
Dynamic Treatment Regimes in R using DynTxRegime:

Shannon T. Holloway, Marie Davidian, Eric B. Laber, Kristin A. Linn,
Leonard A. Stefanski, Anastasios Tsiatis, Baqun Zhang, and Min Zhang

March 24, 2015

Abstract

A goal of personalized medicine is to use the unique characteristics of individual
patients to customize treatments and therapies and thereby optimize long-term clinical
outcomes. A dynamic treatment regime formalizes this process as a sequence of decision
rules that map current and past patient information to a recommended treatment or
therapy. As the interest in personalized medicine has grown in recent years, so has
the need for powerful and flexible estimators of optimal treatment regimes that can
be used with either observational or randomized clinical trial data. The DynTxRegime
package implements several statistical methods for estimating an optimal treatment
regime: Q-learning, Interactive Q-learning (IQ-learning), value-search estimators from
a missing data perspective, value-search estimators from a classification perspective,
and value-search estimators from a coarsened data perspective. In this vignette, we
briefly describe the main structure behind each method and discuss in detail their
implementation in the DynTxRegime package.

Keywords: Interactive Q-learning; Q-learning; Dynamic Treatment Regimes; Dynamic Pro-
gramming; doubly robust; augmented inverse probability weighted estimator; inverse prob-
ability weighted estimator.

1 Introduction

In practice, clinicians and intervention scientists must adapt treatment recommendations in
response to the evolving health status of each patient. A dynamic treatment regime (DTR)
formalizes the treatment process as a sequence of decision rules that map patient information
to a recommended treatment. For a prespecified outcome, a DTR is said to be optimal if it
yields the maximal expected outcome when applied to assign treatment to a population of
interest.

1

Q-learning (Watkins and Dayan, 1992; Murphy, 2005; Schulte et al., 2012) is one approach
used to estimate an optimal DTR using data from a clinical trial or observational study. At
each decision point, regression models based on available patient information are postulated
for the outcome. The method is implemented through a backward-recursive fitting procedure
based on a dynamic programming algorithm (Bather, 2000). Under certain assumptions and
correct specification of the models, Q-learning leads to a consistent estimation of the optimal
regime. Q-learning is implemented in DynTxRegime through qLearn().

Q-learning involves modeling nonsmooth, nonmonotone functions of the data. Nonmono-
tonicity complicates the regression function, while nonsmoothness imparts nonregularity to
Q-learning estimators. Interactive Q-learning (IQ-learning) was proposed by Linn et al.
(2014) to model the data before applying the necessary nonmonotone, nonsmooth opera-
tions. The method uses standard interactive model building techniques that involve condi-
tional mean and variance modeling of smooth transformations of the data. As such, this
method often results in better fitting and more interpretable models than are obtained us-
ing Q-learning. In DynTxRegime, the method is defined for two-stage treatment regimes
with binary treatments, the steps of which are implemented as iqLearnSS (), iqLearnFSM (),
iqLearnFSC (), and iqLearnFSV ().

In the single-decision-point setting, Zhang et al. (2012b) proposed an approach to the estima-
tion of an optimal treatment regime that maximizes an estimator for the so-called“value,”the
population mean outcome if all patients were to receive treatment according to the regime.
The value estimator is derived from a missing data analogy. The approach focuses on a
restricted class of treatment regimes indexed by a finite number of parameters, where the
forms of the regimes in the class depend on key subsets of patient information derived from
posited regression models or are prespecified on the grounds of interpretability or cost. The
method leads to estimated optimal regimes that achieve comparable performance to those
derived via Q-learning under correctly specified models and has the added benefit of protec-
tion against misspecification if a doubly robust outcome estimator is used. In Zhang et al.
(2013) the authors adapted the single-treatment-stage method to the multiple-decision-point
setting by reformulating the problem as one of monotone coarsening. Both of these methods
are implemented as optimalSeq() in the DynTxRegime package.

Zhang et al. (2012a) developed a general framework for estimating the optimal treatment
regime for single-decision-point analyses. The procedure for determining the optimal treat-
ment regime is recast as a weighted classification problem in which the optimal treatment
minimizes the expected weighted misclassification error. Within this framework, a variety of
outcome estimators can be used, including the doubly robust augmented inverse probability
weighted estimator (AIPWE) of Zhang et al. (2012b). In addition, the class of treatment
regimes does not need to be prespecified but is identified in a data-driven manner. This
method is implemented in DynTxRegime as optimalClass().

In the following sections, we describe the general framework of each method as implemented
in the DynTxRegime package and provide illustrative examples of the key capabilities.

2

1.1 Text Formatting Conventions

Throughout this manuscript, we will use the following conventions to differentiate between
package names, class names, functions, and arguments:

package
class

function()
argument

Table 1: Text formatting conventions.

1.2 Defining Regression Steps

All of the statistical methods implemented in DynTxRegime rely on at least one postulated
regression model. The choice of linear or non-linear models is not an inherent limitation
for any of these methods. As such, hard-coding a specific regression algorithm into the R

procedures would artificially limit the applicability of the implementation. Thus, we make
use of R package modelObj. This tool affords users the freedom to completely define each
regression step of an analysis. Though we briefly review the framework below, the reader is
referred to the vignette of modelObj for details of its use.

modelObj provides a “model object” framework for the development of new R packages,
through which the details of a regression step and subsequent predictions are defined by
the user. Specifically, a “model object” contains the model (model), the R function to be
used for the regression (solver.method), control parameters to be passed to the fitting
function (solver.args), the R function to be used to obtain predictions (predict.method),
and control parameters to be passed to the prediction function (predict.args). The only
requirement of this framework is that the specified fitting function must have a corresponding
prediction method.

The following illustrates how to create a so-called “model object.”

moExample <- buildModelObj(model = ~ x,

solver.method = 'glm',
solver.args = list('family'='binomial'),
predict.method = 'predict.glm',
predict.args = list('type'='response'))

moExample contains all of the information needed to perform a regression analysis and to
make predictions based on that analysis. The model is defined to be ∼ x. In this example,

3

the regression analysis is to be completed using the R glm() function. With the exception
of family, all formal arguments of glm() will use their default settings. The specification
of family=‘binomial’ in solver.args indicates that family will be set to ‘binomial’ rather
than its default value of ‘gaussian.’ Predictions will be obtained using predict.glm(). The
predict.args specification type=‘response’ indicates that any predictions will be on the
scale of the response. For most methods of DynTxRegime, this scaling for predictions is
required.

1.3 Standard Regression-Analysis Tools

In the illustrative examples provided in this vignette, we skip the usual exploratory tech-
niques that an analyst would employ to find the best-fitting models. These steps would only
distract from our main focus, which is to present the steps of the methods implemented in
DynTxRegime. Analysts who use these methods should employ standard data exploration
techniques. All models and decision rules estimated in the following sections are strictly
illustrative.

In an effort to facilitate responsible model-building, some standard regression-analysis tools
have been extended to the objects returned by all methods of DynTxRegime, i.e., objects of
class DynTxRegime. Most of these tools simply extend those defined for the class of object
returned by the model fitting function, e.g., coef () and plot().

The method coef (signature(object = “DynTxRegime”)) extends the coef () method available
for most R regression implementations. The structure of the extracted model coefficients
depends on the regression method. However, for standard model fitting classes it will be a
named numeric vector.

Method fitObject(signature(object = “DynTxRegime”)) extends the fitObject() method of
modelObj and returns the value object as defined for the fitting function, e.g., an object of
class lm or glm. The structure of the returned object depends on the regression method.
This function is useful when there are methods available for a model fitting class that cannot
be accessed through the DynTxRegime object directly, e.g., fitted.values() for class lm objects.

If defined, plot(signature(x = “DynTxRegime”)) utilizes the plot() method available for the
R class of objects returned by the fitting function used to obtain parameter estimates.

The residuals(signature(object = “DynTxRegime”)) method does not extend the residuals()
method available through the fitting class. Rather, the function returns a numeric vector of
the residuals as defined for the DynTxRegime method.

Finally, summary(signature(object = “DynTxRegime”)) uses the summary() method avail-
able for the R regression implementation. The exact structure of the summary information
depends on the fitting function.

4

gender ∈ {0, 1} : patient gender; female (0) and male (1).
race ∈ {0, 1} : patient race; African American (0) or other (1).
parentBMI ∈ R : parent BMI measured at baseline.
baselineBMI ∈ R : patient BMI measured at baseline.
A1 ∈ {CD,MR} : first-stage randomized treatment; meal replacement (MR) and

conventional diet (CD).
month4BMI ∈ R : patient BMI measured at month 4.
A2 ∈ {CD,MR} : second-stage randomized treatment; meal replacement (MR)

and conventional diet (CD).
month12BMI ∈ R : patient BMI measured at month 12.

Table 2: Description of covariates in bmiData.

1.4 Dataset bmiData

The methods in this vignette will be illustrated using a simulated dataset called bmiData
which is included in DynTxRegime. The data were generated to mimic a two-stage sequential,
multiple assignment, randomized trial (SMART) of body mass index (BMI) reduction with
two treatments at each stage. The arguments, treatments, and outcomes in bmiData are
based on a small subset of arguments collected in a clinical trial that studied the effect of meal
replacements (MRs) on weight loss and BMI reduction in obese adolescents; see Berkowitz
et al. (2010) for a complete description of the original randomized trial. Descriptions of the
generated arguments in bmiData are given in Table (2). Baseline covariates include gender,
race, parentBMI, and baselineBMI. Four- and twelve-month patient BMI measurements
were also included to reflect the original trial design. In the generated data, treatment was
randomized to meal replacement (MR) or conventional diet (CD) at both stages, each with
probability 0.5. In the original study, patients randomized to CD in stage one remained on
CD with probability one in the second stage. Thus, our generated data arise from a slightly
different design than that of the original trial. In addition, some patients in the original
dataset were missing the final twelve month response and various first- and second-stage
covariates. Our generated data is complete, and the illustrations that follow are presented
under the assumption that missing data have been addressed prior to using these methods.

After installing DynTxRegime, load the package:

> library(DynTxRegime)

Next, load bmiData into the workspace with

> data(bmiData)

5

The dataset is a data.frame with 210 rows corresponding to patients and 8 columns corre-
sponding to covariates, BMI measurements, and assigned treatments.

> dim(bmiData)

[1] 210 8

> head(bmiData)

gender race parentBMI baselineBMI month4BMI month12BMI A1 A2

1 0 1 31.59683 35.84005 34.22717 34.27263 CD MR

2 1 0 30.17564 37.30396 36.38014 36.38401 CD MR

3 1 0 30.27918 36.83889 34.42168 34.41447 MR CD

4 1 0 27.49256 36.70679 32.52011 32.52397 CD CD

5 1 1 26.42350 34.84207 33.72922 33.73546 CD CD

6 0 0 29.30970 36.68640 32.06622 32.15977 MR MR

We will use the negative percent change in BMI at month 12 from baseline as our final
outcome:

> y <- -100*(bmiData$month12BMI -

+ bmiData$baselineBMI)/bmiData$baselineBMI

Thus, higher values indicate greater BMI loss, a desirable clinical outcome.

2 General notation and problem specification

We begin by developing a common notation and vocabulary with which we will describe
each method. The following will be developed in the framework of a multiple-decision-points
setting with an unspecified number of treatment options at each decision point. Most of the
details of the theory will be omitted, and only the main results will be presented. Users are
referred to the original manuscripts for details.

Assume that there are K prespecified, ordered decision points and an outcome of interest,
Y , measured after decision point K. It is assumed that larger values of Y are preferred.
At each stage k = 1, . . . , K, the set of treatment options is denoted as Ak. We write ak to
denote an element of Ak. For example, if the treatment option is binary at decision point k,
then ak ∈ Ak ≡ {0, 1}. We will use an overline to denote a history, e.g., āk = (a1, . . . , ak).

6

We will use a potential outcomes framework. For a randomly chosen patient, let X1 denote
the baseline covariates recorded prior to the first decision. For k = 2, . . . , K, let X∗k(āk−1)
be the covariate information that would accrue between decisions (k − 1) and k were the
patient to receive treatment history āk−1. X∗k(āk−1) takes values xk ∈ Xk. Let Y ∗(āK) be
the outcome that would result were the patient to receive full treatment history āK . Then,
define the potential outcomes (Robins, 1986) as

W = {X1, X
∗
2 (a1), . . . , X∗K(āK−1), Y ∗(āK) for all āK ∈ ĀK }.

For convenience, we include X1 in W . However, X1 is always observed and thus is not strictly
a potential outcome.

A dynamic treatment regime (DTR), g = {g1(x1), . . . , gK(x̄K , āk−1)}, is an ordered set of
decision rules. Decision rule gk(x̄k, āk−1) corresponds to the kth decision and takes as input a
patient’s realized covariate and treatment history up to decision k and outputs a treatment
option, ak ∈ Φk(x̄k, āk−1) ⊆ Ak. In general, Φk(x̄k, āk−1) is the set of feasible treatment
options at decision k for a patient with realized history (x̄k, āk−1), allowing that some options
in Ak may not be possible for patients with certain histories. Thus, a feasible treatment rule
must satisfy gk(x̄k, āk−1) ∈ Φk(x̄k, āk−1) for all x̄k, āk−1. We denote the class of all feasible
regimes as G.

For a specific g ∈ G, define the potential outcomes associated with g to be

Wg = {X1, X
∗
2 (g1), . . . , X∗K(ḡK−1), Y ∗(g)},

where X∗k(ḡk−1) is the covariate information that would be seen between decisions (k − 1)
and k were a patient to receive the treatments dictated sequentially by the first (k− 1) rules
in g, and Y ∗(g) is the outcome if the patient were to receive the K treatments determined
by g. Thus, Wg is an element of W .

An optimal treatment regime gopt = (gopt1 , . . . , goptK) ∈ G satisfies

E{Y ∗(gopt)} ≥ E{Y ∗(g)}, g ∈ G. (1)

That is, gopt is a regime that maximizes the expected potential outcome were all patients in
the population to follow it.

This definition of an optimal regime is intuitively given in terms of potential outcomes. In
practice, a patient is observed to experience only a single treatment history. Thus, with
the exception of X1, W cannot be observed for any patient. To be useful in practice, an
optimal regime must be defined in terms of the observed data. To this end, define Ak to be
the observed treatment received at decision k, and let Āk = (A1, . . . , Ak) be the observed
treatment history up to decision k. Let Xk be the covariate information observed between
decision (k − 1) and k under the observed treatment history Āk−1 (k = 2, . . . , K), with
history X̄k = (X1, . . . , Xk) for k = 1, . . . , K. Let Y be the observed outcome under ĀK .
The observed data on a patient are (X̄K , ĀK , Y), and the data available from a clinical

7

trial or observational study involving n subjects are independent and identically distributed
(X̄Ki, ĀKi, Yi) for i = 1, . . . , n.

Under standard assumptions, gopt may equivalently be expressed in terms of the observed
data, where

Xk = X∗k(Āk−1) =
∑

āk−1∈Āk−1

X∗k(āk−1)I(Āk−1 = āk−1) for k = 1, . . . , K,

and
Y = Y ∗(ĀK) =

∑
āK∈ĀK

Y ∗(āK)I(ĀK = āK);

that is, a patient’s observed covariates and outcome are the same as the potential ones s/he
would exhibit under the treatment history actually received.

