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Abstract

The purpose of this vignette is to demonstrate methods for estimating and backtesting
Value-at-Risk (VaR) using various methods as outlined in Chapter 11 of Foundations of
Risk Management.
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1 Stochastic Behavior of Returns

Computing the Value-at-Risk (VaR) measure requires quantifying the tail of the distribution of
returns. One approach is to assume the asset returns follow a specific distribution, for example
a normal distribution. This requires assumptions about the parameters needed to characterize
the distribution. A common distribution considered is the normal distribution. However, it is
often seen that asset returns tend to depart from the normal distribution. Asset returns tend
to be fat-tailed, skewed, and unstable.

1.1 The Distribution of Conoco Phillips Weekly Returns

Here we consider the weekly returns of Conoco Phillips (COP). We compare the empirical
distribution to a normal distribution to better understand the characteristics of COP weekly
returns.

1



# Load the package and data

library(GARPFRM)

data(crsp_weekly)

R <- largecap_weekly

R.COP <- R[,"COP"]

Plot the weekly returns

plot(R.COP, main="COP Weekly Returns")
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COP Weekly Returns

Here we plot the histogram with a kernel density estimate and normal curve overlayed to
better understand the distribution of COP returns. Plotting the distribution of returns will give
us a better idea if COP returns have ”fat tails” or is skewed relative to a normal distribution.

hist(R.COP, breaks=50, main="Histogram of COP Returns",

col="lightblue", probability=TRUE)

lines(density(R.COP), lwd=2)

curve(dnorm(x, mean=mean(R.COP), sd=sd(R.COP)),
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add=TRUE, col="red", lty=2, lwd=2)

rug(R.COP)

legend("topleft", legend=c("density", "normal"),

col=c("black", "red"), lty=c(1, 2), bty="n")
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Here we zoom in on the left tail and see that indeed, there are more extreme left tail events
than predicted by a normal distribution.

hist(R.COP, breaks=50, main="Histogram of COP Returns",

col="lightblue", probability=TRUE,

xlim=c(min(density(R.COP)$x), -0.05))

lines(density(R.COP), lwd=2)

curve(dnorm(x, mean=mean(R.COP), sd=sd(R.COP)),

add=TRUE, col="red", lty=2, lwd=2)

rug(R.COP)

legend("topleft", legend=c("density", "normal"),

col=c("black", "red"), lty=c(1, 2), bty="n")
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Histogram of COP Returns
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We can also inspect a Quantile-Quantile plot and again we see that the COP weekly returns
exhibit a fat left tail.

chart.QQPlot(R.COP)
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2 VaR Estimation Approaches

2.1 Historical Standard Deviation

TODO: Content on how volatility changes over time.
Here we estimate historical standard deviation over a moving window using the most recent

6, 13, and 52 periods.

# Compute rolling standard deviation estimate

SD6 <- rollSD(R.COP, 6)

SD13 <- rollSD(R.COP, 13)

SD52 <- rollSD(R.COP, 52)

# Plot rolling standard deviation estimates

plot(SD6, type="n", main="Rolling Standard Deviation",

ylab="standard deviation")

lines(SD6, col="blue", lty=2)

lines(SD13, col="red")
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lines(SD52, lwd=2)

legend("topleft", legend=c("rollSD (6)", "rollSD(13)", "rollSD(52)"),

bty="n", lty=c(2, 1, 1), col=c("blue", "red", "black"), cex=0.8)
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We can see that volatility varies over time and using different widths of a moving window
result in different estimates.

2.2 Exponential Smoothing Volatility

Exponential smoothing is an approach of estimating volatility that gives more weight to more
recent information and less weight to distant information. In the Exponentially Weighted
Moving Average (EWMA) Model, the weights decrease exponentially as we move backwards
through time.

