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1 Introduction

This is a simulation study comparing various methods for imputation of missing covariate
data in a survival analysis in which there are interactions between the predictor variables.
We compare our new Random Forest method for MICE (Multivariate Imputation by
Chained Equations) with other imputation methods and full data analysis. In our Random
Forest method (RFcont), the conditional mean missing values are predicted using Random
Forest and imputed values are drawn from Normal distributions centred on the predicted
means [1].
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We also perform a comparison with the methods recently published by Doove et al. [2]:
mice.impute.cart (classification and regression trees in MICE) and mice.impute.rf (MICE
using Random Forests).

2 Methods

We used the R packages CALIBERrfimpute, survival, xtable, missForest and ran-
domForest. We created simulated survival datasets with two fully observed predictor
variables (x1, x2) and a partially observed predictor (x3), which depends on x1, x2 and
their interaction. They were generated as follows:

x1 Standard normal distribution

x2 Standard normal distribution, independent of x1

x3 Derived from x1 and x2: x3 = 0.5(x1 + x2 − x1.x2) + e where e is normally distributed
with mean 0 and variance 1.

The equation for the log hazard of patient i was given by:

hi = β1x1i + β2x2i + β3x3i (1)

where all the β coefficients were set to 0.5.
We used an exponential distribution to generate a survival time for each patient. We

also generated an observation time for each patient, as a random draw from a uniform dis-
tribution bounded by zero and the 50th percentile of survival time. If the observation time
was less than the survival time, the patient was considered as censored (event indicator
0, and the patient’s follow-up ends on their censoring date), otherwise the event indicator
was 1, with follow-up ending on the date of event.

x1
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Linear regression model relating x3 to x1 and x2:

> summary(lm(x3 ~ x1*x2, data = mydata))

Call:

lm(formula = x3 ~ x1 * x2, data = mydata)

Residuals:

Min 1Q Median 3Q Max

-3.8331 -0.6726 -0.0054 0.6830 4.3329

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.010556 0.007050 -1.497 0.134

x1 0.483030 0.007066 68.364 <2e-16 ***

x2 0.499616 0.007033 71.036 <2e-16 ***

x1:x2 -0.498829 0.007098 -70.280 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9971 on 19996 degrees of freedom

Multiple R-squared: 0.4222, Adjusted R-squared: 0.4221

F-statistic: 4871 on 3 and 19996 DF, p-value: < 2.2e-16
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Association of predictor variables x1 and x3

All true log hazard ratios were assumed to be 0.5, with hazard ratios = 1.65. We checked
that the hazard ratios in the simulated data were as expected for a large sample:

> # Cox proportional hazards analysis

> myformula <- as.formula(Surv(time, event) ~ x1 + x2 + x3)
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> # Analysis with 10,000 simulated patients (or more

> # if the variable REFERENCE_SAMPLESIZE exists)

> if (!exists('REFERENCE_SAMPLESIZE')){
+ REFERENCE_SAMPLESIZE <- 10000

+ }

> # Use parallel processing, if available, to create

> # datasets more quickly.

> if ('parallel' %in% loadedNamespaces() &&

+ !is.null(getOption('mc.cores')) &&

+ .Platform$OS.type == 'unix'){
+ REFERENCE_SAMPLESIZE <- REFERENCE_SAMPLESIZE %/%

+ getOption('mc.cores')
+ simdata <- parallel::mclapply(1:getOption('mc.cores'),
+ function(x) makeSurv(REFERENCE_SAMPLESIZE))

+ simdata <- do.call('rbind', simdata)

+ } else {

+ simdata <- makeSurv(REFERENCE_SAMPLESIZE)

+ }

> summary(coxph(myformula, data = simdata))

Call:

coxph(formula = myformula, data = simdata)

n= 10000, number of events= 3134

coef exp(coef) se(coef) z Pr(>|z|)

x1 0.51178 1.66826 0.01919 26.67 <2e-16 ***

x2 0.51497 1.67360 0.01909 26.98 <2e-16 ***

x3 0.47663 1.61064 0.01686 28.27 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

x1 1.668 0.5994 1.607 1.732

x2 1.674 0.5975 1.612 1.737

x3 1.611 0.6209 1.558 1.665

Concordance= 0.761 (se = 0.006 )

Rsquare= 0.251 (max possible= 0.996 )

Likelihood ratio test= 2893 on 3 df, p=0

Wald test = 2460 on 3 df, p=0

Score (logrank) test = 2429 on 3 df, p=0

We created datasets containing 200 simulated patients. For each dataset, we first anal-
ysed the complete dataset with no values missing, then artificially created missingness in
variable x3, imputed the missing values using various methods, and analysed the imputed
datasets. We combined parameter estimates from multiply imputed datasets using Rubin’s
rules.