3 Outcome Regression Methods

Both Q-learning and Interactive Q-learning are outcome regression methods. The methods
employ dynamic programming, also referred to as backward induction, to estimate gopt. One
begins at the Kth decision point and defines

QK(x̄K , āK) = E(Y | X̄K = x̄K , ĀK = āK),

Thus, the optimal treatment at the Kth stage is

goptK (x̄K , āK) = arg max
aK∈ΦK(x̄K ,āK−1)

QK(X̄K , ĀK−1, aK),

Thus, goptK yields the treatment option at decision K that maximizes the potential outcome
given prior covariate and treatment history. We further define

VK(X̄K , ĀK−1) = max
aK∈ΦK(x̄K ,āK−1)

QK(X̄K , ĀK−1, aK).

For k = K − 1, . . . , 1, define

Qk(x̄k, āk) = E{Vk+1(X̄k, Xk+1, Āk) | X̄k = x̄k, Āk = āk}
goptk (x̄k, āk) = arg max

ak∈Φk(x̄k,āk−1)
Qk(X̄k, Āk−1, ak),

Vk(x̄k, āk−1) = max
ak∈Φk(x̄k,āk−1)

Qk(X̄k, Āk−1, ak).

And,

goptk (x̄k, āk) = arg max
ak∈Φk(x̄k,āk−1)

Qk(X̄k, Āk−1, ak),

8

which dictates the option that maximizes the potential outcome if the optimal rules were
followed in the future.

The Qk(x̄k, āk) are referred to as the “Q-functions,” viewed as measuring the “quality” as-
sociated with using treatment ak at decision k given the history up to that decision and
then following the optimal regime thereafter. The “value functions,” Vk(x̄k, āk−1), reflect the
“value” of a patient’s history assuming that optimal decisions are made in the future.

3.1 Q-learning

Q-learning approximates theQ-functions with linear or non-linear regression modelsQk(x̄k, āk; β).
In the DynTxRegime implementation, the regression models are defined in terms of the main
effects of treatment and the interactions between treatment ak and {x̄k, āk−1}, the covariate
and treatment history:

Qk(x̄k, āk−1, ak; βk) = µk(x̄k, āk−1; γk) + ak Ck(x̄k, āk−1; ηk), k = 1, . . . , K,

where µk(x̄k, āk−1; γk) models the main effects of treatment, Ck(x̄k, āk−1; ηk) models the con-
trast functions, and βk = (γ>k , η

>
k)>. The Q-learning algorithm is given below.

9

Q-learning Algorithm

QK. Modeling: Regress Y on X̄K and ĀK to obtain

QK(x̄K , āK−1, aK ; β̂K) = µK(x̄K , āK−1; γ̂K) + aK CK(x̄K , āK−1; η̂K).

Maximization: Define

VK(x̄K , āK−1; β̂K) = maxaK∈ΦK(x̄K ,āK−1) QK(x̄K , āK−1, aK ; β̂K).

goptK (x̄K , āK−1; β̂K) = arg maxaK∈ΦK(x̄K ,āK−1) QK(x̄K , āK−1, aK ; β̂K).

For k = K − 1, . . . , 1

Qk. Modeling: Regress Vk+1(X̄k, Xk+1, Āk; β̂k+1) on X̄k and Āk to obtain

Qk(x̄k, āk−1, ak; β̂k) = µk(x̄k, āk−1; γ̂k) + ak Ck(x̄k, āk−1; η̂k).

Maximization: Define

Vk(x̄k, āk−1; β̂k) = maxak∈Φk(x̄k,āk−1) Qk(x̄k, āk−1, ak; β̂k).

goptk (x̄k, āk−1; β̂k) = arg maxak∈Φk(x̄k,āk−1)Qk(x̄k, āk−1, ak; β̂k).

3.1.1 The qLearn Function

Function qLearn() implements a single step of the Q-learning algorithm and is called for each
step of the analysis.

qLearn(..., moMain, moCont, data, response, txName, fSet = NULL, iter = 0L, suppress = FALSE)

Complete input argument names are required, the meaning of which follow.

• moMain: an object of class modelObj created by buildModelObj () of modelObj. This
object defines the regression analysis for the main effects term of the Q-function,
µk(x̄k, āk−1; γk). When defining the modeling object, the prediction method must re-
turn predictions on the scale of the response.

• moCont: an object of class modelObj created by buildModelObj () of modelObj. This
object defines the regression analysis for the contrast functions of the Q-function,
Ck(x̄k, āk−1; ηk). When defining the modeling object, the prediction method must return
predictions on the scale of the response.

10

• data: an object of class data.frame containing the observed covariate and treatment
histories. Treatments can be factors or integers.

• response: an object of class vector or an object of class DynTxRegime as returned
by a prior call to qLearn(). For the first step of the Q-learning algorithm (the final-
stage analysis), response is a vector containing the final outcome of interest. For all
other steps of the Q-learning algorithm, response is an object of class DynTxRegime,
the value object returned from the previous step of the Q-learning algorithm. This
argument is discussed in detail below.

• txName: an object of class character specifying the column header of data that
corresponds to the treatment variable for the stage under analysis.

• fSet: an object of class function. A user defined function specifying the rules for
determining the feasible treatment options, Φk(x̄k, āk−1), for an individual based on
their covariate and treatment history. This argument will be discussed in detail in
Subsection ??.

• iter: an object of class integer. If iter = 0, the regression analyses for the main effects
and contrast functions will be combined into a single regression step, i.e., the models
specified in input arguments moMain and moCont will be combined into a single
model for Qk(x̄k, āk; βk), and parameter estimates will be obtained simultaneously. By
default, the parameter estimates will be obtained using the regression tools specified
in moMain. If moMain = NULL, the methods specified in moCont will be used. If
iter ≥ 1, the moMain and moCont regression analyses will be performed separately
using an iterative algorithm. The iterative algorithm is as follows:

(1) Y = Ymain + Ycont

(2) Ŷcont = 0

(3) Ymain = Y − Ŷcont
(4) fit Ymain ∼ moMain

(5) Ycont = Y − Ŷmain
(6) fit Ycont ∼ A ∗moCont
(7) Repeat steps (3)− (6)

until convergence or a maximum number of iterations.

iter is the maximum number of iterations to be used to attain convergence.

• suppress: an object of class logical indicating if the final screen prints are to sup-
pressed.

3.1.2 Illustrative Example

We will use the bmiData dataset for this example. We assume that the code in Section
1.4 has been executed and that the data is loaded into the working environment. Before

11

starting the Q-learning analysis, we must recast the treatment arguments as either integers
or factors. If the treatment vector is not provided as such, it will be coerced to integer values
during execution.

> data <- bmiData

> data$A1[bmiData$A1=="MR"] <- 1

> data$A1[bmiData$A1=="CD"] <- 0

> data$A2[bmiData$A2=="MR"] <- 1

> data$A2[bmiData$A2=="CD"] <- 0

> data$A1 <- as.integer(data$A1)

> data$A2 <- as.integer(data$A2)

3.1.2.1 Second-stage regression First, we must specify the model for Q2(x̄2, a1, a2) =
µ2(x̄2, a1) + a2 C2(x̄2, a1). One can choose any combination of linear or non-linear models
for which appropriate R methods are available. For simplicity, we choose linear models for
µ2(x̄2, a1) and C2(x̄2, a1), where we define X2,m = (1, gender, parentBMI,month4BMI) and
X2,c = (1, parentBMI,month4BMI) and

Q2(x̄2, a1, a2; β2) = X2,mγ2 + A2X2,cη2 .

The model objects are created using buildModelObj () of modelObj as follows:

> moMainSS <- buildModelObj(model = ~ gender + parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContSS <- buildModelObj(model = ~ parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))

Note that only the right-hand-side of the formula object is required; any left-hand-side
arguments will be ignored. In addition, because we do not specify any additional arguments
for the regression method, lm(), default values will be used. For both models, the same
regression method, prediction method, and method arguments are specified. Thus, the Q-
function can be fit in a single regression step; doing so will be more efficient. In the call to
qLearn(), we can specify iter= 0 to combine the regression steps into one. Finally, predictions
are specified to be given on the scale of the response, predict.args = list(type=‘response’).
This scaling is required by method qLearn(). For predict.lm(), this setting is the default and
thus does not technically need to be provided by the user. However, because this setting is
critical to the method, we recommend that users explicitly set the scale of the predictions as
a means to ensure that this requirement has been considered.

12

For convenience, if the full Q-function is to be fit in a single analysis (iter= 0), users
can provide the complete model (including treatment interactions) through moMain as a
modelObj and specify moCont=NULL. For our example, we could also have defined the
model objects as follows:

> moMainEx <- buildModelObj(model = ~ gender + A2*(parentBMI + month4BMI),

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContEx <- NULL

We will only provide examples using two model objects in the remainder of this vignette.

For the final stage regression, response is the final outcome, y. The second-stage Q-learning
analysis is initiated as follows:

> fitQ2 <- qLearn(moMain = moMainSS, moCont = moContSS,

+ data = data, txName = 'A2', response = y)

Step 1 of Q-learning algorithm.

qLearn(moMain = moMainSS, moCont = moContSS, data = data, response = y,

txName = "A2")

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + parentBMI + month4BMI + A2 +

parentBMI:A2 + month4BMI:A2, data = data)

Coefficients:

(Intercept) gender parentBMI month4BMI A2

48.67554 -0.64891 -0.35732 -0.84883 -14.77418

parentBMI:A2 month4BMI:A2

0.40447 0.05632

Mean of Value Function: 7.646356

qLearn() returns an object that inherits from class DynTxRegime.

13

> is(fitQ2, "DynTxRegime")

[1] TRUE

Note that the entire Q-learning step, Q2, has been performed. No additional steps are
required for the second-stage analysis.

3.1.2.2 First-stage regression As before, we start by defining the regression models
and methods to be used to estimate Q1(x1, a1). We assume a linear model and define
X1,m = (1, gender, race, parentBMI, baselineBMI) and X1,c = (1, gender, parentBMI).
Thus,

Q1(x1, a1; β1) = X1,mγ1 + A1X1,cη1 .

The model objects are defined as

> moMainFS <- buildModelObj(model = ~ gender + race + parentBMI + baselineBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContFS <- buildModelObj(model = ~ gender + parentBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))

qLearn() is used for all steps of the Q-learning algorithm. The regression stage is determined
by the object passed through response. For the final-stage, response was the final outcome.
For all other stages, response is the object returned by the previous step analysis. The first-
stage analysis follows:

> fitQ1 <- qLearn(moMain = moMainFS, moCont = moContFS,

+ data = data, txName = 'A1', response = fitQ2,

+ iter = 100L)

Step 2 of Q-learning algorithm.

qLearn(moMain = moMainFS, moCont = moContFS, data = data, response = fitQ2,

txName = "A1", iter = 100L)

14

*** moMain Fit ***

Call:

lm(formula = YinternalY ~ gender + race + parentBMI + baselineBMI,

data = data)

Coefficients:

(Intercept) gender race parentBMI baselineBMI

34.28319 -1.02733 0.01416 -0.11703 -0.57426

*** moCont Fit ***

Call:

lm(formula = YinternalY ~ A1 + A1:gender + A1:parentBMI - 1,

data = data)

Coefficients:

A1 A1:gender A1:parentBMI

9.0968 0.6378 -0.3002

Mean of Value Function: 8.380706

Throughout the vignette, we will use the iterative method for all first-stage analyses. This
is not necessary as we limit our examples to linear models, which are solved more efficiently
in a single regression step. However, the structure of the objects returned by most methods
depends on the regression algorithm, and we wish to highlight these differences.

Above, notice that two regression analyses are shown: moMain Fit and moCont Fit. These
results correspond to the final step of the iterative algorithm.

3.1.2.3 Post-Analysis Tools Common tools used to asses a regression analysis have
been extended to objects of class DynTxRegime and were described previously in Section 1.3.
The objects returned by qLearn() can be passed directly to those tools.

Single-decision-point objects of class DynTxRegime, such as those returned by qLearn(), may
contain more than one regression analysis (e.g., if iter > 0). To ensure that the regression
steps are clearly identifiable, the tools described in Section 1.3 return named lists. The names
of the list elements depend on the original call to the DynTxRegime method. All possible
combinations are described in Table ??.

To illustrate, recall that we used the iterative algorithm to obtain parameter estimates for the
first-stage analysis, i.e., moMain was of class modelObj, moCont was of class modelObj,

15

Table 3: Structure of values returned by standard regression-analysis tools.
moMain moCont Returned List

class class iter length key(s)
modelObj modelObj 0 1 $Combined
modelObj modelObj >0 2 $MainEffect

$Contrast
modelObj NULL – 1 $moMain

NULL modelObj – 1 $moCont
modelObjSubset List modelObjSubset List 0 n named list, each element of

of length n of length n which contains $Combined
modelObjSubset List modelObjSubset List >0 2n named list, each element of

of length n of length n which contains $MainEffect
$Contrast

modelObjSubset List NULL – n named list, each element of
of length n which contains $moMain

NULL modelObjSubset List – n named list, each element of
of length n which contains $moCont

and iter>0. Therefore, the returned object is a list

> fitObjQ1 <- fitObject(fitQ1)

> is(fitObjQ1, 'list')

[1] TRUE

each element of which corresponds to a component of the Q-function Q1(x1, a1).

> names(fitObjQ1)

[1] "MainEffect" "Contrast"

> fitObjQ1

$MainEffect

Call:

lm(formula = YinternalY ~ gender + race + parentBMI + baselineBMI,

data = data)

16

Coefficients:

(Intercept) gender race parentBMI baselineBMI

34.28319 -1.02733 0.01416 -0.11703 -0.57426

$Contrast

Call:

lm(formula = YinternalY ~ A1 + A1:gender + A1:parentBMI - 1,

data = data)

Coefficients:

A1 A1:gender A1:parentBMI

9.0968 0.6378 -0.3002

Notice that for the iterative algorithm, the treatment variable has been explicitly included
in the model of moCont.

For the second stage, we combined moMain and moCont into a single regression analysis;
the returned object is a list

> fitObjQ2 <- fitObject(fitQ2)

> is(fitObjQ2, 'list')

[1] TRUE

with one named element.

> names(fitObjQ2)

[1] "Combined"

> fitObjQ2

$Combined

Call:

lm(formula = YinternalY ~ gender + parentBMI + month4BMI + A2 +

17

parentBMI:A2 + month4BMI:A2, data = data)

Coefficients:

(Intercept) gender parentBMI month4BMI A2

48.67554 -0.64891 -0.35732 -0.84883 -14.77418

parentBMI:A2 month4BMI:A2

0.40447 0.05632

For plot(), the keys indicated in Table 3 will be appended to the title of the generated plots.
This additional information can be suppressed using suppress=TRUE in the call to plot().

As was noted in Section 1.3, the value returned by residuals() depends on the DynTxRegime
method. ForQ-learning, residuals() returns a numeric vector of the residuals for the full/combined
model.