This weighting scheme leads to simple formula for updating volatility estimates. The pre-
dictive version of the variance rate of day n is given as

σ̂2
n = λσ̂2

n−1 + (1 − λ)u2n−1 (1)

where:
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σ̂2
n−1 is the estimated variance rate of period n− 1

u2n−1 is the squared return of preiod n− 1

λ is a constant between 0 and 1

A data driven approach for selecting a value for λ is to determine the λ that minimizes the
mean squared error between the realized volatility and the estimated volatility from the EWMA
model. The realized volatility defined as the equally weighted average of the standard deviation
of the previous n periods.

Here we fit an EWMA model to the COP weekly returns to estimate VaR. Note that we
set lambda=NULL in the EWMA function. If lambda = NULL, the optimal λ value is estimated
by minimizing the mean squared error between the estimated volatility and realized volatility.
Here we compute realized volatility as the equally weighted average of the standard deviation
of the previous 13 periods.

# Estimating volatility

# EWMA Model

initialWindow <- 100

n <- 13

type <- "volatility"

# Fit an EWMA model to estimate volatility

# Choose an optimal lambda parameter that minimizes the mean squared error

# betwen realized volatility and the EWMA model volatility estimate

ewmaModel <- EWMA(R.COP, lambda=NULL, initialWindow, n, type)

ewmaModel

## EWMA Estimate

##

## Parameters

## lambda: 0.8872

## initialWindow: 100

## type: volatility

##

## Final Period EWMA Estimate:

## COP

## 2010-12-28 0.03188

# One period ahead forecast

ewmaVolForecast <- forecast(ewmaModel)

# VaR using EWMA volatility forecast

# Here we assume the expected value of returns is simply the mean of returns

mean(R.COP) + as.numeric(ewmaVolForecast) * qnorm(0.05)

## [1] -0.04719
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2.3 GARCH Model Volatility

We now demonstrate the generalized autoregressive conditional heteroskedasticity (GARCH)
as presented by Bollerslev in 1986 as a way to estimate volatility. The general GARCH(p,q)
model calculates σ2

n from the most recent p observations of u2 and the most recent q estimates
of σ2

n. The GARCH(1,1) model refers to the most recent observation of u2 and the most recent
estimate of σ2

n. The GARCH(1,1) is a popular model and the one we will focus on. The equation
for the GARCH(1,1) model is

σ2
n = γVL + αu2n−1 + βσ2

n−1 (2)

where:

γ is the weight assigned to VL

VL is the long-run average variance rate

alpha is the weight assigned to u2n−1

un−1 is the squared returns of preiod n− 1

β is the weight assigned to σ2
n−1

σ2
n−1 is the estimated variance rate of period n− 1

The weights must sum to 1 such that

γ + α+ β = 1 (3)

It should be noted that the EWMA model discussed in the previous section is a special case
of the GARCH(1,1) model where γ = 0, α = 1 − λ, and β = λ.

A more common form of the model is obtained by setting ω = γVL such that the equation
for the model is

σ2
n = ω + αu2n−1 + βσ2

n−1 (4)

Here we specify and fit a GARCH model to the COP weekly returns to estimate VaR.

# Specify and fit a GARCH Model

garchModel <- uvGARCH(R.COP, armaOrder=c(0,0))

# One period ahead forecast of GARCH model

garchForecast <- forecast(garchModel, 1)

# VaR forecast using GARCH Model

fitted(garchForecast) + sigma(garchForecast) * qnorm(0.05)

## 2010-12-28

## T+1 -0.05074
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3 Historic Simulation

Now we move to estimating VaR using historical data. Using historical data to estimate VaR is
a simple and convenient method that has the advantage of requiring zero parameters to estimate
except for the moving window width. Another advantage is that no distributional assumptions
need to be made. If the distribution of returns is skewed or fat-tailed, this will will be captured
in the estimate.

In theory, we could accurately estimate percentiles of a distribution given an infinite amount
of historical data. This is data intensive and unrealistic. In reality, we only have a sample of
the population of asset returns. One method to address this is the bootstrap.

Bootstrapping is a statistical method for estimating the sampling distribution of an estimator
by sampling with replacement from the original sample. Bootstrap resampling generates data
by sampling with replacement from the original observed data. One key assumption is that
returns are independent. By random resampling, we break any pattern of time variation in
returns. Another drawback is that resampling requires large sample sizes and is relatively
computationally intensive.

