion of the design and implementation of the RcmdrPlugin.survival package in Sec-
tion 4. In Section 5 of the paper, we reflect on the challenges of designing a graphical interface

http://www.jstatsoft.org/

2 RcmdrPlugin.survival: Survival Analysis with the R Commander

for survival analysis and on the consequent limitations of the RcmdrPlugin.survival package.
The Rcmdr and RcmdrPlugin.survival packages are both available on the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/.

2. A brief overview of the R Commander and plug-ins

The R Commander (Rcmdr) package (Fox 2005) was originally conceived as a basic-statistics
graphical user interface to R (R Development Core Team 2012a), suitable for supporting a first
course in statistics taught with a text such as Moore (2010). The Rcmdr quickly expanded
to include facilities for fitting, checking, and displaying linear and generalized linear models,
along with some other methods, such as exploratory factor analysis, that are not usually

Figure 1: The Rcmdr interface at start-up.

http://CRAN.R-project.org/

Journal of Statistical Software 3

part of the basic-statistics curriculum. Although its menu and dialog structure were always
designed to be extensible, extending the Rcmdr became much more convenient with the
introduction of plug-in packages, described in Fox (2007), and as we write this, 30 Rcmdr
plug-ins are available on CRAN.

An original and continuing goal of the R Commander is to provide a simple-to-use and easy-
to-install GUI for R that works on all of the major computing platforms on which R runs—
Windows, Mac OS X, and Linux/Unix systems. To this end, the R Commander is implemented
in Tcl/Tk (Welch and Jones 2003), an R interface to which is furnished by the tcltk package
(R Development Core Team 2012a; Dalgaard 2001, 2002), which is included in the standard R
distribution. A working Tcl/Tk compatible with the tcltk package is also part of the standard
R installation for Windows and is usually included in Linux/Unix systems, so all that is
required to get started with the Rcmdr interface is to install the package and its dependencies.
Under Mac OS X, however, it is first necessary to install an X Windows version of Tcl/Tk
compatible with the tcltk package.

The R Commander interface is shown in the “screen shot” in Figure 1, taken on a Windows 7
system. The interface comprises a menu bar, a toolbar, and three panels or windows—from
top to bottom, a script window into which the Rcmdr writes the commands that it generates
and executes; an output window, which shows commands and the associated printed output
produced by them; and a messages window, which displays warnings, error messages, and
other ancillary information. The script window is a rudimentary script editor, allowing the
user to save and load scripts, and to edit, execute, and re-execute commands. Commands
are invoked almost exclusively through the menus and the dialog boxes to which most menu
items lead. This point-and-click interface is meant to be familiar and largely self-explanatory:
Many of the menus have names common to most applications, such as File, Edit, Tools,
and Help, while the others are natural for statistical applications, Data, Statistics, Graphs,
Models, and Distributions.

The toolbar directly below the menu bar shows the name of the “active data set”; includes
buttons for editing and displaying the active data set; and shows the name of the active
statistical model. Data sets in the Rcmdr are R data frames. Most commands invoked via
the Rcmdr menus are applied to the active data set, and while several data sets may be
present in memory, only one is active at any given time. The user can change the active
data set either by reading a new data set into memory via menu items under the Data menu
(e.g., Data → Import data → from text file, clipboard, or URL...) or by selecting
a data set already in memory by pressing the active data set button in the toolbar. When
a statistical modeling function, such as lm or glm, creates a new statistical model object,
that object becomes the “active model,” to which commands generated via the Models menu
apply. Statistical models are associated with particular data sets, and if more than one model
is associated with the currently active data set, the user may choose among the models via
the active model button in the toolbar.

3. Using the RcmdrPlugin.survival package

As is typical of Rcmdr plug-ins, the RcmdrPlugin.survival package can either be loaded di-
rectly, by the command library("RcmdrPlugin.survival"), or, with the Rcmdr running,
via Tools → Load Rcmdr plug-in(s)... . The first part of the package name, Rcmdr-

4 RcmdrPlugin.survival: Survival Analysis with the R Commander

Figure 2: Menus and menu items added to the standard R Commander menus by the Rcmdr-
Plugin.survival package.

Plugin., is conventional for an Rcmdr plug-in package, and insures that plug-ins sort directly
after the Rcmdr on CRAN.

As illustrated in Figure 2, the RcmdrPlugin.survival package adds a variety of menus and
menu items to the R Commander interface:

� A Survival data sub-menu is added to the Data menu, containing items for defining
characteristics of survival data (such as time variables and an event indicator); for
converting data sets from “wide” to “long” form, when data records may include more

Journal of Statistical Software 5

than one period of observation for each individual; and for converting character data to
date objects.

� The Statistics → Fit models menu acquires menu items for Cox regression models
and for parametric survival models.

� A Survival analysis sub-menu is added to the Statistics menu, with items for
estimating and comparing survival functions.

� A test for proportional hazards in the Cox model is added to Models → Numerical

diagnostics.

� Several new items are added to the Models → Graphs menu, to graph survival functions
based on a fitted Cox model; to plot terms in a Cox model; to plot dfbeta and dfbetas
(influence diagnostics) for a survival regression model; to plot Martingale residuals for
a survival regression; and to produce partial-residual plots for a Cox model.

As we will illustrate presently, typical work-flow in analyzing survival data follows several
steps:

1. We begin by reading the data via an appropriate selection in the Data menu.

2. We may transform the data via the Data → Active data set and Data → Manage

variables in active data set menus, and if necessary convert character data to
dates using Data → Survival data → Convert variable to date...

3. We typically define time and event variables for the survival data set, and perhaps also
define strata or clusters, with Data → Survival data → Survival data

definition....

4. We may change the format of the data set via Data → Survival data → Convert

wide to long data....

5. Preliminary examination of the data typically follows, using Statistics → Survival

analysis → Estimate survival function..., and maybe Statistics → Survival

analysis → Compare survival functions....

6. Regression modeling usually comes next, almost always with Cox models fit via
Statistics → Fit models → Cox regression model..., but possibly with
Statistics → Fit models → Parametric survival model....

7. A variety of standard diagnostics are available in the Models → Numerical diagnostics

and Models → Graphs menus for checking the adequacy of the fitted model.

8. Finally, the Models → Graphs and Models → Hypothesis tests menus contain items
for displaying and testing survival regression models.

3.1. Example: Brazilian hemodialysis data

As a more or less typical example of survival analysis, we employ, in simplified form, a data
set analyzed by Carvalho, Henderson, Shimakura, and Sousa (2003), with data on all patients

6 RcmdrPlugin.survival: Survival Analysis with the R Commander

undergoing hemodialysis treatment in publicly funded clinics in Rio de Janeiro State, Brazil,
between January 1998 (month 1 of the study) and August 2000 (month 44). The principal
purpose of this and the following example is to illustrate how the RcmdrPlugin.survival
package is used, not to undertake a serious analysis of the data, and we also assume general
familiarity with methods of survival analysis (as described, e.g., in Therneau and Grambsch
2000). The Dialysis data set is included in the RcmdrPlugin.survival package, and comprises
6805 patients and seven variables:

� center, a numeric code indicating in which of 67 medical centers the patient was treated.
Although not strictly necessary, we find it convenient to convert this variable into a
factor via Data → Manage variables in active data set → Convert numeric

variables to factors..., selecting the option to use numbers as factor levels (dialog
box not shown).