Function optTx () can be used to retrieve the estimated optimal second-stage treatment for
the training set, i.e., data:

> optQ2_testSet <- optTx(x=fitQ2)

> head(optQ2_testSet$qFunctions)

0 1

[1,] 8.332204 8.265574

[2,] 6.363610 5.843406

[3,] 7.989007 7.400385

[4,] 10.598840 8.776027

[5,] 9.954517 7.767399

[6,] 10.983728 9.870325

> head(optQ2_testSet$optimalTx)

[1] 0 0 0 0 0 0

A list is returned. Element $qFunctions is a matrix of the estimated Q-functions. The ith row
corresponds to the ith observation in data. Each column corresponds to a treatment value
as indicated in the column header. $optimalTx contains a vector of the estimated optimal
treatment. The class of $optimalTx can be either factor or integer, and is dictated by the
class of the treatment variable in data.

To retrieve only the matrix of the estimated second-stage Q-functions for each treatment
option,

18

> qFuncsQ2 <- qFuncs(object = fitQ2)

> head(qFuncsQ2)

0 1

[1,] 8.332204 8.265574

[2,] 6.363610 5.843406

[3,] 7.989007 7.400385

[4,] 10.598840 8.776027

[5,] 9.954517 7.767399

[6,] 10.983728 9.870325

Similarly, for the first-stage treatment:

> optQ1_testSet <- optTx(x = fitQ1)

> head(optQ1_testSet$qFunctions)

0 1

[1,] 10.018201 9.628950

[2,] 8.302373 8.977623

[3,] 8.557323 9.201486

[4,] 8.959302 10.440069

[5,] 10.169398 11.971122

[6,] 9.785684 10.083081

> head(optQ1_testSet$optimalTx)

[1] 0 1 1 1 1 1

> qFuncsQ1 <- qFuncs(object = fitQ1)

> head(qFuncsQ1)

0 1

[1,] 10.018201 9.628950

[2,] 8.302373 8.977623

[3,] 8.557323 9.201486

[4,] 8.959302 10.440069

[5,] 10.169398 11.971122

[6,] 9.785684 10.083081

19

To recommend a kth-stage optimal treatment for a new patient, both the kth-stage DynTxRegime
object and a data.frame of new patient covariates are passed to optTx (). Consider a new
patient with the following baseline covariate information:

> newpatient <- data.frame("gender" = 1,

+ "race" = 1,

+ "parentBMI" = 40,

+ "baselineBMI" = 35)

The recommended first-stage optimal treatment based on our Q-learning analysis is:

> optQ1 <- optTx(x = fitQ1, newdata = newpatient)

> optQ1

$qFunctions

0 1

[1,] 8.489848 6.215605

$optimalTx

[1] 0

As shown for the training set, a list is returned, which includes $qFunctions, a matrix of the
first-stage Q-functions for each treatment option, and the recommended first-stage treatment
for the new patient, $optimalTx.

Assume that our new patient is given the recommended first-stage treatment, and at month
4, the patient’s BMI is measured to be 25.

> newpatient <- cbind(newpatient, "A1" = optQ1$optimalTx, "month4BMI" = 25)

The recommended second-stage optimal treatment is:

> optQ2 <- optTx(x = fitQ2, newdata = newpatient)

> optQ2

$qFunctions

0 1

[1,] 12.51293 15.32544

$optimalTx

[1] 1

20

3.2 More Complex Q-Learning Examples

3.2.1 Feasible Treatment Sets

In some trial settings, the set of treatment options available to a patient at each decision
point, Φk(x̄k, āk−1), depends on the patient history and/or prior treatments. For example, in
the original study upon which our bmiData is based, patients randomized to CD in stage
one remained on CD with probability one in stage two. Thus, Φ2(x̄2, A1 = CD) = {CD}
and Φ2(x̄2, A1 = MR) = {CD,MR}. Patients that have only one treatment option available
should not be included in the regression analysis. And, the maximization step must be taken
over only the treatments available to a patient.

qLearn() has an optional input argument, fSet, which allows the user to specify the available
treatments based on a patient’s history. These rules are defined by the user as a function.
The function must take as input data, the covariates and treatment history of a single
patient, and return a list. The first element of the list is a nickname for the subset. It can
take any character value that is consistent with R’s standard naming convention. The second
element of the list is the vector of treatment options. For the second stage of the original
study, this rule would take the following form:

> fSet <- function(data){

+ if(data$A1 == 0L) return(list("A", c(0L)))

+ if(data$A1 == 1L) return(list("B", c(0L,1L)))

+ }

where we have nicknamed subset {0} “A” and subset {0, 1} “B.”

The qLearn() call for the second-stage analysis differs from the previous example only in the
presence of the fSet input argument as defined above:

> moMainSS <- buildModelObj(model = ~ gender + parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContSS <- buildModelObj(model = ~ parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> fitQ2_FS <- qLearn(moMain = moMainSS, moCont = moContSS,

+ data = data, txName = 'A2', response = y,

+ fSet = fSet)

21

Step 1 of Q-learning algorithm.

qLearn(moMain = moMainSS, moCont = moContSS, data = data, response = y,

txName = "A2", fSet = fSet)

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + parentBMI + month4BMI + A2 +

parentBMI:A2 + month4BMI:A2, data = data)

Coefficients:

(Intercept) gender parentBMI month4BMI A2

54.5703 -1.1334 -0.8292 -0.5936 -2.1309

parentBMI:A2 month4BMI:A2

0.3149 -0.2357

Mean of Value Function: 6.757812

For the first-stage analysis, all treatments are available to all patients, and input argument
fSet is not required. Thus, the qLearn() call for the first-stage is the same as the previous
example, with the exception that fitQ2 FS is the response.

> moMainFS <- buildModelObj(model = ~ gender + race + parentBMI + baselineBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContFS <- buildModelObj(model = ~ gender + parentBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> fitQ1_FS <- qLearn(moMain = moMainFS, moCont = moContFS,

+ data = data, txName = 'A1', response = fitQ2_FS,

+ iter = 100L)

Step 2 of Q-learning algorithm.

qLearn(moMain = moMainFS, moCont = moContFS, data = data, response = fitQ2_FS,

txName = "A1", iter = 100L)

22

*** moMain Fit ***

Call:

lm(formula = YinternalY ~ gender + race + parentBMI + baselineBMI,

data = data)

Coefficients:

(Intercept) gender race parentBMI baselineBMI

6.31835 -0.43027 -0.41583 0.04144 0.01956

*** moCont Fit ***

Call:

lm(formula = YinternalY ~ A1 + A1:gender + A1:parentBMI - 1,

data = data)

Coefficients:

A1 A1:gender A1:parentBMI

34.1322 0.2623 -1.0934

Mean of Value Function: 9.437163

When treatment recommendations for new patients are obtained using optTx (), the rules
for determining the feasible set of treatment options are respected. Consider again our new
patient:

> newpatient

gender race parentBMI baselineBMI

1 1 1 40 35

In this analysis, the recommended first-stage treatment is:

> optQ1_FS <- optTx(x = fitQ1_FS, newdata = newpatient)

> optQ1_FS

$qFunctions

0 1

23

[1,] 7.8143 -1.525916

$optimalTx

[1] 0

Because the recommended first-stage treatment isA1 = 0, the only treatment option available
to the patient at the second stage is A2 = 0. Again, assume that the patient is given the
recommended first-stage treatment and that the patient’s month 4 BMI is measured to be
25.

> newpatient <- cbind(newpatient, "A1" = optQ1_FS$optimalTx, "month4BMI" = 25)

The recommended second-stage optimal treatment is:

> optQ2_FS <- optTx(x = fitQ2_FS, newdata = newpatient)

> optQ2_FS

$qFunctions

0 1

[1,] 5.428271 NA

$optimalTx

[1] 0

Notice that the Q-function returned for the second-stage treatment A2 = 1 is NA indicating
that this treatment was not in the feasible set of treatments for the patient.

3.2.2 Subset Modeling

In addition to defining rules for feasible treatment sets, the qLearn() method allows for
unique models to be specified for subsets of patients. For example, the design of a clinical
trial could be such that prior to the second-stage treatment, a response argument, R ∈ {0, 1},
is measured. One can specify a model for the subset of patients with R = 0 and another for
the subset of patients with R = 1. Our bmiData dataset can be manipulated to illustrate
this scenario.

> data <- bmiData

> data$A1[bmiData$A1=="MR"] <- 1

24

> data$A1[bmiData$A1=="CD"] <- 0

> data$A2[bmiData$A2=="MR"] <- 1

> data$A2[bmiData$A2=="CD"] <- 0

> data$A1 <- as.integer(data$A1)

> data$A2 <- as.integer(data$A2)

> data$R <- rbinom(nrow(data),1,0.5)

Above, we have randomly assigned a response argument to each patient. Though the set of
feasible treatments available to both subsets is the same, we now provide fSet to define how
the data is to be subset.

> fSet <- function(data){

+ if(data$R == 0L) return(list("A",c(0L,1L)))

+ if(data$R == 1L) return(list("B",c(0L,1L)))

+ }

Unlike previous examples, we want to specify a unique model for each subset, A and B.
buildModelObjSubset() extends buildModelObj () of modelObj by allowing the user to specify
the subset for which the model is defined. The second-stage Q-learning model objects will
now be provided as lists and are defined as:

> moMain <- list()

> moCont <- list()

> #Models for subset data$R=0

> moMain[[1]] <- buildModelObjSubset(model = ~ gender + parentBMI + month4BMI,

+ subset = "A",

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moCont[[1]] <- buildModelObjSubset(model = ~ parentBMI + month4BMI,

+ subset = "A",

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> #Models for subset data$R=1

> moMain[[2]] <- buildModelObjSubset(model = ~ gender + parentBMI + month4BMI,

+ subset = "B",

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moCont[[2]] <- buildModelObjSubset(model = ~ parentBMI + month4BMI,

+ subset = "B",

25

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))

The call for the second-stage Q-learning analysis is:

> fitQ2_SM <- qLearn(moMain = moMain, moCont = moCont,

+ data = data, txName = 'A2', response = y,

+ fSet = fSet)

Step 1 of Q-learning algorithm.

qLearn(moMain = moMain, moCont = moCont, data = data, response = y,

txName = "A2", fSet = fSet)

Subset: A

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + parentBMI + month4BMI + A2 +

parentBMI:A2 + month4BMI:A2, data = data)

Coefficients:

(Intercept) gender parentBMI month4BMI A2

49.57915 -0.47500 -0.18722 -1.01217 -14.57257

parentBMI:A2 month4BMI:A2

0.47846 -0.03674

Subset: B

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + parentBMI + month4BMI + A2 +

parentBMI:A2 + month4BMI:A2, data = data)

Coefficients:

(Intercept) gender parentBMI month4BMI A2

46.5895 -0.3985 -0.6161 -0.5830 -13.7254

parentBMI:A2 month4BMI:A2

0.3315 0.1145

26

Mean of Value Function: 7.61751

Notice the structure of the object returned by the statistical analysis tools of Section 1.3.
To illustrate, let’s consider coef ().

> cfs <- coef(fitQ2_SM)

A named list is returned,

> is(cfs,'list')

[1] TRUE

the elements of which indicate the subset.

> names(cfs)

[1] "A" "B"

For each subset, there is a second list giving the estimated coefficients for the combined
model ($Combined).

> cfs[["A"]]

$Combined

(Intercept) gender parentBMI month4BMI A2

49.57914908 -0.47500399 -0.18721514 -1.01217159 -14.57257077

parentBMI:A2 month4BMI:A2

0.47845928 -0.03673911

All methods described in Section 1.3 will follow this format when the model objects are built
using buildModelObjSubset().

The structure of the first-stage analysis does not change:

27

> moMainFS <- buildModelObj(model = ~ gender + race + parentBMI + baselineBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContFS <- buildModelObj(model = ~ gender + parentBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> fitQ1_SM <- qLearn(moMain = moMainFS, moCont = moContFS,

+ data = data, txName = 'A1', response = fitQ2_SM,

+ iter = 100L)

where we have chosen not to evaluate the expression in the vignette.

3.3 Interactive Q-learning

The first modeling step in the Q-learning algorithm is a standard multiple regression prob-
lem to which common model building and model checking techniques can be applied to find
a parsimonious, well-fitting model. The second modeling step requires modeling the con-
ditional expectation of the value function, Vk+1(x̄k+1, āk). If we assume binary treatment
options coded as {−1, 1}, this expectation can be written as

Qk(x̄k, āk−1) = E(Vk+1(X̄k, Xk+1, Āk) | X̄k = x̄k, Āk = āk)

= E(µk+1(X̄k, Xk+1, Āk; γ̂k+1) + |Ck+1(X̄k, Xk+1, Āk; η̂k+1)| | X̄k = x̄k, Āk = āk).

Due to the absolute value function, Vk+1(X̄k, Xk+1, Āk) is a nonsmooth, nonmonotone trans-
formation of Ck+1(X̄k+1, Āk). Thus, the model is generally a complex, nonlinear function
of X̄k, Āk. In addition, the nonsmooth, nonmonotone max operator leads to difficult non-
regular inference for the parameters that index the first stage Q-function (Robins, 2004;
Chakraborty et al., 2010; Laber et al., 2010; Song et al., 2011). IQ-learning was developed
as an alternative to Q-learning that addresses the applied problem of building good models
and avoids model misspecification for a large class of generative models. The IQ-learning
methods implemented in DynTxRegime are valid only for two-decision-point settings with
binary treatment options coded as {−1, 1}. Though the choice of treatment coding {−1, 1}
vs. {0, 1} is one of convenience, the choice of {−1, 1} allows one to define the optimal treat-
ment as the sign of the contrast component. This choice is required for the IQ-learning
implementation.

IQ-learning differs from Q-learning in the order in which the maximization step is performed.
In IQ-learning, the maximization step is delayed, enabling all modeling to be performed
before this nonsmooth, nonmonotone transformation. This reordering of modeling and max-
imization steps facilitates the use of standard, interactive model-building techniques because
all terms to be modeled are smooth and monotone transformations of the data. For a large

28

class of generative models, IQ-learning consistently estimates the first-stage Q-function, re-
sulting in a higher-quality estimated decision rule (Linn et al., 2014).

Both IQ- and Q-learning implement the same second-stage regression. In the IQ-learning
framework, the first-stage Q-function is defined as

Q1(x1, a1) = E(µ2(X1, X2, A1)|X1 = x1, A1 = a1) +

∫
|z|f(z | X1 = x1, A1 = a1)dz, (2)

where f(· | X1 = x1, A1 = a1) is the conditional distribution of the contrast function
C2(X1, X2, A1) given X1 = x1, A1 = a1. Equation (2) is equivalent to the representation of Q1

in Eq. (2); the conditional expectation has been split into two separate expectations and the
second has been written in integral form. Instead of modeling the conditional expectation
in Eq. (2)directly, IQ-learning separately models E(µ2(X1, X2, A1|X1 = x1, A1 = a1) and
f(· | X1 = x1, A1 = a1). Although IQ-learning trades one modeling step for two, splitting
up the conditional expectation in Eq. (2) is advantageous because the terms that require
modeling are now smooth, monotone functionals of the data. The maximization occurs when
the integral in Eq. (2) is computed, which occurs after the conditional density f(· | X1 =
x1, A1 = a1) has been estimated. The IQ-learning algorithm is described next.