Here we estimate VaR of COP weekly returns at the 5% α level.

# Historical VaR estimate at the 5% level

historicalVaR5 <- VaR(R.COP, p=0.95, method="historical")

# VaR estimate assuming a normal distribution

normalVaR5 <- VaR(R.COP, p=0.95, method="gaussian")

# Bootstrapped historical VaR estimate

bootHistVaR5 <- bootVaR(R.COP, p=0.95, method="historical")

rnames <- c("Historical", "Normal", "Bootstrap Historical")

matrix(c(historicalVaR5, normalVaR5, bootHistVaR5[1,]),

nrow=3, ncol=1, dimnames=list(rnames, "VaR (5%)"))

## VaR (5%)

## Historical -0.05832

## Normal -0.05905

## Bootstrap Historical -0.05859

hist(R.COP, main="Histogram of COP returns", breaks=50,

col="blue", probability=TRUE)

lines(density(R.COP), lwd=2)

curve(dnorm(x, mean=mean(R.COP), sd=sd(R.COP)),

add=TRUE, col="red", lty=2, lwd=2)

rug(R.COP)

arrows(historicalVaR5, 0, historicalVaR5, 6, code=1, lwd=2)

text(historicalVaR5, 6, labels="historical VaR (5%)", pos=2, cex=0.7)

9



Histogram of COP returns
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We now estimate VaR of COP weekly returns at the 1% α level. As we move further in
the tail, we see that the VaR estimate assuming normally distributed returns differes from the
historical VaR estimate.

# Estimating VaR at the 1% level

historicalVaR1 <- VaR(R.COP, p=0.99, method="historical")

normalVaR1 <- VaR(R.COP, p=0.99, method="gaussian")

bootHistVaR1 <- bootVaR(R.COP, p=0.99, method="historical")

matrix(c(historicalVaR1, normalVaR1, bootHistVaR1[1,]),

nrow=3, ncol=1, dimnames=list(rnames, "VaR (1%)"))

## VaR (1%)

## Historical -0.10671

## Normal -0.08468

## Bootstrap Historical -0.10522
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hist(R.COP, main="Histogram of COP returns", breaks=50,

col="blue", probability=TRUE)

lines(density(R.COP), lwd=2)

curve(dnorm(x, mean=mean(R.COP), sd=sd(R.COP)),

add=TRUE, col="red", lty=2, lwd=2)

rug(R.COP)

arrows(historicalVaR1, 0, historicalVaR1, 4, code=1, lwd=2)

text(historicalVaR1, 4, labels="Historical VaR (1%)", pos=2, cex=0.7)

arrows(normalVaR1, 0, normalVaR1, 6, code=1, lwd=2)

text(normalVaR1, 6, labels="Normal VaR (1%)", pos=2, cex=0.7)
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4 Return Aggregation

Here we consider a portfolio of the first 10 assets in the largecap weekly dataset.
Now consider computing VaR for a portfolio with a number of positions. One method

is to use the covariance matrix of asset returns to compute the volatility and VaR. Another
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approach is return aggregation where the historical returns of each asset are weighted by the
relative position size and aggregated.

The VarCov approach assumes that asset returns are jointly normal and the return on
the portfolio is also normally distributed. The RiskMetricsTM approach is commonly termed
the Variance-Covariance (VarCov) approach. Using this approach, a portfolio of N positions
requres N volatility estimates and N(N − 1)/2 correlation estimates. For large portfolios with
a large number of positions, this is potentially a very large number which exposes the model to
estimation error.

A key concern with the VarCov approach is the correlation estimate. As we saw with
volatility in a previous section, correlation changes over time. For example, if correlations
increase when markets fall, the VaR estimate of the position may be understated.

