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1 Introduction

Kulldorff (1997) proposes a test for detecting disease clusters which will find
the most likely cluster. This is called the Spatial Scan Statistic and the
significance of the test is found via a Monte Carlo test. The test statistic is
based on a likelihood ratio test for the following test:

H0 : θz = θz
H1 : θz > θz

Here, z represents a cluster (i.e., a set of contiguous areas), θz the relative
risk in the cluster and θz the relative risk outside the cluster. Many different
clusters are tested in turn. The most likely cluster is the one with the highest
value of the test statistic. Then a Monte Carlo test is used to compute the
p-value of the most likely cluster.

2 Generalised Linear Models for cluster de-

tection

Jung (2009); Zhang and Lin (2009) show that the test statistic for a given
cluster is equivalent to fitting a Generalised Linear Model using a cluster
variable as a predictor. This cluster variable is a dummy variable which is 1
for the areas in the cluster and 0 for the areas outside the cluster.

Firstly, given that we are using GLM’s we could include covariates in the
model. For example, for a Poisson model with expected counts Ei we could
have:

Oi ∼ Po(Eiθi)
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log(θi) = log(Ei) + α + βxi

Fitting this model will provide estimates α̂ and β̂. This will account for the
(spatial) effects of the covariates. In order to include the cluster variable the
effects of the covariates will be keep fixed. Hence, the clusters covariates will
be used in a model with fixed coefficients for the covariates:

log(θi) = log(Ei) + α̂ + β̂xi + γCLUSTERi

This means that the offset now is log(Ei) + α̂ + β̂xi. γ is a measure of the
difference of the risk in the cluster. We are only interested in cluster whose
coefficient is higher than 0 (i.e., increased risk).

Testing different clusters will produce many different cluster covariates.
We can use model selection techniques to select the most important cluster in
the area. In particular, the log-likelihood can be used to compare the model
with the cluster variable to the null model (i.e., the one with the covariates
only). Note that we are interested in clusters with a high risk, so that

2.1 Leukemia in upstate New York

The NY8 dataset is avaialble in package DClusterm and it provides cases of
leukemia in different census tracts in upstate New York. This data set has
been analysed by several authors (Waller et al., 1992; Waller and Gotway,
2004).

The location of leukemia is thought to be linked to the use of Trichloroethene
(TCE) by several companies in the area. Figure 1 shows the Standardised
Mortality Ratios of the census tracts and the locations of the industries using
TCE.

In order to measure exposure, the inverse of the distance to the nearest
TCE site has been used (PEXPOSURE). In addition, two other socioeco-
nomic covariates have been used: the percetage of people aged 65 or more
(PCTAGE65P) and the percentage of people who own their home (PC-
TOWNHOME).

> library(DClusterm)

> library(snowfall)

> data(NY8)

> NY8$Cases2<-round(NY8$Cases)

> NY8$Observed<-NY8$Cases2

> NY8$EXP<-NY8$POP8*sum(NY8$Cases2)/sum(NY8$POP8)

> NY8$Expected<-NY8$EXP
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> NY8$SMR<-NY8$Cases2/NY8$EXP

> NY8$x<-coordinates(NY8)[,1]

> NY8$y<-coordinates(NY8)[,2]

> NY8st<-STFDF(NY8, xts(1,as.Date(1)), NY8@data)

>
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Figure 1: SMR of the incidence of Leukemia in upstate New York.

2.2 Cluster detection

2.2.1 Cluster detection with no covariates

First of all, a model with no covariates will be fitted and used as a starting
point.

> m0<-glm(Cases2~offset(log(EXP))+1, family="poisson", data=NY8)

> idxcl<-c(120, 12, 89, 139, 146)
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> cl0<-DetectClustersModel(NY8st, thegrid=as.data.frame(NY8)[idxcl,c("x", "y")],

+ fractpop=.15, alpha=0.05, radius=Inf, step=NULL,

+ typeCluster="S", R=NULL, numCPUS=2, model0=m0)

Below is a summary of the clusters detected with this method. The dates
can be ignored as this is a purely spatial cluster.

> cl0

x y size minDateCluster maxDateCluster statistic

11 424728.9 4661404 39 1970-01-02 01:00:00 1970-01-02 01:00:00 8.044846

88 409430.4 4720092 9 1970-01-02 01:00:00 1970-01-02 01:00:00 6.967107

119 404710.7 4768346 24 1970-01-02 01:00:00 1970-01-02 01:00:00 3.254824

cluster pvalue

11 TRUE 0.0000604120

88 TRUE 0.0001893208

119 TRUE 0.0107290781

The centre of the clusters detected are shown in Figure 2.