� The age of the patient, in years at entry into the study.

� begin, the month in which treatment began, coded 1 for patients already in treatment
at the start of the study.

� end, the month in which observation terminated, either because of death or censoring.

� time under observation, that is end − begin.

� event, a numeric event indicator, coded 1 if the patient died while under observation
or 0 if censored.

� The disease causing kidney failure requiring dialysis, coded hypert (hypertension),
congen (congenital), diabetes, renal, and other. As is the default in R, these five fac-
tor levels are initially ordered alphabetically, and are put in the order recorded here using
Data → Manage variables in active data set → Reorder factor levels....
Although reordering the levels of disease isn’t strictly necessary, hypertension is the
most common diagnosis in the data set, and one with a moderate risk of death, so we
find it convenient to select this as the baseline level for dummy-coded contrasts used
in the statistical modeling reported below; we want other as the last level for esthetic
reasons; and the remaining three levels are given in alphabetical order.

We read the data via Data → Data in packages → Read data from an attached package...,
completing the resulting dialog, as shown in Figure 3. A brief overview of the data set is pro-
vided by selecting Statistics → Summaries → Active data set from the R Commander
menus, producing the following results in the output window, which also displays the com-
mands that were generated to read and reorganize the data:1

> data(Dialysis, package="RcmdrPlugin.survival")

> Dialysis$center <- as.factor(Dialysis$center)

> Dialysis$disease <- factor(Dialysis$disease, levels=c('hypert',

+ 'congen','diabetes','renal','other'))

> summary(Dialysis)

1The R Commander output window shows commands in red and the resulting output in dark blue. In this
paper, we use typewriter italics for commands in the output window.

Journal of Statistical Software 7

Figure 3: Reading the Dialysis data from the RcmdrPlugin.survival package.

center age begin end

2844 : 241 Min. : 0.0 Min. : 1.00 Min. : 2.00

562 : 227 1st Qu.:42.0 1st Qu.:12.00 1st Qu.:31.00

561 : 222 Median :53.0 Median :23.00 Median :44.00

1029 : 218 Mean :52.7 Mean :22.78 Mean :36.94

3064 : 184 3rd Qu.:65.0 3rd Qu.:33.00 3rd Qu.:45.00

1159 : 183 Max. :97.0 Max. :44.00 Max. :45.00

(Other):5530

event time disease

Min. :0.0000 Min. : 1.00 hypert :2836

1st Qu.:0.0000 1st Qu.: 3.00 congen : 142

Median :0.0000 Median :11.00 diabetes:1283

Mean :0.2356 Mean :14.16 renal :1414

3rd Qu.:0.0000 3rd Qu.:22.00 other :1130

Max. :1.0000 Max. :44.00

Before analyzing the Dialysis data, we must address the following issue: The natural time
origin for patients in the study is the beginning of treatment, and for patients who entered
the study between the 1st and 44th months, this is captured by the time variable in the
data set. Some patients—so-called “prevalent cases”—began treatment before the beginning
of the study, however. If we knew how many months of treatment had occurred before
the beginning of the study, we could accommodate these patients by employing the counting-
process approach to survival analysis, but in the data set we are unable to distinguish between
patients who entered treatment in month 1 of the study and those who were already being
treated in month 1. Consequently, we employ the R Commander subset dialog to remove
these cases, Data → Active data set → Subset active data set... (Figure 4), leaving
us with 6665 of the original 6805 cases.2

The RcmdrPlugin.survival package permits us to define persistent time and event variables,
possibly along with strata and clusters, via Data → Survival data → Survival data

definition..., producing the dialog box in Figure 5. The information is stored as attributes

2The original paper, Carvalho et al. (2003), employed a more complete version of the data set, including
information on when prevalent patients began treatment, permitting their inclusion in the analysis employing
the counting-process approach.

8 RcmdrPlugin.survival: Survival Analysis with the R Commander

Figure 4: Removing patients from the Dialysis data who may have begun treatment before
the start of the study.

Figure 5: Defining time and event variables for the Dialysis data.

of the Dialysis data frame. Where appropriate, these selections can also be made or modified
in individual dialog boxes for estimating survival functions, fitting survival regression models,
etcetera. We find it convenient in the current case to define time and event variables (literally
the variables time and event).

We proceed to estimate the survival function for the data set as a whole, using Statistics

Journal of Statistical Software 9

→ Survival analysis → Estimate survival function..., leading to the dialog box in
Figure 6, and producing the following output, along with a graph of the estimated estimated
survival function, shown in Figure 7:

> .Survfit <- survfit(Surv(time, event) ~ 1, conf.type="log",

+ conf.int=0.95, type="kaplan-meier", error="greenwood",

+ data=Dialysis)

> summary(.Survfit)

Call: survfit(formula = Surv(time, event) ~ 1, data = Dialysis,

conf.type = "log", conf.int = 0.95, type = "kaplan-meier",

error = "greenwood")

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 6665 228 0.966 0.00223 0.961 0.970

2 6035 245 0.927 0.00325 0.920 0.933

3 5378 162 0.899 0.00382 0.891 0.906

4 4942 109 0.879 0.00418 0.871 0.887

5 4653 87 0.862 0.00446 0.854 0.871

. . .

40 224 2 0.599 0.01155 0.577 0.622

41 166 2 0.592 0.01248 0.568 0.617

> plot(.Survfit, mark.time=TRUE)

> quantile(.Survfit, quantiles=c(.5,.6,.7,.8,.9))

Survival Probability

Estimate 0.5 0.6 0.7 0.8 0.9

lower 0.95 CL NA 37 23 10 3

quantile NA 40 24 11 3

upper 0.95 CL NA NA 27 12 4

> remove(.Survfit)

The widely spaced ellipses (. . .) in the output represent lines omitted for brevity. We
knew that fewer than half the patients died during the study, and so requested estimates
of quantiles above 0.5, including the 0.5 quantile to show that it is not estimable. The
quantile method for survfit objects is not part of the survival package, but is supplied by
RcmdrPlugin.survival.

We continue by comparing survival across levels of disease, via Statistics → Survival

analysis → Compare survival functions..., leading to the dialog box in Figure 8, and
producing the following output:

> survdiff(Surv(time,event) ~ disease, rho=0, data=Dialysis)

10 RcmdrPlugin.survival: Survival Analysis with the R Commander

Figure 6: Dialog box for estimating a survival function. The time and event variables are
pre-selected, and the default quantiles (.25, .5, .75) are replaced with .5, .6, .7, .8,

.9; all other selections are defaults.