The return aggregation approach is a ”simulation” method where the returns are calculated
using historical data, but the weights of each position today. For example, we calculate the
returns we would have earned over the most recent K periods by pretending the relative postions
we hold today are the same positions we held K days ago. This approach has the advantage
that no parameters need to be estimated (not considering the K lookback period). This means
we do not have to estimate correlation. If markets fall and move together, this will be captured
by the return aggregation approach. This approach will also capture fatter tails relative to a
normal distribution.

Suppose we have an equally weighted portfolio consisting of the first 10 assets in the large-
cap weekly dataset and use a lookback period of K = 52.

# Asset returns

R <- largecap_weekly[, 1:10]

# Lookback period

K <- 52

# Set the weights K periods ago

weights <- xts(matrix(rep(1 / 10, 10), nrow=1), index(R)[nrow(R) - K])

# Calculate the portfolio returns for the most recent K periods

R.portfolio <- Return.rebalancing(R, weights)

Here we plot the aggregated portfolio returns and histogram of returns.

par(mfrow=c(2,1))

# Portfolio returns

plot(R.portfolio, main="Portfolio Returns")

# Histogram of portfolio returns

hist(R.portfolio, main="Histogram of Portfolio returns", breaks=50,

col="blue", probability=TRUE)

lines(density(R.portfolio), lwd=2)

curve(dnorm(x, mean=mean(R.portfolio), sd=sd(R.portfolio)),

add=TRUE, col="red", lty=2, lwd=2)

rug(R.portfolio)
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par(mfrow=c(1,1))

Here we estimate the VaR of the portfolio using the aggregated returns. We can see that
the normal assumption underestimates the historical VaR estimate.

# Estimate the VaR of the portfolio using the last 52 periods

# Historical VaR estimate

portfVaR.HS <- VaR(R.portfolio, p=0.95, method="historical")

# Bootstrapped VaR estimate

portfVaR.BootHS <- bootVaR(R.portfolio, p=0.95, method="historical")

# Normal VaR estimate

portfVaR.normal <- VaR(R.portfolio, p=0.95, method="gaussian")

Now we estimate the portfolio VaR using the VarCov approach.
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# Use the most recent 52 periods to compute the sample covariance matrix

sampleCov <- cov(tail(R, 52))

# Convert the xts object of weights to a matrix

weights <- matrix(weights, ncol=1)

# Compute the portfolio VaR estimate using the VarCov approach with sample

# covariance matrix

portfVaR.cov <- sqrt(t(weights) %*% sampleCov %*% weights) * qnorm(0.05)

# Use EWMA model to compute variance covariance matrix

# EWMA model to compute variance covariance matrix

ewmaCov <- EWMA(tail(R, 52), lambda=0.9, initialWindow=10,

type="covariance")$estimate

# Compute the portfolio VaR estimate using the VarCov approach with EWMA

# model estimated covariance matrix

portfVaR.ewmaCov <- sqrt(t(weights) %*% ewmaCov %*% weights) * qnorm(0.05)

As discussed earlier, the correlation and covariance between assets change over time. To
demonstrate this, we plot the rolling correlation and rolling covariance estimates. For simplicity,
we only consider the first 2 assets.

# Compute rolling correlation estimates

cor13 <- rollCor(R[,1:2], 13)

cor26 <- rollCor(R[,1:2], 26)

# Compute rolling covariance estimates

cov13 <- rollCov(R[,1:2], 13)

cov26 <- rollCov(R[,1:2], 26)

# Plot rolling correlation estimates

plot(cor13, type="n", main="Rolling Correlation",

ylab="correlation")

lines(cor13, col="blue")

lines(cor26, col="red")

legend("topleft", legend=c("rollCor(13)", "rollCor(26)"),

bty="n", lty=c(1, 1), col=c("blue", "red"), cex=0.8)
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# Plot rolling covariance estimates

plot(cov13, type="n", main="Rolling Covariance",

ylab="covariance")

lines(cov13, col="blue")

lines(cov26, col="red")

legend("topleft", legend=c("rollCov(13)", "rollCov(26)"),

bty="n", lty=c(1, 1), col=c("blue", "red"), cex=0.8)
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Returning our focus back to the return aggregation approach. We can also compute the
portfolio VaR using methods we covered earlier when computing the VaR estimate of Conoco
Phillips (COP) returns.