2.2.2 Cluster detection after adjusting for covariates

Similarly, clusters can be detected after adjusting for significant risk factors.
First we will fit a GLM with the 3 covariates mentioned earlier. As it can be
seen, all three are significant:

> m1<-glm(Cases2~offset(log(EXP))+PCTOWNHOME+PCTAGE65P+PEXPOSURE,

+ family="poisson", data=NY8)

> summary(m1)

Call:

glm(formula = Cases2 ~ offset(log(EXP)) + PCTOWNHOME + PCTAGE65P +

PEXPOSURE, family = "poisson", data = NY8)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9099 -1.1294 -0.1768 0.6385 3.2426

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.65507 0.18550 -3.531 0.000413 ***

PCTOWNHOME -0.36472 0.19316 -1.888 0.058998 .
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Figure 2: Clusters detected when no covariates are included in the model.

PCTAGE65P 4.05031 0.60559 6.688 2.26e-11 ***

PEXPOSURE 0.15141 0.03165 4.784 1.72e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 459.05 on 280 degrees of freedom

Residual deviance: 384.01 on 277 degrees of freedom

AIC: 958.97

Number of Fisher Scoring iterations: 5

The cluster detection method is run as before, but now we use the previous
model instead:
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> cl1<-DetectClustersModel(NY8st, thegrid=as.data.frame(NY8)[idxcl,c("x", "y")],

+ fractpop=.15, alpha=.05,

+ typeCluster="S", R=NULL, numCPUS=2, model0=m1)

> cl1

x y size minDateCluster maxDateCluster statistic

88 409430.4 4720092 9 1970-01-02 01:00:00 1970-01-02 01:00:00 5.861204

119 404710.7 4768346 20 1970-01-02 01:00:00 1970-01-02 01:00:00 3.160591

cluster pvalue

88 TRUE 0.0006175202

119 TRUE 0.0119304026

Figure 3 shows the clusters detected after adjusting for covariates.

●

●

Figure 3: Clusters detected after adjusting for covariates.
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3 Spatio-temporal clusters

3.1 Brain Cancer in New Mexico

The brainNM data set contains yearly cases of brain cancer in New Mexico
from 1973 to 1991 (inclusive). The data set has been taken from the SatScan
website and the area boundaries from the U.S. Census Bureau. In addition,
the location of Los Alamos National Laboratory has been included (from the
Wikipedia). Inverse distance to this site can be used to test for increased
risk in the areas around the Laboratory as no other covariates are available.

> library(DClusterm)

> #debug(DetectClustersModel)

> #debug(glmAndZIP.iscluster)

> #debug(CalcStatsAllClusters)

> library(snowfall)

> data(brainNM)

Expected counts have been obtained using age and sex standardisation
over the whole period of time. Hence, yearly differences are likely to bee seen
when plotting the data. The SMR’s have been plotted in Figure 3.1.

3.2 Cluster detection

3.2.1 Cluster detection with no covariates

Similarly as in the spatial case, a GLM

> m0<-glm(Observed~offset(log(Expected))+1, family="poisson", data=brainst@data)

> summary(m0)

Call:

glm(formula = Observed ~ offset(log(Expected)) + 1, family = "poisson",

data = brainst@data)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.4874 -0.9998 -0.4339 0.3773 3.1321

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.761e-16 2.917e-02 0 1
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Figure 4: SMR of brain cancer in New Mexico.

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 631.64 on 607 degrees of freedom

Residual deviance: 631.64 on 607 degrees of freedom

AIC: 1585.6

Number of Fisher Scoring iterations: 5

> cl0<-DetectClustersModel(brainst, coordinates(brainst@sp),

+ minDateUser="1985-01-01", maxDateUser="1989-01-01",

+ fractpop=.15, alpha=0.05, typeCluster="ST", R=NULL, numCPUS=2, model0=m0)

> nrow(cl0)