IQ-learning Algorithm

IQ1. Modeling: Regress Y on X̄2, Ā2 to obtain

Q2(x̄2, ā2; β̂2) = µ2(x̄2, a1; γ̂2) + a2 C2(x̄2, a1; η̂2).

IQ2. Modeling: Regress observed data
{
µ2(X̄2,i, A1,i; γ̂2)

}n
i=1

on {X1,i, A1,i}ni=1

to obtain an estimator L(x1, a1; β̂1M) of
E(µ2(X1, X2, A1; γ̂2)|X1 = x1, A1 = a1).

L(x1, a1; β̂1M) = µ1M(x1; γ̂1M) + a1 C1M(x1; β̂1M).

IQ3. Modeling: Use {C2(X̄2,i, A1,i; β̂2), X1,i, A1,i)}ni=1 to obtain

an estimator F (z, x1, a1; β̂1σ, β̂1C) of f(z | X1 = x1, A1 = a1).

IQ4. Maximization: Combine the above estimators to form

Q1(x1, a1; β̂1) = L(x1, a1; β̂M1) +
∫
|z|F (z, x1, a1; β̂1σ, β̂1C)dz.

Remark about density estimation in IQ3

Step IQ3 in the IQ-learning algorithm requires estimating a one-dimensional conditional
density. Linn et al. (2014) accomplish this using mean-variance, location-scale estimators of

29

f(· | X1 = x1, A1 = a1) of the form

F (z, x1, a1; β̂1σ, β̂1C) =
1

σ(x1, a1; β̂1σ)
φ̂

(
z − C(x1, a1; β̂1C)

σ(x1, a1; β̂1σ)

)
, (3)

where C(x1, a1; β̂1C) = µC1 (x1; γ̂1C) + a1CC1 (x1; η̂1C) is an estimator of
C(x1, a1) = E

{
C2(X̄2, A1) | X1 = x1, A1 = a1

}
, σ2(x1, a1; βσ) is an estimator of σ2(x1, a1) =

E
{

(C2(X̄2, A1)− C(X1, A1))2 | X1 = x1, A1 = a1

}
, and φ̂ is an estimator of the density of

the standardized residuals
{
C2(x̄2, a1; β̂2)− C(x1, a1)

}
/σ(x1, a1). Currently, DynTxRegime

implements mean-variance modeling steps (Carroll and Ruppert, 1988) to estimate f(· | X1 =
x1, A1 = a1) with the option of using a standard normal density or empirical distribution

estimator for φ̂.

3.3.1 IQ-learning functions

There are four IQ-learning functions in the DynTxRegime package. The structures of the
calls are very similar and are presented in combination below.

iqLearnSS(..., moMain, moCont, data, response, txName,

iter = 0L, suppress = FALSE)

iqLearnFSM(..., moMain, moCont, data, response, txName,

iter = 0L, suppress = FALSE)

iqLearnFSC(..., moMain, moCont, data, response, txName,

iter = 0L, suppress = FALSE)

iqLearnFSV(object, ..., moMain=NULL, moCont=NULL, data=NULL,

iter = 0L, suppress = FALSE)

Complete input argument names are required, the meaning of which follow.

• moMain: an object of class modelObj created by buildModelObj () of modelObj. This
object defines the regression analysis for the main effects term of the Q-function,
µk(x̄k, āk−1; γk). When defining the modeling object, the prediction method must re-
turn predictions on the scale of the response.

• moCont: an object of class modelObj created by buildModelObj () of modelObj. This
object defines the regression analysis for the contrast functions of the Q-function,
Ck(x̄k, āk−1; ηk). When defining the modeling object, the prediction method must return
predictions on the scale of the response.

• object: an object of class DynTxRegime. The object returned by iqLearnFSC ()

30

• data: an object of class data.frame containing the observed covariate and treatment
histories. Treatments must be of class integer coded as {−1, 1}.

• response: an object of class vector or an object of class DynTxRegime as returned
by a prior call to iqLearnSS (). For the first step of the IQ-learning algorithm (the
final-stage analysis), response is a vector containing the final outcome of interest.
For the first-stage functions iqLearnFSM () and iqLearnFSC (), response is an object
of class DynTxRegime, the value object returned from iqLearnSS ().

• txName: an object of class character specifying the column header of data that
corresponds to the treatment variable for the stage under analysis.

• iter: an object of class integer. If iter = 0, the regression analyses for the main effects
and contrast functions will be combined into a single regression step, i.e., the models
specified in input arguments moMain and moCont will be combined into a single
model for Qk(x̄k, āk; βk), and parameter estimates will be obtained simultaneously. By
default, the parameter estimates will be obtained using the regression tools specified
in moMain. If moMain = NULL, the methods specified in moCont will be used. If
iter ≥ 1, the moMain and moCont regression analyses will be performed separately
using an iterative algorithm. The iterative algorithm is as follows:

(1) Y = Ymain + Ycont

(2) Ŷcont = 0

(3) Ymain = Y − Ŷcont
(4) fit Ymain ∼ moMain

(5) Ycont = Y − Ŷmain
(6) fit Ycont ∼ A ∗moCont
(7) Repeat steps (3)− (6)

until convergence or a maximum number of iterations.

iter is the maximum number of iterations to be used to attain convergence.

• suppress: an object of class logical. If TRUE, final screen prints will be suppressed.

3.3.2 Illustrative Example

We will use the bmiData dataset for the examples in this section. Previously, we imported
the dataset into the working environment and defined the outcome of interest: y, the negative
percent change in BMI at month 12 from baseline. Before starting the IQ-learning analysis,
we need to recast the treatment arguments as integers in the set {−1, 1}.

> data <- bmiData

> data$A1[bmiData$A1=="MR"] <- 1

31

> data$A1[bmiData$A1=="CD"] <- -1

> data$A2[bmiData$A2=="MR"] <- 1

> data$A2[bmiData$A2=="CD"] <- -1

> data$A1 <- as.integer(data$A1)

> data$A2 <- as.integer(data$A2)

3.3.2.1 Second-stage regression (Step IQ1) As for Q-learning, the first step in the
IQ-learning algorithm is to model the response as a function of second-stage history argu-
ments and treatment. For simplicity, we will use the same model objects as those assumed
in the Q-learning section. Namely,

> moMainSS <- buildModelObj(model = ~ gender + parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContSS <- buildModelObj(model = ~ parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))

Again, we explicitly indicate that the predictions must be returned on the scale of the
response (type=‘response’), as is required for the IQ-learning method.

For the second-stage regression, response is is the final outcome of interest, y, and the
analysis is initiated as follows:

> fitIQ2 = iqLearnSS(moMain = moMainSS, moCont = moContSS,

+ data = data, response = y, txName = 'A2')

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + parentBMI + month4BMI + A2 +

parentBMI:A2 + month4BMI:A2, data = data)

Coefficients:

(Intercept) gender parentBMI month4BMI A2

41.28845 -0.64891 -0.15509 -0.82067 -7.38709

parentBMI:A2 month4BMI:A2

0.20223 0.02816

32

Mean of Value Function: 7.646356

An object that inherits from class DynTxRegime is returned.

> is(fitIQ2,'DynTxRegime')

[1] TRUE

3.3.2.2 Regression of second-stage main effects (Step IQ2) The next step in the
IQ-learning algorithm is to model the conditional expectation of the main effects term given
the first-stage covariates and treatment. We will accomplish this by regressing

{
µ2(X̄2,i, A1,i; γ̂2)

}n
i=1

on a linear function of {(X1,i, A1,i)}ni=1 using the function iqLearnFSM (). If desired, the
estimated main effects of the second-stage,

{
µ2(X̄2,i, A1,i; γ̂2)

}n
i=1

, can be retrieved by fitted-
Main(); though, this is not necessary for the algorithm.

> head(fittedMain(fitIQ2))

[1] 8.298889 6.103508 7.694696 9.687434 8.860958 10.427026

The response is the object returned by the second-stage analysis, iqLearnSS (), and step
IQ2 of the IQ-learning algorithm is initiated as:

> moMainFS <- buildModelObj(model = ~ gender + race + parentBMI + baselineBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContFS <- buildModelObj(model = ~ gender + parentBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> fitIQ1main <- iqLearnFSM(moMain = moMainFS, moCont = moContFS,

+ data = data, response = fitIQ2, txName = 'A1',
+ iter = 100L)

*** moMain Fit ***

Call:

33

lm(formula = YinternalY ~ gender + race + parentBMI + baselineBMI,

data = data)

Coefficients:

(Intercept) gender race parentBMI baselineBMI

40.2974 -0.6288 -0.1418 -0.3708 -0.5477

*** moCont Fit ***

Call:

lm(formula = YinternalY ~ A1 + A1:gender + A1:parentBMI - 1,

data = data)

Coefficients:

A1 A1:gender A1:parentBMI

5.0536 0.1846 -0.1638

where we have assume the same first-stage model objects as those of the Q-learning example
(Section 3.1.2. An object inheriting from class DynTxRegime is returned.

> is(fitIQ1main,'DynTxRegime')

[1] TRUE

3.3.2.3 Conditional density of second-stage contrast (STEP IQ3) The final mod-
eling step in IQ-learning is to model the conditional density of the contrast function given
the first-stage covariates and treatment. We begin by modeling the conditional mean of the
contrast function using iqLearnFSC (); C(x1, a1; β1C) = µ1C(x1; γ1C) + a1C1C(x1; η1C). The
estimated contrast function can be retrieved using fittedCont(); though it is not necessary
for the analysis.

> head(fittedCont(fitIQ2))

[1] -0.03331512 -0.26010187 -0.29431120 -0.91140685 -1.09355900

[6] -0.55670159

The conditional mean is modeled as

34

> moMainFSc <- buildModelObj(model = ~ gender + race + parentBMI + baselineBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContFSc <- buildModelObj(model = ~ gender + parentBMI + baselineBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))

And the regression analysis is obtained using:

> fitIQ1cm <- iqLearnFSC(moMain = moMainFSc, moCont = moContFSc,

+ data = data, response = fitIQ2, txName = 'A1',
+ iter = 100L)

*** moMain Fit ***

Call:

lm(formula = YinternalY ~ gender + race + parentBMI + baselineBMI,

data = data)

Coefficients:

(Intercept) gender race parentBMI baselineBMI

-7.328790 -0.004459 0.007200 0.209414 0.018306

*** moCont Fit ***

Call:

lm(formula = YinternalY ~ A1 + A1:gender + A1:parentBMI + A1:baselineBMI -

1, data = data)

Coefficients:

A1 A1:gender A1:parentBMI A1:baselineBMI

-0.052074 -0.009003 0.006662 -0.004076

where response is the object returned by the second-stage analysis. An object inheriting
from class DynTxRegime is returned.

> is(fitIQ1cm,'DynTxRegime')

[1] TRUE

35

After fitting the model for the conditional mean of the contrast function, we must specify a
model for the conditional variance of the residuals, σ2. Standard approaches can be used to
determine if a constant variance fit is sufficient. If so,

> fitIQ1var = iqLearnFSV(fitIQ1cm)

iqLearnVarHom(object = object)

Standard Deviation: 0.0565326

estimates the common standard deviation, which can be retrieved using stdDev().

> stdDev(fitIQ1var)

[1] 0.0565326

If the variance is thought to be non-constant across histories X1 and/or treatment A1, a
log-linear model for the squared residuals can be used.

> moMainFSv <- buildModelObj(model = ~ gender + race + parentBMI + baselineBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContFSv <- buildModelObj(model = ~ parentBMI + baselineBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> fitIQ1var <- iqLearnFSV(object = fitIQ1cm,

+ moMain = moMainFSv, moCont = moContFSv,

+ data = data)

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + race + parentBMI + baselineBMI +

A1 + parentBMI:A1 + baselineBMI:A1, data = data)

Coefficients:

(Intercept) gender race parentBMI

36

-8.241606 0.077415 0.075925 -0.002661

baselineBMI A1 parentBMI:A1 baselineBMI:A1

0.036738 1.921779 -0.053469 -0.002528

> is(fitIQ1var,'DynTxRegime')

[1] TRUE

The final step in the conditional density modeling process is to choose between the normal
and empirical density estimators, φ̂. Based on empirical experiments, Linn et al. (2014)
recommend choosing the empirical estimator by default, as not much is lost when the true
density is normal. qqPlot() can be used to inform the choice of density estimator. The object
returned by the log-linear iqLearnFSV () function can be plotted to obtain a normal QQ-plot
of the standardized residuals, displayed in Figure 1. If the observations deviate from the line,
dens=‘nonpar’ should be used in the final IQ-learning step, IQ4.

3.3.2.4 Estimate optimal treatment (Step IQ4) For the first-stage IQ-learning, the
function optTx () has four inputs: the previous three first-stage objects and the method to
use for the density estimator, either ‘norm’ or ‘nonpar’. It combines all of the first-stage
modeling steps to estimate the first-stage optimal decision rule.

> optIQ1_testSet = optTx(x = fitIQ1main, y = fitIQ1cm, z = fitIQ1var, dens = "nonpar")

> head(optIQ1_testSet$qFunctions)

-1 1

[1,] 8.993008 8.724504

[2,] 8.071947 8.687005

[3,] 8.294638 8.870605

[4,] 9.511798 11.036698

[5,] 10.863851 12.738011

[6,] 9.596739 10.114861

> head(optIQ1_testSet$optimalTx)

[1] -1 1 1 1 1 1

A list is returned. Element $qFunctions is a matrix of the estimated first-stage Q-functions.
The ith row corresponds to the ith observation in data. Each column corresponds to a

37

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 1: Normal QQ-plot of the standardized residuals obtained from the contrast mean
and variance modeling steps.

treatment value as indicated in the column header. $optimalTx contains a vector of the
estimated optimal treatment.

To retrieve the estimated second-stage optimal treatments, only the second-stage object is
required.

> optIQ2_testSet = optTx(x = fitIQ2)

> head(optIQ2_testSet$qFunctions)

-1 1

[1,] 8.332204 8.265574

[2,] 6.363610 5.843406

[3,] 7.989007 7.400385

38

[4,] 10.598840 8.776027

[5,] 9.954517 7.767399

[6,] 10.983728 9.870325

> head(optIQ2_testSet$optimalTx)

[1] -1 -1 -1 -1 -1 -1

All of the IQ-learning functions return objects of class DynTxRegime, to which the standard
analysis tools discussed in Section ?? can be applied. For the structure of the objects returned
by those methods, see Table 3.

After estimating the optimal regime using the IQ-learning algorithm, the function optTx ()
can be used to recommend treatment for new patients. To determine the recommended
first-stage treatment for our previously defined new patient

> newpatient

gender race parentBMI baselineBMI

1 1 1 40 35

> optIQ1 = optTx(x = fitIQ1main, y = fitIQ1cm, z = fitIQ1var, dens = "nonpar", newdata = newpatient)

> optIQ1

$qFunctions

-1 1

[1,] 8.467605 5.965503

$optimalTx

[1] -1

As displayed above, a list is returned by optTx () that includes the values of the first-stage Q-
function when A1 = 1 and A1 = −1 ($qFunctions) as well as the recommended first-stage
treatment for that patient, $optimalTx.