Call:

survdiff(formula = Surv(time, event) ~ disease, data = Dialysis,

rho = 0)

N Observed Expected (O-E)^2/E (O-E)^2/V

disease=hypert 2782 633 674.4 2.54 4.57

disease=congen 139 19 38.6 9.93 10.41

disease=diabetes 1268 398 279.5 50.21 62.69

disease=renal 1378 289 325.7 4.14 5.35

disease=other 1098 224 244.8 1.77 2.15

Chisq= 70.3 on 4 degrees of freedom, p= 1.95e-14

Differences in survival across the levels of disease are clearly highly statistically signifi-
cant. We graph the estimated survival functions by disease strata using Statistics →
Survival analysis → Estimate survival function... (dialog not shown), with the re-

Journal of Statistical Software 11

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7: Estimated survival function for the Dialysis data. The broken lines give a 95%
pointwise confidence envelope around the estimate.

Figure 8: Dialog box for comparing survival functions across strata; disease is selected in
the strata list box.

sult displayed in Figure 9. Survival is highest for those with congenital disease and lowest for
those with diabetes.

Our next step is to fit a Cox model to the data, treating age and disease as covariates,
Statistics → Fit models → Cox regression model..., which produces the dialog in
Figure 10, and the following output:

12 RcmdrPlugin.survival: Survival Analysis with the R Commander

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

disease

hypert
congen
diabetes
renal
other

Figure 9: Estimated survival functions by disease.

Figure 10: Cox regression dialog box.

Journal of Statistical Software 13

> CoxModel.1 <- coxph(Surv(time,event) ~ age + disease,

+ method="efron", data=Dialysis)

> summary(CoxModel.1)

Call:

coxph(formula = Surv(time, event) ~ age + disease, data = Dialysis,

method = "efron")

n= 6665, number of events= 1563

coef exp(coef) se(coef) z Pr(>|z|)

age 0.034463 1.035064 0.001775 19.416 < 2e-16 ***

disease[T.congen] -0.724699 0.484470 0.232867 -3.112 0.00186 **

disease[T.diabetes] 0.293269 1.340803 0.064117 4.574 4.79e-06 ***

disease[T.renal] 0.042893 1.043826 0.071048 0.604 0.54603

disease[T.other] 0.028907 1.029329 0.077780 0.372 0.71015

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95

age 1.0351 0.9661 1.0315 1.0387

disease[T.congen] 0.4845 2.0641 0.3069 0.7647

disease[T.diabetes] 1.3408 0.7458 1.1825 1.5203

disease[T.renal] 1.0438 0.9580 0.9081 1.1998

disease[T.other] 1.0293 0.9715 0.8838 1.1988

Rsquare= 0.067 (max possible= 0.979)

Likelihood ratio test= 463.1 on 5 df, p=0

Wald test = 428.2 on 5 df, p=0

Score (logrank) test = 441 on 5 df, p=0

Thus, holding disease constant, each additional year of age increases the hazard of death
by 3.5%; similarly, holding age constant, patients with congenital disease are substantially
less likely to die and patients with diabetes substantially more likely to die than those with
hypertension (the baseline level for disease). Partial-likelihood-ratio tests for the terms in
the model are obtained from Models → Hypothesis tests → ANOVA table... (dialog box
not shown, defaults taken), which employs the Anova function in the car package (Fox and
Weisberg 2011):

> Anova(CoxModel.1, type="II")

Analysis of Deviance Table (Type II tests)

LR Chisq Df Pr(>Chisq)

age 396.35 1 < 2.2e-16 ***

disease 37.99 4 1.127e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

14 RcmdrPlugin.survival: Survival Analysis with the R Commander

Figure 11: Plots of Schoenfeld residuals for each covariate in the model. The dotted horizontal
line is drawn in each panel at the estimated coefficient for the corresponding covariate; the
dot-dashed line is a least-squares fit, corresponding to the test for proportional hazards; the
solid line is a nonparametric-regression smooth, which can detect more general forms of non-
proportional hazards; and the broken lines show a 95% pointwise confidence envelope around
the smooth.

Thus, both the age and disease terms in the Cox model are highly statistically significant.3

Having fit a Cox regression model to the Dialysis data, we would like to know whether the
model adequately represents the data, and consequently we follow up with several diagnos-
tics. Selecting Models → Numerical diagnostics → Test proportional hazards tests
the proportional-hazards assumption of the Cox model and produces graphs of Schoenfeld
residuals against time for each covariate (Figure 11):

rho chisq p

age 0.0487 4.045 0.04431

disease[T.congen] 0.0404 2.549 0.11039

disease[T.diabetes] 0.0278 1.219 0.26952

disease[T.renal] -0.0102 0.163 0.68635

disease[T.other] -0.0626 6.105 0.01348

GLOBAL NA 17.976 0.00298

3There is some evidence for a disease-by-age interaction, which we will not pursue here.

Journal of Statistical Software 15

Figure 12: Partial-residual plots for the Cox model fit to the Dialysis data. The lines drawn
on the plot are for a nonparametric-regression smooth and a linear least-squares fit.

There is, therefore, some evidence of non-proportional hazards, which we will not pursue
here.4

Continuing with the diagnostics, partial-residual plots, produced by Models → Graphs →
Cox model partial-residual plots and shown in Figure 12, suggest that the functional
form of the model is reasonable; and index plots of dfbetas, produced by Models → Graphs

→ Plot survival-regression dfbetas and shown in Figure 13, suggest that none of the
observations are unduly influential, as is to be expected in a data set this large.

The functional form of the Cox regression can also be checked by plotting Martingale residuals
from a null model against the regressors, obtained by Models → Graphs → Plot null

Martingale residuals, and producing the graphs shown in Figure 14. The plots for the
dummy variables are not informative, of course, but the plot for age reveals a monotone and
apparently nonlinear relationship between the log-hazard and age, with the slope increasing
with age. We could deal with this nonlinearity by transforming age or by using a low-degree-
of-freedom regression spline in age.

Finally, we consider modeling differences among the centers as a random effect, by entering
center as a frailty term in the model. To do this, we type the term frailty(center) directly
into the model formula box in the Cox-model dialog, as shown in Figure 15, producing the
following output:

> CoxModel.2 <- coxph(Surv(time,event) ~ age + disease +

+ frailty(center), method="efron", data=Dialysis)

> summary(CoxModel.2)

Call:

coxph(formula = Surv(time, event) ~ age + disease + frailty(center),

data = Dialysis, method = "efron")

4The evidence for non-proportional hazards is greatly reduced if we include interactions between disease

and age.