[1] 180
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> cl0[1:5,]

x y size minDateCluster maxDateCluster

CLUSTER146 -106.3073 35.86930 3 1986-08-04 02:00:00 1988-08-04 02:00:00

CLUSTER256 -105.9761 35.50684 2 1986-08-04 02:00:00 1988-08-04 02:00:00

CLUSTER271 -106.9303 34.00725 9 1985-08-04 02:00:00 1986-08-04 02:00:00

CLUSTER258 -105.9761 35.50684 2 1987-08-04 02:00:00 1988-08-04 02:00:00

CLUSTER148 -106.3073 35.86930 2 1987-08-04 02:00:00 1988-08-04 02:00:00

statistic cluster pvalue

CLUSTER146 7.493492 TRUE 0.0001082553

CLUSTER256 6.438221 TRUE 0.0003327442

CLUSTER271 6.378992 TRUE 0.0003544929

CLUSTER258 6.331113 TRUE 0.0003731179

CLUSTER148 6.331113 TRUE 0.0003731179

3.2.2 Cluster detection after adjusting for covariates

We will use the inverse of the distance to Los Alamos National Laboratory
as a covariate.

> dst<-spDistsN1(coordinates(brainst@sp), losalamos, TRUE)

> nyears<-length(unique(brainst@data$Year))

> brainst@data$IDLANL<-rep(1/dst, nyears)

>

> m1<-glm(Observed~offset(log(Expected))+IDLANL,

+ family="poisson", data=brainst)

> summary(m1)

Call:

glm(formula = Observed ~ offset(log(Expected)) + IDLANL, family = "poisson",

data = brainst)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.4832 -0.9982 -0.4280 0.3775 3.1424

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.005721 0.029897 -0.191 0.848

IDLANL 0.338194 0.364900 0.927 0.354
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 631.64 on 607 degrees of freedom

Residual deviance: 630.84 on 606 degrees of freedom

AIC: 1586.8

Number of Fisher Scoring iterations: 5

> cl1<-DetectClustersModel(brainst, coordinates(brainst@sp), fractpop=.15,

+ alpha=0.05, minDateUser="1988-01-01", maxDateUser="1989-01-01",

+ typeCluster="ST", R=NULL, numCPUS=2, model0=m1)

> nrow(cl1)

[1] 6

> cl1[1:5,]

x y size minDateCluster maxDateCluster

CLUSTER25 -105.9761 35.50684 2 1988-08-04 02:00:00 1988-08-04 02:00:00

CLUSTER14 -106.3073 35.86930 2 1988-08-04 02:00:00 1988-08-04 02:00:00

CLUSTER29 -105.8508 34.64048 2 1988-08-04 02:00:00 1988-08-04 02:00:00

CLUSTER6 -106.8328 32.35265 17 1988-08-04 02:00:00 1988-08-04 02:00:00

CLUSTER13 -105.4592 33.74524 3 1988-08-04 02:00:00 1988-08-04 02:00:00

statistic cluster pvalue

CLUSTER25 2.433451 TRUE 0.02737662

CLUSTER14 2.433451 TRUE 0.02737662

CLUSTER29 2.431998 TRUE 0.02742274

CLUSTER6 2.010047 TRUE 0.04496121

CLUSTER13 2.007057 TRUE 0.04512090

We can easily display the most significant cluster as follows:

> stcl<-get.stclusters(brainst, cl0)

> brainst$CLUSTER<-0

> brainst$CLUSTER[stcl[[1]]]<-1
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> print(stplot(brainst[,,"CLUSTER"], at=c(0, 0.5, 1.5)))
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Figure 5: Spatio-temporal cluster of brain cancer detected in New Mexico.

4 Zero-inflated models for cluster detection

Gómez-Rubio and López-Qúılez (2010) extend this method to account for
zero-inflation. In this case the observed number of cases come from a mixture
distribution:

Pr(Oi = ni) =

{
πi + (1− πi)Po(0|θiEi) ni = 0
(1− πi)Po(ni|θiEi) ni = 1, 2, . . .

The relative risk θi can be modelled using a log-linear model to depend on
some relevant risk factors. Also, it is common that all πi’s are taken equal
to a single value π.
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4.1 Brain Cancer in Navarre (Spain)

Ugarte et al. (2006) analyse the incidence of brain cancer in Navarre (Spain).
The aggregation level is the health district. Figure 4.1 shows the SMR. As it
can be seen there are many areas where the SMR is zero because there are no
cases in those areas. Ugarte et al. (2004) also tested for positive zero-inflation
of these data compared to a Poisson distribution. The method implemented
in this package is similar to the one used in Gómez-Rubio and López-Qúılez
(2010) for the detection of disease clusters of rare diseases.
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Figure 6: SMR of brain cancer in Navarre (Spain).