As before, assume that our new patient is given the recommended first-stage treatment and
the patient’s BMI is measured at month 4 to be 25.

> newpatient <- cbind(newpatient, "A1" = optIQ1$optimalTx, "month4BMI" = 25)

39

The recommended second stage treatment is

> optIQ2 = optTx(x = fitIQ2, newdata = newpatient)

> optIQ2

$qFunctions

-1 1

[1,] 12.51293 15.32544

$optimalTx

[1] 1

Again, a list is returned by optTx () that includes the value of the second-stage Q-function
when A2 = 1 and A2 = −1 ($qFunctions) as well as the recommended second-stage treat-
ment for that patient, $optimalTx.

We may wish to compare our estimated optimal regime to a standard of care or constant
regime that recommends one treatment for all patients. One way to compare regimes is to
estimate the value function. A plug-in estimator for V g is

V̂ g ,

∑n
i=1 Yi1{A1i = g1(x1i)}1{A2i = g2(x̄2i, a1i)}∑n
i=1 1{A1i = g1(x1i)}1{A2i = g2(x̄2i, a1i)}

, (4)

where Yi is the ith patient’s response, (a1i, a2i) the randomized treatments and (x1i, x2i) the
observed covariates. This estimator is a weighted average of the outcomes observed from
patients in the trial who received treatment in accordance with the regime g = (g1, g2). It is
more commonly known as the Horvitz-Thompson estimator (Horvitz and Thompson, 1952).
Function plugInValue() estimates the value of a regime using the plug-in estimator and also
returns value estimates corresponding to all non-dynamic regimes $fixedReg.

plugInValue(optTx1, optTx2, response, tx1, tx2)

• optTx1an object of class vector. The first-stage treatments assigned by the regime
of interest.

• optTx2an object of class vector. The second-stage treatments assigned by the regime
of interest.

• response an object of class vector. The final outcome of interest.

• tx1an object of class vector. The first-stage treatments received by patients in the
trial.

40

• tx2an object of class vector. The second-stage treatments received by patients in the
trial.

> estVal = plugInValue(optTx1 = optIQ1_testSet$optimalTx, optTx2 = optIQ2_testSet$optimalTx,

+ response = y, tx1 = data$A1, tx2 = data$A2)

> estVal

$value

[1] 9.060113

$fixedReg

tx2=-1 tx2=1

tx1=-1 6.201568 3.523643

tx1=1 8.063114 7.917462

4 Value Search Methods

InQ-learning and its variants, the optimal treatment is predicted using the postulated models
for the Q-functions, thus the resulting estimated regime may be far from gopt if these models
are misspecified.

Zhang et al. (2012b) and Zhang et al. (2013) considered the posited regression model as a
mechanism for defining a class of induced treatment regimes. These methods estimate the
optimal regime within a prespecified class by directly maximizing an estimator of the popu-
lation mean outcome across all regimes in the class. Both the inverse probability weighted
estimator (IPWE) and the doubly robust augmented inverse probability weighted estimator
(AIPWE) are implemented as described in Sections 4.1 and 4.3.

Zhang et al. (2012a) proposed a general framework for estimating the optimal treatment
regime that recasts the original problem of finding the optimal treatment regime as a weighted
classification problem. Within this framework, the class of treatment regimes does not need
to be prespecified and is identified in a data-driven way by minimizing an expected weighted
mis-classification error. The estimation of mean outcome under a regime is separate from
the optimization for identifying the form of the treatment regime. Though the framework
does not limit the form of the estimator, only the IPWE and the AIPWE presented in Zhang
et al. (2012b) are implemented in optimalClass().

41

4.1 Estimation from a Missing Data Persepctive

In this method, the problem of estimating the optimal treatment regime in the single-
decision-point setting is recast as a missing data problem. A class of regimes parameterized in
ν is defined as g(X, ν). As discussed previously in Section 2, we can define the set of potential
outcomes associated with g to be Wg = {X, Y ∗(gν)}, where X is the baseline covariate infor-
mation and Y ∗(gν) the outcome if the patient were to receive treatment g(X, ν). For fixed
ν, the “missingness” is quantified as Cν , where Cν =

∑
a∈Φ(X) I{A−g(X, ν)}. When Cν = 1,

the potential outcome under treatment regime g(X, ν) is observed. If Cν = 0, Y ∗(gν) is
“missing.” In this way, one can conceive of “full data”Wg = {X, Y ∗(gν)} and “observed data”
{Cν , CνY ∗(gν), X} = {Cν , CνY,X}. Let π(a,X) = pr(A = a | X) denote the propensity
score for treatment a. It is then straightforward to obtain pr(Cν = 1 | X) = π(g(X, ν), X).

Parametric models, π(a,X; γ), are posited for the propensity of treatment, e.g., using logistic
regression.

Following the missing data analogy, a simple estimator for E{Y ∗(gν)} for fixed ν is the inverse
probability weighted estimator (IPWE) given by

IPWE(ν) = n−1

n∑
i=1

Cν,iYi
π(g(Xi, ν), Xi; γ̂)

. (5)

This estimator is consistent for E{Y ∗(gν)} if π(A,X; γ) is correctly specified, but may not
be otherwise.

Following Robins et al. (1994) and Cao et al. (2009), an alternative estimator that offers pro-
tection against such misspecification and improved efficiency is the doubly robust augmented
inverse probability weighted estimator (AIPWE)

AIPWE(ν) = n−1

n∑
i=1

{
Cν,iYi

π(g(Xi, ν), Xi; γ̂)
− Cν,i − π(g(Xi, ν), Xi; γ̂)

π(g(Xi, ν), Xi; γ̂)
m(g(Xi, ν), Xi; β̂)

}
.

(6)
In Eq. (6), m(A,X; β̂) is a model for E(Y | A,X), and β̂ is an appropriate estimator for
β. This estimator is consistent for E{Y ∗(gν)} if either of π(A,X; γ) or m(A,X; β), but not
both, is misspecified.

The algorithm for this value search method is as follows:

42

Value Search Missing Data Perspective Algorithm

MD1. Modeling: Regress A on X to obtain
π(A,X; γ̂).

MD2 Optimization
For a fixed estimate of ν

MD2a. Modeling: Regress Y on X and A to obtain

m(a, x; β̂) = µ(x; γ̂) + a C(x; η̂).

MD2b. Estimator: Use m(g(X, ν), X; β̂) and π(g(X, ν), X; γ̂)
to estimate AIPWE(ν) or IPWE(ν)

MD2c. Update: Update ν, repeat MD2a-MD2c;
terminate at convergence of estimator.

Both the IPWE and AIPWE estimators are non-smooth functions in ν; accordingly, the use
of traditional optimization methods to maximize these quantities in ν can be problematic.
In DynTxRegime, the parameters of the prespecified treatment regime are optimized using
a genetic algorithm, rgenoud (Mebane and Sekhon, 2011).

4.1.1 The optimalSeq function

Function optimalSeq() implements the value search method from a missing data perspective
as developed by Zhang et al. (2012b).

optimalSeq(..., moPropen, moMain, moCont, data, response, txName, regimes,

fSet = NULL, refit = FALSE, iter = 0L, suppress = FALSE)

Complete input argument names are required, the meaning of which follow.

• moPropen: an object of class modelObj created by buildModelObj () of modelObj.
This object defines the regression analysis for the propensity for treatment, π(A,X; γ).
When defining the modeling object, the prediction method must return predictions on
the scale of the response.

• moMain: an object of class modelObj created by buildModelObj () of modelObj. This
object defines the regression analysis for the main effects term of the outcome, µ(X; γ).

43

When defining the modeling object, the prediction method must return predictions on
the scale of the response.

• moCont: an object of class modelObj created by buildModelObj () of modelObj. This
object defines the regression analysis for the contrasts of the outcome, C(X; η). When
defining the modeling object, the prediction method must return predictions on the
scale of the response.

• data: an object of class data.frame containing the observed covariate and treatment
histories. Treatments can be factors or integers.

• response: an object of class vector.T he final outcome of interest.

• txName: an object of class character specifying the column header of data that
corresponds to the treatment variable.

• regimes: an object of class function. A user defined function specifying the param-
eterized treatment regime, g(X, ν).

• fSet: ignored in single-decision-point analyses.

• refit: ignored in single-decision-point analyses.

• iter: an object of class integer. If iter = 0, the regression analyses for the main
effects and contrast functions will be combined into a single regression step, i.e., the
models specified in input arguments moMain and moCont will be combined into a
single model, and parameter estimates will be obtained simultaneously. By default, the
parameter estimates will be obtained using the regression tools specified in moMain.
If moMain = NULL, the methods specified in moCont will be used. If iter ≥ 1,
the moMain and moCont regression analyses will be performed separately using an
iterative algorithm. The iterative algorithm is as follows:

(1) Y = Ymain + Ycont

(2) Ŷcont = 0

(3) Ymain = Y − Ŷcont
(4) fit Ymain ∼ moMain

(5) Ycont = Y − Ŷmain
(6) fit Ycont ∼ A ∗moCont
(7) Repeat steps (3)− (6)

until convergence or a maximum number of iterations.

iter is the maximum number of iterations to be used to attain convergence.

• suppress: an object of class logical indicating if the final screen prints are to sup-
pressed.

• . . . Additional arguments to be passed to genoud().

44

4.1.2 Illustrative Example

To illustrate this method, we will consider only the second-stage of our bmiData dataset.
Specifically, the treatment argument is A =A2 and the baseline covariates are
X = {gender, race,parentBMI,baselineBMI,month4BMI,A1}.

The first step is to specify the model for the propensity for treatment, π(A,X; γ). In this
example, we will make the treatment argument categorical:

> data <- bmiData

> data$A1 <- as.factor(data$A1)

> data$A2 <- as.factor(data$A2)

and we specify a logistic regression model. The model object for π(A,X; γ) must be created
using buildModelObj () of modelObj.

> moPropen <- buildModelObj(model = ~1,

+ solver.method = 'glm',
+ solver.args = list('family'='binomial'),
+ predict.method = 'predict.glm',
+ predict.args = list('type'='response'))

Note that the default scale of the prediction for predict.glm() is on the scale of the linear
predictors, not the response argument. Thus, argument type must be changed from its
default setting.

Next, we specify the model objects for the outcome regression, m(A,X; β). As for Q-
learning and IQ-learning, the model is specified as two components, one for the main effects
of treatment, moMain, and a second for the contrast functions, moCont.

> moMainSS <- buildModelObj(model = ~ gender + parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContSS <- buildModelObj(model = ~ parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))

regimes is the parameterized treatment regime and is provided to optimalSeq() as a user
defined function. The formal arguments must be the parameter names followed by “data.”

45

The function must return the vector of treatment assignments for the input data. The
treatment regime in this example is taken from the form of the regression model.

> regimes <- function(v1, v2, v3, data){

+ temp <- logical(nrow(data))

+ temp[data$A1 == "MR"] <- ((v1 + v2*data$month4BMI[data$A1 == "MR"] + v3) > 0)

+ temp[data$A1 == "CD"] <- ((v1 + v2*data$month4BMI[data$A1 == "CD"]) > 0)

+

+ tx <- rep("CD",nrow(data))

+ tx[temp] <- "MR"

+ return(tx)

+ }

The function call for the genetic algorithm is genoud(). This method requires several addi-
tional pieces of information that are passed through the ellipsis of the call to optimalSeq().
At a minimum the information should include the search space for the parameters of the
regimes

> c1 <- rep(-10,3)

> c2 <- rep(10,3)

> Domains <- cbind(c1,c2)

Starting values for the parameters

> sv <- rep(0,3)

and a population size

> psize <- 100

We have opted for a VERY small population in this example to expedite the vignette. It is
recommended that a much larger population be used, ≥ 1000.

The analysis is carried out as follows:

> fitSeq <- optimalSeq(moPropen = moPropen,

+ moMain = moMainSS, moCont = moContSS,

+ data = data, response = y, txName = "A2",

+ regimes = regimes,

+ pop.size = psize, starting.values = sv, Domains = Domains)

46

Augmented Inverse Probability Weighted Estimator

Genetic Algorithm

$value

[1] 7.639943

$par

[1] -9.4258511 0.2544200 0.4635112

$gradients

[1] NA NA NA

$generations

[1] 28

$peakgeneration

[1] 17

$popsize

[1] 100

$operators

[1] 15 12 12 12 12 12 12 12 0

Propensity for Treatment

Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)

Coefficients:

(Intercept)

0

Degrees of Freedom: 209 Total (i.e. Null); 209 Residual

Null Deviance: 291.1

Residual Deviance: 291.1 AIC: 293.1

Outcome Regression

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + parentBMI + month4BMI + A2 +

parentBMI:A2 + month4BMI:A2, data = data)

47

Coefficients:

(Intercept) gender parentBMI month4BMI

48.67554 -0.64891 -0.35732 -0.84883

A2MR parentBMI:A2MR month4BMI:A2MR

-14.77418 0.40447 0.05632

Regime Parameters:

[1] -9.4258511 0.2544200 0.4635112

Estimated Value: 7.639943

optimalSeq() returns an object that inherits from class DynTxRegime.

The complete algorithm is performed with the single call to optimalSeq().

If moMain and/or moCont are provided in the call to optimalSeq(), the AIPWE estimator
is used. If both moMain=NULL and moCont=NULL, the IPWE estimator is used.

> fitSeqIPWE <- optimalSeq(moPropen = moPropen,

+ moMain = NULL, moCont = NULL,

+ data = data, response = y, txName = "A2",

+ regimes = regimes,

+ pop.size = psize, starting.values = sv, Domains = Domains)

Inverse Probability Weighted Estimator

Genetic Algorithm

$value

[1] 7.65518

$par

[1] -4.505170 0.339819 -5.666066

$gradients

[1] NA NA NA

$generations

[1] 24

$peakgeneration

[1] 13

48

$popsize

[1] 100

$operators

[1] 15 12 12 12 12 12 12 12 0

Propensity for Treatment

Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)

Coefficients:

(Intercept)

0

Degrees of Freedom: 209 Total (i.e. Null); 209 Residual

Null Deviance: 291.1

Residual Deviance: 291.1 AIC: 293.1

Regime Parameters:

[1] -4.505170 0.339819 -5.666066

Estimated Value: 7.65518

Standard regression analysis tools were discussed in Section 1.3. Additional methods specific
to the optimalSeq() procedure follow.

Function regimeCoef (signature(object = “DynTxRegime”)) retrieves the estimated parame-
ters of the regime.

> est <- regimeCoef(fitSeq)

> est <- est/sqrt(est %*% est)

> est

[1] -0.99843036 0.02694936 0.04909728

The estimated mean potential outcome for the treatment regime can be retrieved using
estimator(signature(object = “DynTxRegime”)).

> estimator(fitSeq)

49

[1] 7.639943

Function genetic(signature(object = “DynTxRegime”)) retrieves the value object returned
by the genetic algorithm genoud().