16 RcmdrPlugin.survival: Survival Analysis with the R Commander

Figure 13: Index plots of dfbetas for the Cox model fit to the Dialysis data.

n= 6665

coef se(coef) se2 Chisq DF p

age 0.0351 0.00182 0.00182 370.75 1.0 0.0e+00

disease[T.congen] -0.6531 0.23440 0.23426 7.76 1.0 5.3e-03

disease[T.diabetes] 0.3844 0.06726 0.06706 32.66 1.0 1.1e-08

disease[T.renal] -0.0312 0.07727 0.07680 0.16 1.0 6.9e-01

disease[T.other] 0.1344 0.08885 0.08807 2.29 1.0 1.3e-01

frailty(center) 794.42 60.8 0.0e+00

exp(coef) exp(-coef) lower .95 upper .95

age 1.04 0.966 1.032 1.039

disease[T.congen] 0.52 1.921 0.329 0.824

disease[T.diabetes] 1.47 0.681 1.287 1.676

disease[T.renal] 0.97 1.032 0.833 1.128

disease[T.other] 1.14 0.874 0.961 1.361

Iterations: 10 outer, 34 Newton-Raphson

Variance of random effect= 0.695 I-likelihood = -12401.2

Degrees of freedom for terms= 1.0 4.0 60.8

Rsquare= 0.167 (max possible= 0.979)

Likelihood ratio test= 1222 on 65.7 df, p=0

Wald test = 442 on 65.7 df, p=0

Journal of Statistical Software 17

Figure 14: Plots of null Martingale residuals for the Cox model fit to the Dialysis data.
The broken lines are fit by linear least squares, and simply connect the mean residuals at the
values 0 and 1 of the dummy regressors for disease; the solid line in the upper-left panel for
age is a nonparametric-regression smoother.

The frailty term is highly statistically significant, but the regression coefficients and their
standard error have not changed much.

3.2. Example: Recidivism data

To illustrate further the use of the RcmdrPlugin.survival package, we turn to data on crim-
inal recidivism originally from Rossi, Berk, and Lenihan (1980) and analyzed extensively
by Allison (1995) in a text on survival analysis using SAS. The data set, included in the
RcmdrPlugin.survival package and read, as before, via the R Commander Data → Data in

packages → Read data from an attached package... dialog, pertains to 432 convicts
who were released from Maryland state prisons in the 1970s and followed up for one year after
release. Half the released convicts were assigned at random to an experimental treatment in
which they were given financial aid, and the other half did not receive aid. The Rossi data
set includes the following variables:

� week of first arrest after release or censoring; all censored observations are censored at
52 weeks.

� arrest, an event indicator, coded 1 if the released convict was rearrested and 0 other-
wise.

18 RcmdrPlugin.survival: Survival Analysis with the R Commander

Figure 15: Cox regression dialog box, with the term frailty(center) typed directly into
the model formula.

� fin, a factor with levels yes if the convict received financial aid and no if he did not.

� The convict’s age in years at the time of release.

� The convict’s race, a factor with levels black and other.

� wexp, the convict’s full-time work experience prior to incarceration, a factor coded no

or yes.

� mar, the convict’s marital status at the time of release, a factor coded married or not

married.

� paro, whether or not the convict was released on parole, a factored coded no or yes.

� prio, the number of convictions prior to the current conviction.

� educ, level of education, coded numerically: 2 = 6th grade or less; 3 = 7th to 9th grade;
4 = 10th to 11th grade; 5 = 12th grade; and 6 = some college.

� emp1, employment status in the first week after release, a factor with levels no and yes.

Journal of Statistical Software 19

Figure 16: Changing the Rossi data from wide to long format. The time-dependent covariates
in the original wide form of the data, emp1 through emp52, are selected in the variable list
box, and a name for the corresponding time-dependent covariate in the long form of the data,
emp, is typed into the text box. Pressing Select will queue the operation of creating emp in
the resulting long data set.

� emp2 through emp52, recording employment status in weeks 2 through 52. Once a convict
is rearrested, the values of subsequent employment indicators are missing (coded NA).

The data, therefore, are in “wide” format, with employment status recorded in the last 52
variables of each data record. To analyze the data with employment status as a time-varying
covariate, we have to reorient the data into “long” format, with one record in counting-process
form for each week during which a convict remains at risk of rearrest. As well, we would like
to lag employment status by one week; otherwise, the effect of employment status will likely
be exaggerated, because a convict is unable to work at the end of the week in which he is
rearrested.

We can accomplish these data-management tasks with Data → Survival data → Convert

wide to long data..., producing the dialog box shown in Figure 16. In this dialog, we
selected the time variable week and event indicator arrest; picked the time-dependent co-
variates emp1 through emp52 in the list box at the lower left; typed in the name emp for the
resulting time-varying covariate; set the lag slider to 1; and are about to press the Select

button to define the time-dependent covariate. Were there more than one time-varying co-
variate, we would repeat these operations. Finally, we press the OK button to create the new
data set, which is named Rossi.long by default, and which becomes the active data set in
the R Commander. Although it is moderately complex and can handle many wide-to-long
conversions, the reshape dialog is also substantially limited in its capabilities—for example,
it can only deal with covariates that are measured at each point in time at the same level of
precision as the time-to-event variable. The unfold function that the dialog calls is somewhat
more flexible. We return to this and other limitations of the RcmdrPlugin.survival GUI in
Section 5 of the paper.

While the original data set had 432 rows and 62 variables, the new data set has 19,377 rows
and 14 variables, one row for each period of observation. The new data set has variables

20 RcmdrPlugin.survival: Survival Analysis with the R Commander

start and stop for the beginning and end of each period of observation, and a new event
indicator arrest.time, coded 1 in the week in which a convict is rearrested and 0 otherwise.
Time-constant covariates are simply copied into each record pertaining to a given convict.
The first few rows of the data set, with data for the first two convicts, look like this:

start stop arrest.time week arrest fin age race wexp

1.2 1 2 0 20 1 no 27 black no

1.3 2 3 0 20 1 no 27 black no

1.4 3 4 0 20 1 no 27 black no

. . .

1.19 18 19 0 20 1 no 27 black no

1.20 19 20 1 20 1 no 27 black no

2.2 1 2 0 17 1 no 18 black no

2.3 2 3 0 17 1 no 18 black no

2.4 3 4 0 17 1 no 18 black no

. . .

2.16 15 16 0 17 1 no 18 black no

2.17 16 17 1 17 1 no 18 black no

mar paro prio educ emp

1.2 not married yes 3 3 no

1.3 not married yes 3 3 no

1.4 not married yes 3 3 no

. . .

1.19 not married yes 3 3 no

1.20 not married yes 3 3 no

2.2 not married yes 8 4 no

2.3 not married yes 8 4 no

2.4 not married yes 8 4 no

. . .

2.16 not married yes 8 4 no

2.17 not married yes 8 4 no

Thus, convict 1 was rearrested in the 20th week and convict 2 in the 17th week following his
release.