4.2 Cluster detection

4.2.1 Cluster detection with no covariates

Before starting our cluster detection methods, we will check the appropri-
ateness of a Poisson GLM for this data. Fitting a log-linear model (with no
covariates) gives the following model:
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> m0<-glm(OBSERVED~ offset(log(EXPECTED))+1, family="poisson", data=brainnav)

> summary(m0)

Call:

glm(formula = OBSERVED ~ offset(log(EXPECTED)) + 1, family = "poisson",

data = brainnav)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5227 -1.4783 -0.3203 0.7042 1.6393

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.752e-06 8.805e-02 0 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 63.733 on 39 degrees of freedom

Residual deviance: 63.733 on 39 degrees of freedom

AIC: 145.02

Number of Fisher Scoring iterations: 5

Furthermore, a quasipoisson model has been fit in order to asses any
extra-variation in the data:

> m0q<-glm(OBSERVED~ offset(log(EXPECTED))+1, family="quasipoisson",

+ data=brainnav)

> summary(m0q)

Call:

glm(formula = OBSERVED ~ offset(log(EXPECTED)) + 1, family = "quasipoisson",

data = brainnav)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5227 -1.4783 -0.3203 0.7042 1.6393

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.752e-06 9.703e-02 0 1
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(Dispersion parameter for quasipoisson family taken to be 1.214555)

Null deviance: 63.733 on 39 degrees of freedom

Residual deviance: 63.733 on 39 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

The dispersion parameter in the previous model seems to be higher than 1,
which may mean that the Poisson distribution is not appropriate.

For this reason, and following Ugarte et al. (2004), a zero-inflated Poisson
model has been fit. Here is the resulting model:

> m0zip<-zeroinfl(OBSERVED ~ offset(log(EXPECTED))+1 | 1, data = brainnav,

+ dist="poisson", x=TRUE)

> summary(m0zip)

Call:

zeroinfl(formula = OBSERVED ~ offset(log(EXPECTED)) + 1 | 1, data = brainnav,

dist = "poisson", x = TRUE)

Pearson residuals:

Min 1Q Median 3Q Max

-1.3585 -0.9137 -0.1378 0.7137 1.8091

Count model coefficients (poisson with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.09347 0.09459 0.988 0.323

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6158 0.6435 -2.511 0.012 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 9

Log-likelihood: -69.08 on 2 Df

Hence, the zero-inflated Poisson model will be used now to detect clusters
of disease:
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> brainnav$Expected<-brainnav$EXPECTED

> brainnavst<-STFDF(brainnav, xts(1,as.Date(1)), brainnav@data)

> cl0<-DetectClustersModel(brainnavst, coordinates(brainnav), fractpop=.25,

+ alpha=.05,

+ typeCluster="S", R=NULL, numCPUS=2, model0=m0zip)

R Version: R version 2.14.0 (2011-10-31)

Library spdep loaded.

Library splancs loaded.

Library spacetime loaded.

Library DCluster loaded.

Library pscl loaded.

Library DClusterm loaded.

[1] 1 1

> cl0

x y size minDateCluster maxDateCluster

count_CLUSTER29 596886.8 4710520 4 1970-01-02 01:00:00 1970-01-02 01:00:00

count_CLUSTER28 611795.5 4713762 3 1970-01-02 01:00:00 1970-01-02 01:00:00

statistic cluster pvalue

count_CLUSTER29 2.520091 TRUE 0.02476587

count_CLUSTER28 2.016942 TRUE 0.04459518

As it can be seen, two clusters (with a p-value lower than 0.05) are detected.
However, they overlap and we will just consider the one with the lowest
p-value, which is shown in Figure 4.2.1

> names(cl0)[3]<-"size"

> brainnav$x<-coordinates(brainnav)[,1]

> brainnav$y<-coordinates(brainnav)[,2]

> knbinary(brainnav, cl0)

CL1 CL2

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

15



8 0 0

9 0 0

10 0 0

11 0 0

12 0 0

13 0 0

14 0 0

15 0 0

16 0 0

17 1 0

18 0 1

19 0 0

20 0 0

21 0 0

22 0 0

23 0 0

24 1 0

25 0 0

26 0 0

27 0 0

28 0 0

29 0 0

30 1 1

31 1 1

32 0 0

33 0 0

34 0 0

35 0 0

36 0 0

37 0 0

38 0 0

39 0 0

40 0 0

> brainnav$CLUSTER<-knbinary(brainnav, cl0)[,1]
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Figure 7: Cluster of brain cancer detected in Navarre (Spain).
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