> genetic(fitSeq)

$value

[1] 7.639943

$par

[1] -9.4258511 0.2544200 0.4635112

$gradients

[1] NA NA NA

$generations

[1] 28

$peakgeneration

[1] 17

$popsize

[1] 100

$operators

[1] 15 12 12 12 12 12 12 12 0

The regression analyses for the outcome are retrieved using outcome(signature(object =
“DynTxRegime”)). A list is returned, the structure of which depends on the choice of input
parameters; see Table 3 for details. This method is useful when analysis tools are available
for the fitting class that cannot be accessed from the DynTxRegime object

> fitO <- outcome(fitSeq)

> names(fitO)

[1] "Combined"

> head(fitted.values(fitO[["Combined"]]))

50

1 2 3 4 5 6

8.265574 5.843406 7.989007 10.598840 9.954517 9.870325

Function propen(signature(object = “DynTxRegime”)) retrieves the regression analysis for
the propensity for treatment.

> fitP <- propen(fitSeq)

> head(fitted.values(fitP))

1 2 3 4 5 6

0.5 0.5 0.5 0.5 0.5 0.5

The estimated optimal treatments for the training data is returned using optTx (signature(x
= “DynTxRegime”, newdata = “missing”)).

> head(optTx(x=fitSeq))

[1] 1 1 1 1 1 1

A new dataset can be included in the call to estimate the optimal treatment for new patients:
optTx (signature(x = “DynTxRegime”, newdata = “data.frame”)).

> optSeq <- optTx(x = fitSeq,newdata = newpatient)

> optSeq

dp= 1

[1,] "CD"

The information returned by optTx () differs from that returned for the Q-learning and IQ-
learning methods. For the optimalSeq() method, optTx () returns only a matrix of estimated
optimal treatments. Each row corresponds to an observation; each column corresponds to a
treatment decision point.

51

4.2 Estimation from a Classification Perspective

The value search method described in the previous subsection requires that a class of treat-
ment regimes be prespecified. Zhang et al. (2012a) proposed a classification framework
wherein the optimal classifier corresponds to the optimal treatment regime. Within this
framework, the class of treatment regimes does not need to be prespecified and can instead
be identified in a data-driven way by minimizing an expected weighted misclassification er-
ror. This method is developed in DynTxRegime only for single-decision-point scenarios with
binary treatment coded as {0, 1}.

It can be shown that the IPWE and AIPWE estimators given in the previous subsection are
equivalent to

IPWE(ν) = n−1

n∑
i=1

{
g(Xi, ν)ĈIPWE(Xi)

}
+ n−1

n∑
i=1

{
1− Ai

π(0, Xi; γ̂)
Yi

}
(7)

and

AIPWE(ν) = n−1

n∑
i=1

{
g(Xi, ν)ĈAIPWE(Xi)

}
+ n−1

n∑
i=1

{
1− Ai

π(0, Xi; γ̂)
Yi −

Ai − π(1, Xi; γ̂)

π(0, Xi; γ̂)
m(0, Xi; β̂)

}
(8)

where

ĈIPWE(Xi) =
Ai

π(1, Xi; γ̂)
Yi −

1− Ai
π(0, Xi; γ̂)

Yi (9)

and

ĈAIPWE(Xi) =
Ai

π(1, Xi; γ̂)
Yi −

1− Ai
π(0, Xi; γ̂)

Yi (10)

− Ai − π(1, Xi; γ̂)

π(1, Xi; γ̂)
m(1, Xi; γ̂)− Ai − π(1, Xi; γ̂)

π(0, Xi; γ̂)
m(0, Xi; γ̂) (11)

For these estimators, optimizing E{Y ∗(g)} is equivalent to optimizing

n−1
∑n

i=1

{
g(Xi, ν)ĈAIPWE(Xi)

}
or n−1

∑n
i=1

{
g(Xi, ν)ĈIPWE(Xi)

}
.

Estimating the optimal treatment regime in the class G can be separated into two steps:
constructing an estimator Ĉ(Xi) of the contrast function C(Xi) for i = 1, . . . , n, and subse-

quently estimating gopt by ĝopt = arg maxn−1
∑n

i=1

{
g(Xi, ν)Ĉ(Xi)

}
, where the maximiza-

tion is across all regimes in the class considered.

52

Zhang et al. (2012a), showed that the optimal treatment regime thus defined can be rewritten
as a weighted classification problem, where

gopt = arg max
g∈G

[
E
{
|C(X)| [I {C(X) > 0} − g(X)]2

}]
, (12)

where W = |C(X)| is a weight and Z = I {C(X) > 0} is the class, or treatment, to which
the subject is assigned.

The algorithm for the doubly robust classification method is as follows:

Value Search Algorithm – Classification Perspective

C1. Modeling: Regress A on X to obtain π(A,X; γ̂).

C2. Modeling: Regress Y on X and A to obtain

m(A,X; β̂) = µ(x; γ̂2) + A C(x; η̂).

C3. Estimator: Use m(A,X; β̂) and π(A,X; γ̂) to estimate ĈAIPWE (ĈIPWE)

C4. Classification: Construct class labels Ẑi = I
{
Ĉ(Xi) > 0

}
and weights Ŵi =

|Ĉ(Xi)| for each subject. Perform classification regression.

4.2.1 The optimalClass function

Function optimalClass() implements the single-decision-point classification method of Zhang
et al. (2012a). It is appropriate for single-decision-point analyses with binary treatments
coded as {0, 1}.

optimalClass(..., moPropen, moMain, moCont, moClass, data, response, txName,

iter = 0L, suppress = FALSE)

Complete input argument names are required, the meaning of which follow.

• moPropen: an object of class modelObj created by buildModelObj () of modelObj.
This object defines the regression analysis for the propensity for treatment, π(A,X; γ).
When defining the modeling object, the prediction method must return predictions on
the scale of the response.

53

• moMain: an object of class modelObj created by buildModelObj () of modelObj. This
object defines the regression analysis for the main effects term of the outcome, µ(X; γ).
When defining the modeling object, the prediction method must return predictions on
the scale of the response.

• moCont: an object of class modelObj created by buildModelObj () of modelObj. This
object defines the regression analysis for the contrasts of the outcome, C(X; η). When
defining the modeling object, the prediction method must return predictions on the
scale of the response.

• moClass: an object of class modelObj created by buildModelObj () of modelObj. This
object defines the classification regression analysis. When defining the modeling object,
the prediction method must return predictions on the scale of the classifier (i.e., { 0,
1}).

• data: an object of class data.frame containing the observed covariate and treatment
histories. Treatments must be coded as integers {0, 1}

• response: an object of class vector.T he final outcome of interest.

• txName: an object of class character specifying the column header of data that
corresponds to the treatment variable.

• iter: an object of class integer. If iter = 0, the regression analyses for the main
effects and contrast functions will be combined into a single regression step, i.e., the
models specified in input arguments moMain and moCont will be combined into a
single model, and parameter estimates will be obtained simultaneously. By default, the
parameter estimates will be obtained using the regression tools specified in moMain.
If moMain = NULL, the methods specified in moCont will be used. If iter ≥ 1,
the moMain and moCont regression analyses will be performed separately using an
iterative algorithm. The iterative algorithm is as follows:

(1) Y = Ymain + Ycont

(2) Ŷcont = 0

(3) Ymain = Y − Ŷcont
(4) fit Ymain ∼ moMain

(5) Ycont = Y − Ŷmain
(6) fit Ycont ∼ A ∗moCont
(7) Repeat steps (3)− (6)

until convergence or a maximum number of iterations.

iter is the maximum number of iterations to be used to attain convergence.

• suppress: an object of class logical indicating if the final screen prints are to sup-
pressed.

54

4.2.2 Illustrative Example

To illustrate this method, we consider only the second-stage of our bmiData dataset. Specif-
ically, the treatment argument is A = A2 and the baseline covariates are
X = {gender, race,parentBMI,baselineBMI,month4BMI,A1}.

> data <- bmiData

> data$A1[bmiData$A1=="MR"] <- 1

> data$A1[bmiData$A1=="CD"] <- 0

> data$A2[bmiData$A2=="MR"] <- 1

> data$A2[bmiData$A2=="CD"] <- 0

> data$A1 <- as.integer(data$A1)

> data$A2 <- as.integer(data$A2)

and we specify a logistic regression model. The model object for π(A,X; γ) must be created
using buildModelObj () of modelObj.

> moPropen <- buildModelObj(model = ~1,

+ solver.method = 'glm',
+ solver.args = list('family'='binomial'),
+ predict.method = 'predict.glm',
+ predict.args = list('type'='response'))

As before, the default scale of the prediction for predict.glm() is on the scale of the linear
predictors, not the response argument. Thus, argument type must be changed from its
default setting.

Next, we specify the model objects for the outcome regression, m(A,X; β). The model is
specified as two components, one for the main effects of treatment, moMain, and a second
for the contrasts among treatments, moCont.

> moMainSS <- buildModelObj(model = ~ gender + parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContSS <- buildModelObj(model = ~ parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))

We will use rpart() to perform the classification step. Any R classification method can be
used, provided that it accepts as input weights and that predictions can be returned on the

55

scale of the class.

> library(rpart)

> moClass <- buildModelObj(model = ~ parentBMI + month4BMI,

+ solver.method = 'rpart',
+ solver.args = list(method="class"),

+ predict.args = list(type='class'))

Note that rpart makes use of the generic predict(), and thus predict.method was not
specified.

The analysis is completed in a single call as follows:

> fitCl <- optimalClass(moPropen = moPropen,

+ moMain = moMainSS, moCont = moContSS,

+ moClass = moClass,

+ data = data, response = y, txName = "A2")

Augmented Inverse Probability Weighted Estimator

Classification

n= 210

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 210 0.460505500 1 (0.42150071 0.57849929)

2) parentBMI< 39.19166 169 0.344959700 0 (0.48902886 0.51097114)

4) month4BMI< 38.63 144 0.256919700 0 (0.53721054 0.46278946)

8) parentBMI>=32.80268 38 0.059588370 0 (0.69066148 0.30933852)

16) parentBMI< 37.19687 27 0.027260260 0 (0.80224385 0.19775615) *

17) parentBMI>=37.19687 11 0.026307350 1 (0.40989570 0.59010430) *

9) parentBMI< 32.80268 106 0.193526500 1 (0.45567227 0.54432773)

18) parentBMI< 31.67436 96 0.150995900 0 (0.51626702 0.48373298)

36) month4BMI< 30.16994 17 0.013115070 0 (0.76528760 0.23471240) *

37) month4BMI>=30.16994 79 0.137880800 0 (0.46197050 0.53802950)

74) parentBMI>=29.865 20 0.021942710 0 (0.61957938 0.38042062) *

75) parentBMI< 29.865 59 0.096828780 1 (0.41619326 0.58380674)

150) parentBMI< 29.21239 44 0.065615300 0 (0.51978788 0.48021212)

300) parentBMI>=28.46493 17 0.020031260 0 (0.65149568 0.34850432) *

301) parentBMI< 28.46493 27 0.039335560 1 (0.42415572 0.57584428)

602) month4BMI< 33.27589 18 0.020848640 0 (0.58169884 0.41830116) *

603) month4BMI>=33.27589 9 0.005369976 1 (0.15633955 0.84366045) *

56

151) parentBMI>=29.21239 15 0.013623590 1 (0.18770933 0.81229067) *

19) parentBMI>=31.67436 10 0.004733414 1 (0.08020476 0.91979524) *

5) month4BMI>=38.63 25 0.037385140 1 (0.26603638 0.73396362) *

3) parentBMI>=39.19166 41 0.073730110 1 (0.24443661 0.75556339)

6) parentBMI< 43.64256 32 0.070802980 1 (0.31291090 0.68708910)

12) month4BMI>=38.46362 17 0.037101120 0 (0.52826709 0.47173291) *

13) month4BMI< 38.46362 15 0.022129020 1 (0.16497807 0.83502193) *

7) parentBMI>=43.64256 9 0.002927133 1 (0.03884157 0.96115843) *

Propensity for Treatment

Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)

Coefficients:

(Intercept)

0

Degrees of Freedom: 209 Total (i.e. Null); 209 Residual

Null Deviance: 291.1

Residual Deviance: 291.1 AIC: 293.1

Outcome Regression

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + parentBMI + month4BMI + A2 +

parentBMI:A2 + month4BMI:A2, data = data)

Coefficients:

(Intercept) gender parentBMI month4BMI A2

48.67554 -0.64891 -0.35732 -0.84883 -14.77418

parentBMI:A2 month4BMI:A2

0.40447 0.05632

Estimated Value: 8.124419

and returns an object that inherits from class DynTxRegime.

> is(fitCl,'DynTxRegime')

[1] TRUE

If moMain and/or moCont are provided in the call to optimalClass(), the AIPWE es-
timator is used. If both moMain=NULL and moCont=NULL, the IPWE estimator is

57

used.

> fitClIPWE <- optimalClass(moPropen = moPropen,

+ moMain = NULL, moCont = NULL,

+ moClass = moClass,

+ data = data, response = y, txName = "A2")

Inverse Probability Weighted Estimator

Classification

n= 210

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 210 0.455019100 1 (0.4107605 0.5892395)

2) month4BMI< 37.22051 133 0.343508200 0 (0.4655247 0.5344753)

4) month4BMI>=33.01012 63 0.081056040 0 (0.6265283 0.3734717)

8) parentBMI>=32.77801 26 0.018983580 0 (0.8080958 0.1919042) *

9) parentBMI< 32.77801 37 0.062072460 0 (0.4744600 0.5255400)

18) parentBMI< 30.50098 26 0.025682520 0 (0.6475175 0.3524825) *

19) parentBMI>=30.50098 11 0.010611710 1 (0.1958014 0.8041986) *

5) month4BMI< 33.01012 70 0.195484900 1 (0.3834343 0.6165657)

10) parentBMI< 27.75467 22 0.060121750 0 (0.5717984 0.4282016)

20) month4BMI< 31.74998 12 0.026998730 0 (0.6918174 0.3081826) *

21) month4BMI>=31.74998 10 0.023566080 1 (0.3726578 0.6273422) *

11) parentBMI>=27.75467 48 0.099328580 1 (0.2907221 0.7092779)

22) parentBMI< 32.61048 38 0.088915130 1 (0.3321983 0.6678017)

44) parentBMI>=28.9742 21 0.056173220 0 (0.4631555 0.5368445)

88) month4BMI< 31.35797 11 0.018668140 0 (0.6700832 0.3299168) *

89) month4BMI>=31.35797 10 0.012631610 1 (0.2194823 0.7805177) *

45) parentBMI< 28.9742 17 0.030870870 1 (0.2168914 0.7831086) *

23) parentBMI>=32.61048 10 0.010413460 1 (0.1407131 0.8592869) *

3) month4BMI>=37.22051 77 0.096672200 1 (0.2860311 0.7139689)

6) parentBMI< 30.69162 7 0.002672736 0 (0.8013759 0.1986241) *

7) parentBMI>=30.69162 70 0.083756680 1 (0.2602260 0.7397740) *

Propensity for Treatment

Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)

Coefficients:

(Intercept)

0

Degrees of Freedom: 209 Total (i.e. Null); 209 Residual

58

Null Deviance: 291.1

Residual Deviance: 291.1 AIC: 293.1

Estimated Value: 10.40926

Available standard regression analysis tools were discussed in Subsection 1.3. Additional
methods specific to the optimalClass() procedure follow.