We proceed to fit a Cox model to the recidivism data (via the dialog in Figure 17), producing
the following results:

> CoxModel.3 <- coxph(Surv(start,stop,arrest.time) ~ age + educ +

+ emp + fin + mar + paro + prio + race + wexp, method="efron",

+ data=Rossi.long)

> summary(CoxModel.3)

Call:

coxph(formula = Surv(start, stop, arrest.time) ~ age + educ +

emp + fin + mar + paro + prio + race + wexp, data = Rossi.long,

method = "efron")

Journal of Statistical Software 21

Figure 17: Dialog for fitting a Cox model to the Rossi data. Because the data are in counting-
process format, two time variables are selected, start and stop.

n= 19377, number of events= 113

coef exp(coef) se(coef) z Pr(>|z|)

age -0.050567 0.950691 0.021703 -2.330 0.019807 *

educ -0.194915 0.822904 0.133078 -1.465 0.143012

emp[T.yes] -0.795258 0.451465 0.218027 -3.648 0.000265 ***

fin[T.yes] -0.330882 0.718290 0.192232 -1.721 0.085203 .

mar[T.not married] 0.329440 1.390189 0.383518 0.859 0.390345

paro[T.yes] -0.058040 0.943612 0.196512 -0.295 0.767724

prio 0.084767 1.088463 0.029352 2.888 0.003878 **

race[T.other] -0.352430 0.702978 0.310237 -1.136 0.255955

wexp[T.yes] -0.009608 0.990438 0.214080 -0.045 0.964204

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

22 RcmdrPlugin.survival: Survival Analysis with the R Commander

exp(coef) exp(-coef) lower .95 upper .95

age 0.9507 1.0519 0.9111 0.9920

educ 0.8229 1.2152 0.6340 1.0681

emp[T.yes] 0.4515 2.2150 0.2945 0.6922

fin[T.yes] 0.7183 1.3922 0.4928 1.0470

mar[T.not married] 1.3902 0.7193 0.6556 2.9480

paro[T.yes] 0.9436 1.0598 0.6420 1.3870

prio 1.0885 0.9187 1.0276 1.1529

race[T.other] 0.7030 1.4225 0.3827 1.2913

wexp[T.yes] 0.9904 1.0097 0.6510 1.5068

Rsquare= 0.003 (max possible= 0.067)

Likelihood ratio test= 49.41 on 9 df, p=1.389e-07

Wald test = 44.89 on 9 df, p=9.67e-07

Score (logrank) test = 48.02 on 9 df, p=2.532e-07

The covariates age, employment status, and number of prior arrests have statistically signif-
icant coefficients; the coefficient of financial aid, the focus of the study, is just statistically
significant by a one-sided test (halving the reported two-sided p value of .085).

The RcmdrPlugin.survival package offers several options for graphing the results of a fitted
Cox model. We show one approach here, using Models → Graphs → Cox-model survival

function..., which leads to the dialog in Figure 18. We select Plot at specified values of
predictors, set the slider to 2 rows, and fill in the values with the medians of age, education,
and the number of prior arrests, and with the most common levels for the factors: not

married for marital status, no for employment status, black for race, and yes for parole and
work experience. We set financial aid to no and yes in turn. The resulting graph is displayed
in Figure 19.

4. The design of the RcmdrPlugin.survival package

Rcmdr plug-in packages (Fox 2007) are ordinary R packages (see R Development Core Team
2012b) with some extra features. Plug-in packages consist of several components.

The DESCRIPTION file for the RcmdrPlugin.survival package includes the line Models: coxph,

survreg, coxph.penal to instruct the R Commander that coxph, survreg, and coxph.penal

objects represent statistical models, manipulable through the R Commander Models menu.

The file menus.txt, included in the inst/etc directory of the source package, and shown in
slightly edited form in Figure 20, contains directives for adding to the R Commander menus.

There are up to seven fields, separated by white space, in each line of the menus.txt file:

� The first field in each directive indicates what type of entry—menu or menu item—is
defined by the directive; it is also possible to specify remove to delete an existing menu
or item.

� The second field supplies a name for a new menu or the name of the menu under which
an item is to be installed; in either case this must be a valid R variable name. For

Journal of Statistical Software 23

Figure 18: Dialog box for graphing the survival function from a Cox model.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival by age, educ, emp, fin, mar, paro, prio, race, wexp

time

su
rv

iv
al

 age, educ, emp, fin, mar, paro, prio, race, wexp

23, 3, no, no, not married, yes, 2, black, yes
23, 3, no, yes, not married, yes, 2, black, yes

Figure 19: Estimated survival by whether or not the convict received financial aid, at typical
values of the other covariates.

24 RcmdrPlugin.survival: Survival Analysis with the R Commander

#
t
y
p
e
m
e
n
u
/
i
t
e
m

o
p
e
r
a
t
i
o
n
/
p
a
r
e
n
t

l
a
b
e
l

c
o
m
m
a
n
d
/
m
e
n
u

a
c
t
i
v
a
t
i
o
n

i
n
s
t
a
l
l
?

m
e
n
u

s
u
r
v
i
v
a
l
M
e
n
u

s
t
a
t
i
s
t
i
c
s
M
e
n
u

"
"

"
"

"
"

"
"

i
t
e
m

s
u
r
v
i
v
a
l
M
e
n
u

c
o
m
m
a
n
d

"
E
s
t
i
m
a
t
e

s
u
r
v
i
v
a
l
f
u
n
c
t
i
o
n
.
.
.
"

S
u
r
v
f
i
t

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
u
r
v
i
v
a
l
M
e
n
u

c
o
m
m
a
n
d

"
C
o
m
p
a
r
e

s
u
r
v
i
v
a
l

f
u
n
c
t
i
o
n
s
.
.
.
"

S
u
r
v
d
i
f
f

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
t
a
t
i
s
t
i
c
s
M
e
n
u

c
a
s
c
a
d
e

"
S
u
r
v
i
v
a
l
a
n
a
l
y
s
i
s
"

s
u
r
v
i
v
a
l
M
e
n
u

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

m
e
n
u

s
u
r
v
D
a
t
a
M
e
n
u

d
a
t
a
M
e
n
u

"
"

"
"

"
"

"
"

i
t
e
m

s
u
r
v
D
a
t
a
M
e
n
u

c
o
m
m
a
n
d

"
S
u
r
v
i
v
a
l

d
a
t
a

d
e
f
i
n
i
t
i
o
n
.
.
.
"

S
u
r
v
i
v
a
l
D
a
t
a

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
u
r
v
D
a
t
a
M
e
n
u

c
o
m
m
a
n
d

"
C
o
n
v
e
r
t

w
i
d
e

t
o
l
o
n
g

d
a
t
a
.
.
.
"

U
n
f
o
l
d

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
u
r
v
D
a
t
a
M
e
n
u

c
o
m
m
a
n
d

"
C
o
n
v
e
r
t

v
a
r
i
a
b
l
e

t
o

d
a
t
e
.
.
.
"

t
o
D
a
t
e

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

d
a
t
a
M
e
n
u

c
a
s
c
a
d
e

"
S
u
r
v
i
v
a
l

d
a
t
a
"

s
u
r
v
D
a
t
a
M
e
n
u

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
t
a
t
M
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
x

r
e
g
r
e
s
s
i
o
n

m
o
d
e
l
.
.
.
"