# Portfolio VaR estimate with EWMA model

ewmaModel <- EWMA(R.portfolio, lambda=NULL, initialWindow=10, n, type)

# One period ahead forecast

ewmaVolForecast <- forecast(ewmaModel)

# VaR using EWMA volatility forecast

# Here we assume the expected value of returns is simply the mean of returns

portfVaR.EWMA <- mean(R.portfolio) + as.numeric(ewmaVolForecast) * qnorm(0.05)

Here we compare each portfolio VaR estimate.

dfVaR <- t(data.frame(portfVaR.HS, portfVaR.BootHS[1,], portfVaR.normal,

portfVaR.cov, portfVaR.ewmaCov, portfVaR.EWMA))

rownames(dfVaR) <- c("portfVaR.HS", "portfVaR.BootHS", "portfVaR.normal",
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"portfVaR.cov", "portfVaR.ewmaCov", "portfVaR.EWMA")

dfVaR

## VaR

## portfVaR.HS -0.04402

## portfVaR.BootHS -0.04246

## portfVaR.normal -0.03911

## portfVaR.cov -0.04319

## portfVaR.ewmaCov -0.03936

## portfVaR.EWMA -0.03117

5 VaR Backtesting

TODO: Comments on VaR backtesting
Here we consider an equal weight portfolio, rebalanced annually, of the first 10 assets of the

largecap weekly dataset.

R <- largecap_weekly[, 1:10]

# Annual rebalance dates

rebalanceDates <- index(R)[endpoints(index(R), on="years")]

# Create an xts object of weights at the specified rebalance dates

weights <- xts(matrix(1 / 10, nrow=length(rebalanceDates),

ncol=10), rebalanceDates)

# Calculate the aggregate portfolio return

R.portfolio <- Return.rebalancing(R, weights)

par(mfrow=c(2,1))

# Portfolio returns

plot(R.portfolio, main="Portfolio Returns")

# Histogram of portfolio returns

hist(R.portfolio, main="Histogram of Portfolio returns", breaks=50,

col="blue", probability=TRUE)

lines(density(R.portfolio), lwd=2)

curve(dnorm(x, mean=mean(R.portfolio), sd=sd(R.portfolio)),

add=TRUE, col="red", lty=2, lwd=2)

rug(R.portfolio)
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par(mfrow=c(1,1))

Here we fit a GARCH(1,1) model to the portfolio returns and run a backtest on the VaR
estimates to test for the number of violations.

garchModel <- uvGARCH(R.portfolio, armaOrder=c(0,0))

btVaR.GARCH <- backtestVaR.GARCH(garchModel, p=0.95, refitEvery=5, window=100)

btVaR.GARCH

## Value-at-Risk Backtest

##

## Returns Data:

## NULL

##

## 1 - p tail quantile:

## [1] 0.05

##
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## Number of Violations:

## GARCH VaR alpha(5%)

## 31

##

## Violations (%):

## GARCH VaR alpha(5%)

## 6.2

# Plot the GARCH VaR backtest

plot(btVaR.GARCH, pch=20, legendLoc="topright")
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Now we perform a VaR backtest using historical VaR estimates.

# Run a VaR backtest on portfolio returns

# Compute VaR estimate using gaussian, historical, and modified methods

backtest <- backtestVaR(R.portfolio, window=100, p=0.95,

method=c("gaussian", "historical", "modified"))

backtest
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## Value-at-Risk Backtest

##

## Returns Data:

## [1] "portfolio.returns"

##

## 1 - p tail quantile:

## [1] 0.05

##

## Number of Violations:

## gaussian VaR ( 5 %) historical VaR ( 5 %) modified VaR ( 5 %)

## 34 35 32

##

## Violations (%):

## gaussian VaR ( 5 %) historical VaR ( 5 %) modified VaR ( 5 %)

## 5.882 6.055 5.536

# plot the VaR backtest

plot(backtest, pch=18, legendLoc="topright")
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