Function estimator(signature(object = “DynTxRegime”)) retrieves the estimated mean po-
tential outcome for the treatment regime.

> estimator(fitCl)

[1] 8.124419

The value object returned by the classification method can be retrieved using classif (signature(object
= “DynTxRegime”)).

> classif(fitCl)

n= 210

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 210 0.460505500 1 (0.42150071 0.57849929)

2) parentBMI< 39.19166 169 0.344959700 0 (0.48902886 0.51097114)

4) month4BMI< 38.63 144 0.256919700 0 (0.53721054 0.46278946)

8) parentBMI>=32.80268 38 0.059588370 0 (0.69066148 0.30933852)

16) parentBMI< 37.19687 27 0.027260260 0 (0.80224385 0.19775615) *

17) parentBMI>=37.19687 11 0.026307350 1 (0.40989570 0.59010430) *

9) parentBMI< 32.80268 106 0.193526500 1 (0.45567227 0.54432773)

18) parentBMI< 31.67436 96 0.150995900 0 (0.51626702 0.48373298)

36) month4BMI< 30.16994 17 0.013115070 0 (0.76528760 0.23471240) *

37) month4BMI>=30.16994 79 0.137880800 0 (0.46197050 0.53802950)

74) parentBMI>=29.865 20 0.021942710 0 (0.61957938 0.38042062) *

75) parentBMI< 29.865 59 0.096828780 1 (0.41619326 0.58380674)

150) parentBMI< 29.21239 44 0.065615300 0 (0.51978788 0.48021212)

300) parentBMI>=28.46493 17 0.020031260 0 (0.65149568 0.34850432) *

301) parentBMI< 28.46493 27 0.039335560 1 (0.42415572 0.57584428)

602) month4BMI< 33.27589 18 0.020848640 0 (0.58169884 0.41830116) *

59

603) month4BMI>=33.27589 9 0.005369976 1 (0.15633955 0.84366045) *

151) parentBMI>=29.21239 15 0.013623590 1 (0.18770933 0.81229067) *

19) parentBMI>=31.67436 10 0.004733414 1 (0.08020476 0.91979524) *

5) month4BMI>=38.63 25 0.037385140 1 (0.26603638 0.73396362) *

3) parentBMI>=39.19166 41 0.073730110 1 (0.24443661 0.75556339)

6) parentBMI< 43.64256 32 0.070802980 1 (0.31291090 0.68708910)

12) month4BMI>=38.46362 17 0.037101120 0 (0.52826709 0.47173291) *

13) month4BMI< 38.46362 15 0.022129020 1 (0.16497807 0.83502193) *

7) parentBMI>=43.64256 9 0.002927133 1 (0.03884157 0.96115843) *

To retrieve the value objects returned by the outcome regression model fitting functions use
outcome(signature(object = “DynTxRegime”)). A list is returned, the structure of which
depends on the choice of input parameters; see Table 3 for details. This method is useful
when analysis tools are available for the regression method that cannot be accessed from the
DynTxRegime object

> fitO <- outcome(fitCl)

> head(fitted.values(fitO[["Combined"]]))

1 2 3 4 5 6

8.265574 5.843406 7.989007 10.598840 9.954517 9.870325

Similarly, propen(signature(object = “DynTxRegime”)) retrieves the value object returned
by the propensity for treatment model fitting function. This method is useful when analysis
tools are available for the fitting class that cannot be accessed from the DynTxRegime object

> fitP <- propen(fitCl)

> head(fitted.values(fitP))

1 2 3 4 5 6

0.5 0.5 0.5 0.5 0.5 0.5

To obtain the estimated optimal treatments for the training data, use optTx (signature(x =
“DynTxRegime”, newdata = “missing”)).

> head(optTx(x=fitCl))

[1] 0 0 0 0 1 1

Levels: 0 1

60

To recommend an optimal treatments for a new patient, their covariate and treatment his-
tories are provided to optTx () as a data.frame.

> newpatient

gender race parentBMI baselineBMI A1 month4BMI

1 1 1 40 35 0 25

> optCl <- optTx(x=fitCl, newdata=newpatient)

> optCl

[1] 1

4.3 Estimation from a Coarsened Data Perspective

In Zhang et al. (2013), the methods of Section 4.1 were extended to the multiple-decision-
points scenario. The problem of estimating the optimal treatment regime is recast as a
coarsened data problem.

As before, let K denote the number of decision points under analysis. The treatment regimes
parameterized in ν are defined as g(X̄K , ĀK−1, ν) = {g1(X1, ν1), . . . , gK(X̄K , ĀK−1, νK)},
where ν = (νT1 , . . . , ν

T
K)T . For notational convenience, we will denote gk,ν = gk(X̄k, Āk−1, νk)

and ḡk,ν = (g1,ν , . . . , gk,ν).

Let, Cν be a discrete coarsening argument taking values 1, . . . , K,∞, corresponding to the
K+1 levels of coarsening. This argument reflects the extent to which the observed treatments
received are consistent with those dictated by ḡK,ν . For example, if the observed first-stage
treatment is not the treatment dictated by the first-stage treatment regime (A1 6= g1,ν),
Cν = 1. In this case, we observe only X1, and all other covariates are “missing.” Similarly,
if treatments A1, . . . , Ak−1 are consistent with the treatment regime, but Ak 6= gk,ν , Cν = k,
and we observe only X1, . . . , Xk. If all observed treatments are consistent with the treatment
regime, Cν =∞, and we observe the “full data.”

Define the coarsening hazard function, λk,ν(X̄k, Āk) = pr(Ak 6= gk,ν | X̄k, Āk−1 = ḡk−1,ν).

Thus, pr(Ck > k | X̄k, Āk) = Kk,ν(X̄k, Āk) =
∏k

k′=1{1− λk′,ν(X̄k′ , Āk′)}.

61

With these developments, the form of the estimator is taken to be

E{Y ∗(g)} =n−1

n∑
i=1

{
I(Ci =∞)

KK(X̄ki, Āki)
Yi

+
K∑
k=1

I(Ci = k)− λk,ν(X̄ki, Āki)I(Ci ≥ k)

Kk(X̄ki, Āki)
Lk(X̄ki)

}
(13)

where Lk(X̄k) are arbitrary functions of X̄k.

To implement Eq. (13), one must specify πk(a, X̄k, Āk−1) and Lk(X̄ki). The first follow
from specifying π1(a1, x1) = pr(A1 = a1 | X1 = x1), πk(ak, x̄k, āk−1) =pr(Ak = ak | X̄k =
x̄k, Āk−1 = āk−1) for k = K, . . . , 2. It is assumed that these are not known, and the user
must posit models π1(a1, x1; γ1), πk(ak, x̄k, āk−1; γk) for k = 2, . . . , K and estimate γk by
γ̂k, e.g., using logistic regression. This implies that λ1,ν(X1; γ1) = 1 − π1(g1,ν , x1; γ1) and
λk,ν(X̄k, Āk) = (1− πk(gk,ν , X̄k, ḡk−1,ν))

In DynTxRegime, two options exist for specification of the Lk(X̄k). The simplest is Lk(X̄k) ≡
0, yielding the IPWE:

IPWE(ν) = n−1

n∑
i=1

I(Ci =∞)

KK(X̄ki, Āki; γk)
Yi. (14)

To take greatest advantage of the potential for improved efficiency through the augmentation
term in Eq. (13), one can posit and fit parametric models approximating the conditional
expectations Loptk (x̄k) = E{Y ∗(g) | X̄∗k(ḡk−1) = x̄k} and substitute these into Eq. 13. To this
end, let

mK(x̄K , āK) = E(Y | X̄K = x̄K , ĀK = āK) (15)

fK(x̄K , āk−1) = mK(x̄K , āK−1, gK,ν) (16)

Then define iteratively, for k = K − 1, . . . , 2, the quantities

mk(x̄k, āk) = E{fk+1(x̄k, Xk+1, āk) | X̄k = x̄k, Āk = āk} (17)

fk(x̄k, āk−1) = mk(x̄k, āk−1, gkν) (18)

for k = 1, m1(x1, a1) = E{f2(x1, X2, a1) | X1 = x1, A1 = a1}, f1(x1) = m1(x1, g1,ν).

The user must specify models mk(x̄k, āk; βk), for k = 1, . . . , K. The fitted mk(x̄k, āk; β̂k) are
then used to approximate Loptk (x̄k) in Eq. (13).

AIPWE(ν) =n−1

n∑
i=1

{
I(Ci =∞)

KK(X̄ki, Āki; γ)
Yi

+
K∑
k=1

I(Ci = k)− λk,ν(X̄ki, Āki; γ)I(Ci ≥ k)

Kk(X̄ki, Āki; γ)
mk(X̄ki, ḡk,ν ; β̂k)

}
. (19)

62

The algorithm for this method is as follows:

Value Search Algorithm - Coarsened Data Perspective

For each decision point, k:
CD1. Modeling: Regress Ak on X̄k, Āk−1 to obtain

πk(Ak, X̄k, Āk−1; γ̂k).

CD2 Optimization
For an estimate of ν

CD2a. Modeling: Regress Y on X̄K and ĀK to obtain

mK(x̄K , āK ; β̂K) = µK(x̄K , āK−1; γ̂K) + aK CK(x̄K , āK−1; η̂K).

Define

fK(x̄K , āK−1) = mK(x̄K , āK−1, gK,ν ; β̂K)

For k=K − 1, . . . , 1
CD2b. Modeling: Regress fk+1(X̄k+1, Āk) on X̄k and Āk to obtain

mk(x̄k, āk; β̂k) = µ(x̄k, āk−1; γ̂k) + ak C(x̄k, āk−1; η̂k).

Define

fk(x̄k, āk−1) = mk(x̄k, āk−1, gk,ν ; β̂k)

CD2c. Estimator: Use mk(X̄k, ḡk,ν ; β̂k) and πk(gk,ν , X̄k, ḡk−1; γ̂k) k = 1, . . . , K to
estimate AIPWE(ν) or IPWE(ν)

CD2d. Update: Update ν

repeat CD2a-CD2d; terminate at convergence of estimator.

Both the IPWE and AIPWE estimators are non-smooth functions in ν; accordingly, the use
of traditional optimization methods to maximize these quantities in ν can be problematic.
In DynTxRegime, the parameters of the pre-specified treatment regime are optimized using
a genetic algorithm, rgenoud ?.

Notice that the model m(X̄, g(X̄k, ν); β) must be refit for each iteration in the optimization
of ν. A practical alternative when the regime is derived from a model is to fit mk(X̄k, Āk−1; β)
using Q-learning and to hold β̂ fixed during the optimization of ν. Both options are imple-
mented in DynTxRegime.

63

4.3.1 The optimalSeq function

For multiple decision points, the call to optimalSeq() is very similar to that of the single-
decision-point analysis. The primary difference between the calls is the use of lists rather
than single objects.

optimalSeq(..., moPropen, moMain, moCont, data, response, txName, regimes,

fSet = NULL, refit = FALSE, iter = 0L, suppress = FALSE)

Complete input argument names are required, the meaning of which follow.

• moPropen: a list of objects of class modelObj created by buildModelObj () of mod-
elObj. The object in the kth element of moPropen defines the regression step for
the kth propensity for treatment, πk(A,X; γ). When defining the modeling object, the
prediction method must return predictions on the scale of the response.

• moMain: a list of objects of class modelObj created by buildModelObj () of modelObj.
The object in the kth element of moMain defines the regression step for the main effects
component of the kth outcome regression model, µk(X̄k, Āk−1; γk). When defining the
modeling object, the prediction method must return predictions on the scale of the
response.

• moCont: a list of objects of class modelObj created by buildModelObj () of modelObj.
The object in the kth element of moCont defines the regression step for the contrasts
component of the kth outcome regression model, Ck(X̄k, Āk−1; ηk). When defining the
modeling object, the prediction method must return predictions on the scale of the
response.

• data: an object of class data.frame containing the observed covariate and treatment
histories. Treatments can be factors or integers.

• response: an object of class vector.T he final outcome of interest.

• txName: a vector of objects of class character specifying the column header of data
that corresponds to the treatment variables.

• regimes: a list of objects of class function. The kth element of this list is a user
defined function that defines the kth parameterized treatment regime, g(X̄k, Āk−1, ν).

• fSet: a list of objects of class function. The kth element of this list is a user de-
fined function that specifies the rules for determining the feasible treatment options,
Φk(x̄k, āk−1), for an individual or modeling subset based on their covariate and treat-
ment history.

64

• refit: an object of class logical. If refit=TRUE, the outcome regression model,
m(A,X; β) is refit at each iteration of the treatment regime optimization algorithm. If
refit=FALSE, Q-learning is used.

• iter: an object of class integer. If iter = 0, the regression analyses for the main
effects and contrast functions will be combined into a single regression step, i.e., the
models specified in input arguments moMain and moCont will be combined into a
single model, and parameter estimates will be obtained simultaneously. By default, the
parameter estimates will be obtained using the regression tools specified in moMain.
If moMain = NULL, the methods specified in moCont will be used. If iter ≥ 1,
the moMain and moCont regression analyses will be performed separately using an
iterative algorithm. The iterative algorithm is as follows:

(1) Y = Ymain + Ycont

(2) Ŷcont = 0

(3) Ymain = Y − Ŷcont
(4) fit Ymain ∼ moMain

(5) Ycont = Y − Ŷmain
(6) fit Ycont ∼ A ∗moCont
(7) Repeat steps (3)− (6)

until convergence or a maximum number of iterations.

iter is the maximum number of iterations to be used to attain convergence.

• suppress: an object of class logical indicating if the final screen prints are to sup-
pressed.

• . . . Additional arguments to be passed to genoud().

4.3.2 Illustrative Example

To illustrate this method, we will use the full bmiData dataset.

> data <- bmiData

> data$A1[bmiData$A1=="MR"] <- 1

> data$A1[bmiData$A1=="CD"] <- 0

> data$A2[bmiData$A2=="MR"] <- 1

> data$A2[bmiData$A2=="CD"] <- 0

> data$A1 <- as.integer(data$A1)

> data$A2 <- as.integer(data$A2)

65

The first step is to specify the model for the propensity for treatment, πk(Āk, X̄k; γk). For
both treatment stages, the treatment argument is binary, coded as {0, 1}, and we spec-
ify a logistic regression model. The model object for πk(Āk, X̄k; γ) must be created using
buildModelObj () of package modelObj.

> moPropen <- list()

> moPropen[[1]] <- buildModelObj(model = ~1,

+ solver.method = 'glm',
+ solver.args = list(family='binomial'),
+ predict.method = 'predict.glm',
+ predict.args = list(type='response'))
> moPropen[[2]] <- buildModelObj(model = ~1,

+ solver.method = 'glm',
+ solver.args = list(family='binomial'),
+ predict.method = 'predict.glm',
+ predict.args = list(type='response'))

Note that the default scale of the prediction for predict.glm() is on the scale of the linear
predictors, not the response argument. Thus, variable type must be changed from its default
setting.