C
o
x
M
o
d
e
l

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
t
a
t
M
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
P
a
r
a
m
e
t
r
i
c

s
u
r
v
i
v
a
l

m
o
d
e
l
.
.
.
"

s
u
r
v
r
e
g
M
o
d
e
l

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

c
o
m
m
a
n
d

"
T
e
s
t

p
r
o
p
o
r
t
i
o
n
a
l
h
a
z
a
r
d
s
"

C
o
x
Z
P
H

"
c
o
x
p
h
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
x
-
m
o
d
e
l
s
u
r
v
i
v
a
l

f
u
n
c
t
i
o
n
.
.
.
"

P
l
o
t
C
o
x
p
h

"
c
o
x
p
h
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
P
l
o
t

t
e
r
m
s
i
n

C
o
x

m
o
d
e
l
"

T
e
r
m
P
l
o
t
s

"
c
o
x
p
h
P
(
)

&
&
!
h
i
g
h
O
r
d
e
r
T
e
r
m
s
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
P
l
o
t

s
u
r
v
i
v
a
l
-
r
e
g
r
e
s
s
i
o
n

d
f
b
e
t
a
s
"

C
o
x
D
f
b
e
t
a
s

"
c
o
x
p
h
P
(
)
|
|

s
u
r
v
r
e
g
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
P
l
o
t

s
u
r
v
i
v
a
l
-
r
e
g
r
e
s
s
i
o
n

d
f
b
e
t
a
"

C
o
x
D
f
b
e
t
a

"
c
o
x
p
h
P
(
)

|
|
s
u
r
v
r
e
g
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
P
l
o
t

n
u
l
l

M
a
r
t
i
n
g
a
l
e
r
e
s
i
d
u
a
l
s
"

M
a
r
t
i
n
g
a
l
e
P
l
o
t
s

"
c
o
x
p
h
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
x
-
m
o
d
e
l
p
a
r
t
i
a
l
-
r
e
s
i
d
u
a
l
p
l
o
t
s
"

P
a
r
t
i
a
l
R
e
s
P
l
o
t
s

"
c
o
x
p
h
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

F
ig

u
re

2
0
:

T
h
e
m
e
n
u
s
.
t
x
t

fi
le

fo
r

th
e
R
cm

d
rP

lu
gin

.su
rv
ival

p
ackage.

S
om

e
of

th
e

lin
es

in
th

e
fi
le

are
w

rap
p

ed
to

fi
t

on
th

e
p
age.

Journal of Statistical Software 25

example, the first directive in Figure 20 defines a new menu named survivalMenu,
while the second directive installs a menu item under the survivalMenu menu.

� The third field specifies the name of the parent menu for a newly defined submenu (such
as statisticsMenu for survivalMenu), or one of two operations: command for a menu
item (as in the second directive in Figure 20), or cascade to place a submenu under its
parent.

� The remaining fields apply to item directives. The fourth field specifies a label, as a
character string enclosed in quotes, for the menu or menu item. By convention, a menu
item that leads to a dialog box ends in

� The fifth field specifies the parent menu for a cascade operation, or a callback function
for a menu item—the name of an R function to be invoked when the menu item is
selected by the user.

� The sixth field specifies an optional R command to be executed to determine whether
a menu item is activated or, alternatively, “grayed out.” This expression, enclosed in
quotes, should return the logical value TRUE or FALSE. The Rcmdr package provides
a variety of “predicate” functions for testing commonly used conditions for menu-item
activation; for example, the function activeDataSetP returns TRUE if there is an active
data set and FALSE otherwise.

� The seventh, and final, field is also optional—a quoted R command that evaluates to
TRUE or FALSE, and determines whether a menu or menu item is installed; for exam-
ple, the command packageAvailable(’survival’) is TRUE if the survival package is
installed on the user’s system and FALSE otherwise.

Missing fields in the menu.txt file are specified with the place-holder "", and may be omitted
if they occur at the end of a line. At startup, the Rcmdr processes menu directives sequentially,
and so, for example, a menu (such as survivalMenu) must be defined before menu items can
be installed in it.

Callback functions may generate R commands directly or, more commonly, construct dialog
boxes that solicit user input to formulate commands. An example of the former is shown in
Figure 21, a callback function that produces index plots of dfbetas for Cox regression models
and parametric survival models, accessed through Models → Graphs → Plot survival

regression dfbetas (see Figure 13 on page 16 for an example). As a general matter, callback
functions take no arguments. As is typical, CoxDfbetas constructs R commands as character
strings and passes these to the Rcmdr-supplied function doItAndPrint, which causes the
command to be executed; entered into the R Commander script window; and entered into
the R Commander output window, along with the printed output, if any, generated by the
command. The logger command, invoked near the end of CoxDfbetas, simply enters a
command into the script and output windows without executing it. CoxDfbetas also makes
use of the Rcmdr ActiveModel() command to return the name of the active statistical model.
Rcmdr-supplied functions such as doItAndPrint and ActiveModel are documented in the on-
line help file ?Rcmdr.Utilities, and described in Fox (2005) and Fox (2007).

Figure 22 shows a typical callback function, Survdiff, for creating an R Commander dialog
box, in this case for comparing survival functions in different strata via the survtest function

26 RcmdrPlugin.survival: Survival Analysis with the R Commander

CoxDfbetas <- function(){

command <- paste(".dfbetas <- as.matrix(residuals(",

ActiveModel(), ', type="dfbetas"))', sep = "")

doItAndPrint(command)

command <- if (coxphP())

paste("colnames(.dfbetas) <- names(coef(",

ActiveModel(), "))", sep = "")

else paste("colnames(.dfbetas) <- rownames(summary(",

ActiveModel(), ")$table)", sep = "")

doItAndPrint(command)

ncol <- ncol(.dfbetas)

doItAndPrint(paste(".mfrow <- par(mfrow = mfrow(", ncol, "))", sep = ""))

for (col in colnames(.dfbetas)){

doItAndPrint(paste('plot(.dfbetas[,"', col, '"])', sep = ""))

doItAndPrint("abline(h=0, lty=2)")

}

doItAndPrint("par(mfrow=.mfrow)")

logger("remove(.dfbetas, .mfrow)")

remove(.dfbetas, .mfrow, envir = .GlobalEnv)

}

Figure 21: Callback function CoxDfbetas to produce index plots of dfbetas in Cox models
and parametric survival models (produced by the survreg function).

in the survival package (see Figure 8 on page 11, along with the associated output). The
Survdiff function makes use of several Rcmdr-supplied utilities, including:

� initializeDialog to set up the dialog box;

� getSelection to return the selection from a list box;

� errorCondition to signal a user error;

� trim.blanks to remove leading and trailing blanks from a text string;

� doItAndPrint to execute the command generated from the dialog;

� OKCancelHelp to create the standard set of Rcmdr buttons at the bottom of the dialog;

� Factors to ascertain the names of factors (i.e., categorical variables) in the active data
set;

� variableListBox to create a variable list box;

� getFrame to return the enclosing frame of a variable list box;

� labelRcmdr to create a standard Rcmdr label widget;

� dialogSuffix to perform a variety of housekeeping tasks to complete the dialog; and

Journal of Statistical Software 27

� the getDialog and putDialog functions to permit the dialog to “remember” its state
from one invocation to the next, a new facility introduced in version 1.7-0 of the Rcmdr.5

The defaults provided to getDialog are used if previous values haven’t been stored, and
dialog state is refreshed when the data set changes or when the Refresh button is pressed
in a dialog.

Other commands used in the dialog are provided by the RcmdrPlugin.survival package:

� when there are two time variables selected, startStop determines which is the start
and which the end of a period of observation;

� numericOrDate returns the names of numeric and date variables in the active data set.

Several commands are provided directly by the tcltk package: tclvalue, tkfocus, tkframe,
tclVar, tkscale, and tkgrid. Finally, the gettext function, which is part of base R, makes
provision for messages and other text in the RcmdrPlugin.survival package to be translated
from English into other languages, a feature shared with Rcmdr package. Currently, four
translations are available for the RcmdrPlugin.survival package, into Brazilian Portuguese,
French, Russian, and Spanish.

The RcmdrPlugin.survival package also provides some facilities that could have been included
in the survival package but were not, such a plot method for coxph objects and a quantile

method for survfit objects.

5. Concluding remarks: Design challenges and limitations

It is difficult, and probably ill-advised, to expose all of the facilities of complex statistical
software such as the survival package through a GUI: A complete GUI for the survival package
would likely be hard to use. On the other hand, to the extent that the work-flow in a statistical
analysis can be decomposed into semi-independent operations of manageable complexity, it
should be possible to provide menus and dialog boxes to perform these operations. This is
essentially the approach that is taken in the R Commander, and that approach is inherited
by the survival-analysis plug-in described in this paper.

Although it might at first blush seem counter-intuitive, we believe that the object-orientation
of R, and in particular of the statistical modeling functions in R, facilitates the development
of GUIs, because the encapsulation of a statistical model, for example, in an R object allows
us to modularize the process of data analysis, providing menu items and dialogs for standard
manipulation of the model. This approach also fits well with the essentially iterative character
of statistical modeling—as, of course, does the canonical command-driven approach in R.
Contrast this with software in which all operations related to a statistical model must be
specified in a single dialog or command, typically producing voluminous output. Similarly,
the fact that R data frames are modifiable objects allows us to add information, subsequently
available to the GUI, that is specifically relevant to survival analysis—such as the names of
time and event variables in the data set.

5This mechanism is activated by setting options(Rcmdr = list(retain.selections = TRUE)), which is
the default as of Rcmdr version 1.8-1

28 RcmdrPlugin.survival: Survival Analysis with the R Commander

Survdiff <- function(){

require("survival")

defaults <- list(time1 = NULL, event = NULL, strata = NULL, rho = "0",

subset = NULL)

dialog.values <- getDialog("Survdiff", defaults)

if (!activeDataSetP()) return()

currentModel <- FALSE

initializeDialog(title = gettext("Compare Survival Functions",

domain = "R-RcmdrPlugin.survival"))

onOK <- function(){

time <- getSelection(timeBox)

if (length(time) == 1) time1 <- time

else {

errorCondition(recall = Survdiff,

message = gettext("You must select a time-to-event variable.",

domain = "R-RcmdrPlugin.survival"))

return()

}

event <- getSelection(eventBox)

if (length(event) == 0) {

errorCondition(recall = Survdiff,

message = gettext("You must select an event indicator.",

domain = "R-RcmdrPlugin.survival"))

return()

}

strata <- getSelection(strataBox)

if (length(strata) == 0) {

errorCondition(recall = Survdiff,

message = gettext("You must select strata.",

domain = "R-RcmdrPlugin.survival"))

return()

}

rho <- tclvalue(rhoValue)

subset <- tclvalue(subsetVariable)

putDialog("Survdiff",

list(time1 = time1, event = event, strata = strata, rho = rho,

subset = subset))

closeDialog()

if (trim.blanks(subset) == gettext("<all valid cases>",

domain = "R-RcmdrPlugin.survival") || trim.blanks(subset) == ""){

subset <- ""

}

else{

subset <- paste(", subset=", subset, sep = "")

}

formula <- paste("Surv(", time1, ",", event, ")", sep = "")

formula <- paste(formula, " ~ ", paste(strata, collapse = " + "), sep = "")

command <- paste("survdiff(", formula, ", rho=", rho,

', data=', ActiveDataSet(), subset, ")", sep = "")

Figure 22: Callback function Survdiff to produce a dialog box for testing differences in
survival functions (continued on the next page).

Journal of Statistical Software 29

doItAndPrint(command)

tkfocus(CommanderWindow())

}

OKCancelHelp(helpSubject = "survdiff", reset = "Survdiff")

survFrame <- tkframe(top)

.activeDataSet <- ActiveDataSet()

.numeric <- NumericOrDate()

.factors <- Factors()

time1 <- if(!is.null(dialog.values$time1)) dialog.values$time1

else eval(parse(text = paste('attr(', .activeDataSet, ', "time1")', sep = "")))

time1 <- if (!is.null(time1)) which(time1 == .numeric) - 1

event <- if(!is.null(dialog.values$event))dialog.values$event

else eval(parse(text = paste('attr(', .activeDataSet, ', "event")', sep = "")))

event <- if (!is.null(event)) which(event == Numeric()) - 1

strata <- if(!is.null(dialog.values$strata)) dialog.values$strata

else eval(parse(text = paste('attr(', .activeDataSet, ', "strata")', sep="")))

strata <- if (!is.null(strata)) which(is.element(.factors, strata)) - 1 else -1

timeBox <- variableListBox(survFrame, NumericOrDate(),

title = gettext("Time to event\n(select one)",

domain = "R-RcmdrPlugin.survival"),

initialSelection = time1)

eventBox <- variableListBox(survFrame, Numeric(),

title = gettext("Event indicator\n(select one)",

domain = "R-RcmdrPlugin.survival"),

initialSelection = event)

strataBox <- variableListBox(survFrame, Factors(),

title = gettext("Strata\n(select one or more)",

domain = "R-RcmdrPlugin.survival"),

selectmode = "multiple", initialSelection = strata)

rhoFrame <- tkframe(top)

rhoValue <- tclVar(dialog.values$rho)

rhoSlider <- tkscale(rhoFrame, from = 0, to = 1, showvalue = TRUE,

variable = rhoValue, resolution = 0.1, orient = "horizontal")

subsetBox(subset.expression = dialog.values$subset)

tkgrid(getFrame(timeBox), labelRcmdr(survFrame, text = " "),

getFrame(eventBox), sticky = "sw")

tkgrid(labelRcmdr(survFrame, text = ""))

tkgrid(getFrame(strataBox), sticky = "nw")

tkgrid(survFrame, sticky = "nw")

tkgrid(labelRcmdr(rhoFrame, text = "rho", foreground = "blue"), rhoSlider,

sticky = "sw")

tkgrid(rhoFrame, sticky = "nw")

tkgrid(labelRcmdr(top, text = ""))

tkgrid(subsetFrame, sticky = "w")

tkgrid(labelRcmdr(top, text = ""))

tkgrid(buttonsFrame, sticky = "w")

dialogSuffix(rows = 9, columns = 1)

}

Figure 22: (concluded) Callback function Survdiff to produce a dialog box for testing dif-
ferences in survival functions.