Next, we specify the model objects for the outcome regression, mk(Āk, X̄k; βk). The model is
specified as two components, one for the main effects of treatment, moMain, and a second
for the contrasts among treatments, moCont.

> #

> #Models for first-stage regression

> ######

> moMainFS <- buildModelObj(model = ~ gender + race + parentBMI + baselineBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moContFS <- buildModelObj(model = ~ gender + parentBMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> #

> #Models for second-stage regression

> ######

> moMainSS <- buildModelObj(model = ~ gender + parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))

66

> moContSS <- buildModelObj(model = ~ parentBMI + month4BMI,

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moMain <- list(moMainFS, moMainSS)

> moCont <- list(moContFS, moContSS)

regimes is the parameterized treatment regime and is provided to optimalSeq() as a function.
The formal arguments must be the parameter names followed by “data.” The function must
return the vector of treatment assignments for the input data. Our treatment regime in this
example is derived from the outcome regression models.

> regimes <- list()

> regimes[[1]] <- function(a, b, d, data){

+ as.numeric(a + b*data$parentBMI + d*data$baselineBMI > 0)

+ }

> regimes[[2]] <- function(a, b, d, data){

+ as.numeric(a + b*data$month4BMI + d*data$A1 > 0)

+ }

The function call for the genetic algorithm is genoud(). This method requires several addi-
tional pieces of information that are passed through the ellipsis of the call to optimalSeq().
At a minimum the information should include the search space for the parameters of the
regimes

> c1 <- rep(-1000,6)

> c2 <- rep(1000,6)

> Domains <- cbind(c1,c2)

Starting values for the parameters

> sv <- (1:6)/10

And a population size

> psize <- 100

We have opted for a VERY small population in this example to expedite the vignette. It is
recommended that a much larger population be used, ≥ 1000.

The analysis is executed as follows:

67

> fitSeq2 <- optimalSeq(moPropen = moPropen,

+ moMain = moMain, moCont = moCont,

+ data = data, response = y, txName = c("A1", "A2"),

+ regimes = regimes,

+ pop.size = psize, starting.values = sv, Domains = Domains)

Augmented Inverse Probability Weighted Estimator

Genetic Algorithm

$value

[1] 10.07928

$par

[1] -542.74422 -624.75364 513.50143 -93.84508 -688.57458 -317.63630

$gradients

[1] NA NA NA NA NA NA

$generations

[1] 13

$peakgeneration

[1] 2

$popsize

[1] 100

$operators

[1] 15 12 12 12 12 12 12 12 0

Propensity for Treatment

Decision Point 1

Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)

Coefficients:

(Intercept)

-0.07623

Degrees of Freedom: 209 Total (i.e. Null); 209 Residual

Null Deviance: 290.8

Residual Deviance: 290.8 AIC: 292.8

Decision Point 2

68

Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)

Coefficients:

(Intercept)

0

Degrees of Freedom: 209 Total (i.e. Null); 209 Residual

Null Deviance: 291.1

Residual Deviance: 291.1 AIC: 293.1

Outcome Regression

Decision Point 1

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + race + parentBMI + baselineBMI +

A1 + gender:A1 + parentBMI:A1, data = data)

Coefficients:

(Intercept) gender race parentBMI baselineBMI

34.28319 -1.02733 0.01416 -0.11703 -0.57426

A1 gender:A1 parentBMI:A1

9.09682 0.63783 -0.30022

Decision Point 2

*** Combined Fit ***

Call:

lm(formula = YinternalY ~ gender + parentBMI + month4BMI + A2 +

parentBMI:A2 + month4BMI:A2, data = data)

Coefficients:

(Intercept) gender parentBMI month4BMI A2

48.67554 -0.64891 -0.35732 -0.84883 -14.77418

parentBMI:A2 month4BMI:A2

0.40447 0.05632

Regime Parameters:

[[1]]

[1] -542.7442 -624.7536 513.5014

69

[[2]]

[1] -93.84508 -688.57458 -317.63630

Estimated Value: 10.07928

optimalSeq() returns an object that inherits from class DynTxRegime.

> is(fitSeq2,'DynTxRegime')

[1] TRUE

The complete value search algorithm for a multi-stage trial is performed with the single call
to optimalSeq().

If moMain=NULL and moCont=NULL, the IPWE estimator is used.

> fitSeq2IPWE <- optimalSeq(moPropen = moPropen,

+ moMain = NULL, moCont = NULL,

+ data = data, response = y, txName = c("A1", "A2"),

+ regimes = regimes,

+ pop.size = psize, starting.values = sv, Domains = Domains)

Inverse Probability Weighted Estimator

Genetic Algorithm

$value

[1] 10.10778

$par

[1] 606.30643 -463.87915 354.84625 729.76665 305.16885 73.57075

$gradients

[1] NA NA NA NA NA NA

$generations

[1] 13

$peakgeneration

70

[1] 2

$popsize

[1] 100

$operators

[1] 15 12 12 12 12 12 12 12 0

Propensity for Treatment

Decision Point 1

Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)

Coefficients:

(Intercept)

-0.07623

Degrees of Freedom: 209 Total (i.e. Null); 209 Residual

Null Deviance: 290.8

Residual Deviance: 290.8 AIC: 292.8

Decision Point 2

Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)

Coefficients:

(Intercept)

0

Degrees of Freedom: 209 Total (i.e. Null); 209 Residual

Null Deviance: 291.1

Residual Deviance: 291.1 AIC: 293.1

Regime Parameters:

[[1]]

[1] 606.3064 -463.8792 354.8463

[[2]]

[1] 729.76665 305.16885 73.57075

Estimated Value: 10.10778

71

Available standard regression analysis tools were discussed in Subsection 1.3. Additional
methods specific to the optimalSeq() procedure follow.

All methods are the same as discussed in Section 4.1. However, most returned objects will
be lists; the kth element of the list corresponds to the results for the kth decision point. For
example,

> est <- regimeCoef(fitSeq2)

> est[[1]] <- est[[1]]/sqrt(est[[1]] %*% est[[1]])

> est[[2]] <- est[[2]]/sqrt(est[[2]] %*% est[[2]])

> est

[[1]]

[1] -0.5572628 -0.6414660 0.5272377

[[2]]

[1] -0.1228193 -0.9011686 -0.4157049

A list is returned. The contents of the kth element of the list are the parameters for the
kth-stage regime.

The only exception to this structure is the estimated optimal treatment, where a matrix is
returned; the kth column corresponds to the kth decision point.

> head(optTx(x = fitSeq2))

[1] 0 0 0 1 1 0

> optTx(x = fitSeq2, newdata = newpatient)

dp= 1

[1,] 0

4.3.3 Feasible Treatments and Subset Modeling

As was illustrated for Q-learning, the optimalSeq() method allows feasible treatment subsets
to be defined and for unique models to be specified for patient subsets. We will combine both
of these features into a single example. Consider a clinical trial design in which a response

72

argument, R, is measured prior to second stage randomization. If R = 0, patients receive
treatment (1-A1) at the second-stage. If R = 1, patients are randomized to one of two
treatments {0, 1} at the second-stage. In addition, we want to fit the first-stage regression
for patients with baselineBMI < 37 using one model, and those with baselineBMI ≥ 37
using another.

Our earlier working example can be manipulated to illustrate this scenario.

> data <- bmiData

> data$A1[bmiData$A1=="MR"] <- 1

> data$A1[bmiData$A1=="CD"] <- 0

> data$A2[bmiData$A2=="MR"] <- 1

> data$A2[bmiData$A2=="CD"] <- 0

> data$A1 <- as.integer(data$A1)

> data$A2 <- as.integer(data$A2)

> data$R <- rbinom(nrow(data),1,0.5)

> data$A2[data$R==0] <- 1L - data$A1[data$R==0]

To create the dataset, we randomly generated a binary response argument with equal prob-
ability. For patients with R = 0, the second-stage treatment was set to 1−A1. All patients
have the same subset of treatments available to them. However, because we were defining a
unique model for subsets of the data, fSet is used to define the subsets.

> fSet <- list()

> fSet[[1]] <- function(data){

+ if(data$baselineBMI < 37) return(list("g1", c(0,1)))

+ if(data$baselineBMI >= 37)return(list("g2", c(0,1)))

+ }

> fSet[[2]] <- function(data){

+ if(data$R == 0L) return(list("g3", c(0,1)))

+ if(data$R == 1L) return(list("g4", c(0,1)))

+ }

We want to specify a unique model for each subset of patients in the first-stage regression.
buildModelObjSubset() extends the buildModelObj () function of modelObj by allowing the
user to specify the subset for which the model is defined. Because all models are communi-
cated in a single call, we must add the optional dp argument to the call to buildModelObj-
Subset(). The model objects will now be lists and are defined as:

> moMain <- list()

> moCont <- list()

> #Models for second-stage outcome

73

> moMain[[1]] <- buildModelObjSubset(model = ~ gender + parentBMI + month4BMI + A1,

+ dp = 2,

+ subset = c("g3","g4"),

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moCont[[1]] <- buildModelObjSubset(model = ~ month4BMI + A1,

+ dp = 2,

+ subset = c("g3","g4"),

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> #Models for first-stage outcome for subset g1

> moMain[[2]] <- buildModelObjSubset(model = ~ gender + race + parentBMI +

+ baselineBMI,

+ dp = 1,

+ subset = "g1",

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moCont[[2]] <- buildModelObjSubset(model = ~ parentBMI + baselineBMI,

+ dp = 1,

+ subset = "g1",

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> #Models for first-stage outcome for subset g2

> moMain[[3]] <- buildModelObjSubset(model = ~ gender + race + parentBMI +

+ baselineBMI,

+ dp = 1,

+ subset = "g2",

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))
> moCont[[3]] <- buildModelObjSubset(model = ~ parentBMI + baselineBMI,

+ dp = 1,

+ subset = "g2",

+ solver.method = 'lm',
+ predict.method = 'predict.lm',
+ predict.args = list(type='response'))

Though the second-stage model is for all patients, it must be created using buildModelOb-
jSubset(). All elements of a list passed to moCont, moMain, or moPropen must be of
the same class.

74

We can also define subset models for the propensity of treatment. For example

> library(nnet)

> moPropen <- list()

> moPropen[[1]] <- buildModelObjSubset(model = ~1,

+ dp = 1,

+ subset = "g1",

+ solver.method = 'multinom',
+ predict.method = 'predict',
+ predict.args = list(type='probs'))
> moPropen[[2]] <- buildModelObjSubset(model = ~1,

+ dp = 1,

+ subset = "g2",

+ solver.method = 'multinom',
+ predict.method = 'predict',
+ predict.args = list(type='probs'))
> moPropen[[3]] <- buildModelObjSubset(model = ~1,

+ dp = 2,

+ subset = c("g3","g4"),

+ solver.method = 'multinom',
+ predict.method = 'predict',
+ predict.args = list(type='probs'))

The regime rules are:

> regimes <- list()

> regimes[[1]] <- function(a, b, d, data){

+ as.numeric(a + b*data$parentBMI + d*data$baselineBMI > 0)

+ }

> regimes[[2]] <- function(a, b, d, data){

+ res <- numeric(nrow(data))

+ tst <- data$R < 0.5

+ res[tst] <- 1-data$A1[tst]

+ res[!tst] <- (a + b*data$month4BMI[!tst] + d*data$A1[!tst] > 0)

+ return(res)

+ }

The function call is the same, with the exception of fSet. Because the calculation and screen
print are lengthy, it is not executed within the vignette.

> fitSeq2_FS <- optimalSeq(moPropen = moPropen,

+ moMain = moMain, moCont = moCont,

75

+ fSet = fSet,

+ data = data, response = y, txName = c("A1", "A2"),

+ regimes = regimes, suppress = TRUE,

+ pop.size = psize, starting.values = sv, Domains = Domains)

weights: 2 (1 variable)

initial value 69.314718

final value 69.234697

converged

weights: 2 (1 variable)

initial value 76.246190

final value 75.590340

converged

weights: 2 (1 variable)

initial value 145.560908

final value 145.322723

converged

5 Conclusion

We have demonstrated how to estimate an optimal DTR using Q-learning, IQ-learning, and
value search methods in the R package DynTxRegime.

Acknowledgments

The authors would like to thank Dr. Reneé Moore for discussions about meal replacement
therapy for obese adolescents that informed the data generation model.

References

Bather, J. (2000). Decision Theory: An Introduction to Dynamic Programming and Sequen-
tial Decisions. Chichester: Wiley.

Berkowitz, R. I., Wadden, T. A., Gehrman, C. A., Bishop-Gilyard, C. T., Moore, R. H.,
Womble, L. G., Cronquist, J. L., Trumpikas, N. L., Katz, L. E. L., and Xanthopoulos,
M. S. (2010). Meal replacements in the treatment of adolescent obesity: A randomized
controlled trial. Obesity, 19(6):1193–1199.

76

Cao, W., Tsiatis, A. A., and Davidian, M. (2009). Improving efficiency and robustness
of the doubly robust estimator for population mean with incomplete data. Biometrika,
96:723–732.

Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression. New
York: Chapman and Hall.

Chakraborty, B., Murphy, S. A., and Strecher, V. J. (2010). Inference for non-regular pa-
rameters in optimal dynamic treatment regimes. Statistical Methods in Medical Research,
19(3):317–343.

Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replace-
ment from a finite universe. Journal of the American Statistical Association, 47(260):663–
685.

Laber, E. B., Lizotte, D. J., Qian, M., Pelham, W. E., and Murphy, S. A. (2010). Statistical
inference in dynamic treatment regimes. arXiv preprint arXiv:1006.5831.

Linn, K. A., Laber, E. B., and Stefanski, L. (2014). Interactive model building for q-learning.
Biometrika, page in press.

Murphy, S. A. (2005). A generalization error for q-learning. Journal of Machine Learning
Research, 6(7):1073 – 1097.

Robins, J. M. (1986). A new approach to causal inference in mortality studies with sus-
tained exposure periods – applications to control of the healthy worker survivor effect.
Mathematical Modeling, 7:1393–1512.

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In
Proceedings of the Second Seattle Symposium in Biostatistics, pages 189–326. NY: Springer-
Verlag.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coefficients
when some regressors are not always observed. Journal of the American Statistical Asso-
ciation, 89:846–866.

Schulte, P. J., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012). Q- and a-learning
methods for estimating optimal dynamic treatment regimes. arXiv:1202.4177 [stat.ME].

Song, R., Wang, W., Zeng, D., and Kosorok, M. R. (2011). Penalized q-learning for dynamic
treatment regimes. arXiv preprint arXiv:1108.5338.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292.

Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., and Laber, E. B. (2012a). Estimating
optimal treatment regimes from a classification perspective. Stat, 1(1):103–114.

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012b). A robust method for
estimating optimal treatment regimes. Biometrics, 68(4):1010–1018.

77

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013). Robust estimation of opti-
mal dynamic treatment regimes for sequential treatment decisions. Biometrika, 100:681–
694.

78