30 RcmdrPlugin.survival: Survival Analysis with the R Commander

To the extent that the work-flow of data analysis isn’t easily broken into relatively simple
steps, however, the design of a GUI becomes challenging. We believe that this is particularly
true of data manipulation, where it is difficult in a GUI to make provision for all eventualities
that commonly arise, and where many data sets have idiosyncratic features. It is, therefore,
often much more natural to manipulate data by writing simple programs than through a GUI,
and the R user who takes the time to master simple programming is consequently at a distinct
advantage.

A case in point is the dialog provided by the RcmdrPlugin.survival package for reshaping
data from wide to long form, discussed briefly in Section 3. As we explained, this dialog is
capable of handling wide data sets with a regular structure in which time-varying covariates
are measured at equally spaced intervals of the same precision as the time-to-event variable
in the data set. The unfold function that the dialog invokes can handle more complex
time-varying covariate structures, and other facilities in R, such as the standard reshape

function and the reshape package (Wickham 2007) provide still greater flexibility. Writing a
more general GUI for any of these facilities would be challenging and quite likely of dubious
value. Indeed, given the requisite programming skill, it is often simpler to write a quick-
and-dirty function for manipulating data than to use a general function. Notwithstanding
these general caveats, however, we hope to improve the survival-data handling facilities of the
RcmdrPlugin.survival as the opportunity to do so arises.

The R Commander plug-in architecture has the advantage of embedding a GUI for a particular
area of data analysis, such as survival analysis, in a more general framework, providing, for
example, substantial infrastructure for reading, manipulating, and summarizing data. The R
Commander also provides some general facilities to the plug-in developer for writing menus
and dialogs. Of course, the resulting plug-in must conform to the general structure of the R
Commander, which is oriented towards the step-by-step analysis of one rectangular data set
at a time.

We must confess to having mixed feelings about GUIs for R, and for statistical software more
generally. We believe that most serious users of R would be better served by learning to write
commands. Nevertheless, GUIs such as the R Commander do have a legitimate role: for use in
basic and perhaps intermediate-level statistics courses, where teaching complex computational
tools such as R can distract from the principal focus on statistical ideas; among casual users
of statistical software, whose memory of commands would otherwise be taxed; and in other
special circumstances where ease of use is critical.

Acknowledgments

Work on the Rcmdr and RcmdrPlugin.survival packages was supported by a grant to John
Fox from the Social Sciences and Humanities Research Council of Canada and by the Senator
William McMaster Chair in Social Statistics at McMaster University. We are grateful to two
anonymous referees for helpful comments on an earlier version of this paper.

References

Allison PD (1995). Survival Analysis Using the SAS System: A Practical Guide. SAS Institute,

Journal of Statistical Software 31

Cary, NC.

Carvalho MS, Andreozzi VL, Codeço CT, Barbosa, Serrano MT, Shimakura SE (2005).
Análise de Sobrevida: Teoria e Aplicaçõnes em Saúde. Editora FIOCRUZ, Rio de Janeiro.

Carvalho MS, Henderson R, Shimakura S, Sousa IPSC (2003). “Survival of Hemodialysis
Patients: Modleing Differences in Risk of Dialysis Centers.” International Journal for
Quality in Health Care, 15(3), 189–196.

Dalgaard P (2001). “A Primer on the R-Tcl/Tk Package.” R News, 1(3), 27–31. URL
http://CRAN.R-project.org/doc/Rnews/.

Dalgaard P (2002). “Changes to the R-Tcl/Tk package.” R News, 2(3), 25–27. URL http:

//CRAN.R-project.org/doc/Rnews/.

Fox J (2005). “The R Commander: A Basic-Statistics Graphical User Interface to R.” Journal
of Statistical Software, 14(9), 1–42. URL http://www.jstatsoft.org/v14/i09/.

Fox J (2007). “Extending the R Commander by ‘Plug-In’ Packages.” R News, 7(3), 46–52.
URL http://CRAN.R-project.org/doc/Rnews/.

Fox J, Weisberg S (2011). An R Companion to Applied Regression. 2nd edition. Sage Publi-
cations, Thousand Oaks.

Moore DS (2010). The Basic Practice of Statistics. 5th edition. W. H. Freeman and Company,
New York.

R Development Core Team (2012a). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

R Development Core Team (2012b). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9, URL http://www.R-project.org/.

Rossi PH, Berk RA, Lenihan KJ (1980). Money, Work, and Crime: Some Experimental
Results. Academic Press, New York.

Therneau T (2012). survival: A Package for Survival Analysis in S. R package version 2.36-
12, URL http://CRAN.R-project.org/package=survival.

Therneau TM, Grambsch PM (2000). Modeling Survival Data: Extending the Cox Model.
Springer-Verlag, New York.

Welch BB, Jones K (2003). Practical Programming in Tcl and Tk. 4th edition. Prentice Hall
PTR, Upper Saddle River.

Wickham H (2007). “Reshaping Data with the reshape Package.” Journal of Statistical
Software, 21(12), 1–20. URL http://www.jstatsoft.org/v21/i12/.

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.jstatsoft.org/v14/i09/
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=survival
http://www.jstatsoft.org/v21/i12/

32 RcmdrPlugin.survival: Survival Analysis with the R Commander

Affiliation:

John Fox
Department of Sociology
McMaster University
Hamilton, Ontario, Canada L8S 4M4
E-mail: jfox@mcmaster.ca
URL: http://socserv.socsci.mcmaster.ca/jfox/

Marilia Sá Carvalho
Escola Nacional de Saúde Pública
FIOCRUZ
Rua Leopoldo Bulhôes
1480/8deg Andar
Rio de Janeiro, RJ 210041-210, Brazil
E-mail: carvalho@procc.fiocruz.br

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 49, Issue 7 Submitted: 2010-12-26
June 2012 Accepted: 2011-12-28

mailto:jfox@mcmaster.ca
http://socserv.socsci.mcmaster.ca/jfox/
mailto:carvalho@procc.fiocruz.br
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	A brief overview of the R Commander and plug-ins
	Using the RcmdrPlugin.survival package
	Example: Brazilian hemodialysis data
	Example: Recidivism data

	The design of the RcmdrPlugin.survival package
	Concluding remarks: Design challenges and limitations