2.1 Missingness mechanism

Missingness was imposed in x3 dependent on x1, x2, the event indicator and the marginal
Nelson-Aalen cumulative hazard, using a logistic regression model. The linear predictors
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were offset by an amount chosen to make the overall proportion of each variable missing
approximately 0.2, i.e.:

P (miss)i =
exp(lpi + offset)

1 + exp(lpi + offset)
(2)

lpi = 0.1x1i + 0.1x2i + 0.1 × cumhazi + 0.1 × eventi (3)

where ‘event’ is the event indicator and ‘cumhaz’ is the marginal Nelson-Aalen cumula-
tive hazard.

We analysed the datasets with missing data using different methods of multiple impu-
tation. We calculated the marginal Nelson-Aalen cumulative hazard and included it in all
imputation models, along with the event indicator and follow-up time.

> # Setting analysis parameters: To analyse more than 3 samples,

> # set N to the desired number before running this program

> if (!exists('N')){
+ N <- 3

+ }

> # Number of imputations (set to at least 10 when

> # running an actual simulation)

> if (!exists('NIMPS')){
+ NIMPS <- 3

+ }

> # Use parallel processing if the 'parallel' package is loaded

> if ('parallel' %in% loadedNamespaces() &&

+ .Platform$OS.type == 'unix'){
+ cat('Using parallel processing\n')
+ results <- parallel::mclapply(1:N, doanalysis)

+ } else {

+ results <- lapply(1:N, doanalysis)

+ }

Using parallel processing

We used the following methods of multiple imputation. The number of imputations was
3. In each case, the imputation model for x3 contained x1, x2, the event indicator and the
marginal Nelson-Aalen cumulative hazard:

missForest – from the missForest package, which completes a dataset in an iterative way
using Random Forest prediction. It was run with maximum 10 iterations (default)
and 100 trees per forest (default).

CART MICE – Clasification and regression tree MICE method from the mice package
(mice.impute.cart).

RF MICE (Doove) – Random Forest MICE method from Doove et al. [2], which is avail-
able as function mice.impute.rf in the mice package, with 10 or 100 trees.

RFcont MICE – Random Forest MICE method from the CALIBERrfimpute package with
5, 10, 20 or 100 trees.

Parametric MICE – normal-based linear regression with default settings, in which the
imputation model for x3 is of the form:

x3 = β0 + β1.x1 + β2.x2 + β3.event + β4.cumhaz + e
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where e is the residual variance.

We analysed 3 samples. We calculated the following for each method and each param-
eter:

• Bias of log hazard ratio

• Standard error of bias (Monte Carlo error)

• Mean square error

• Standard deviation of estimated log hazard ratio

• Mean length of 95% confidence intervals

• Coverage of 95% confidence intervals (proportion containing the true log hazard
ratio)

3 Results

All the true log hazard ratios were set at 0.5.

3.1 Fully observed variables

Log hazard ratio for the continuous fully observed variable x1:

Standard Mean SD of Mean 95% 95% CI
Bias error of bias square error estimate CI length coverage

Full data 0.000462 0.0652 0.00849 0.113 0.557 1
missForest 0.0124 0.0772 0.0121 0.134 0.563 1
CART MICE 0.0113 0.0762 0.0117 0.132 0.577 1
RF Doove MICE 10 0.0446 0.0782 0.0142 0.135 0.574 1
RF Doove MICE 100 0.0446 0.0679 0.0112 0.118 0.564 1
RFcont MICE 5 0.0523 0.0765 0.0144 0.132 0.565 1
RFcont MICE 10 0.0397 0.0685 0.011 0.119 0.589 1
RFcont MICE 20 0.0364 0.0758 0.0128 0.131 0.586 1
RFcont MICE 100 0.0313 0.0725 0.0115 0.126 0.566 1
Parametric MICE 0.0177 0.0827 0.014 0.143 0.575 1

Log hazard ratio for the continuous fully observed variable x2:

Standard Mean SD of Mean 95% 95% CI
Bias error of bias square error estimate CI length coverage

Full data -0.093 0.0986 0.0281 0.171 0.593 1
missForest -0.0836 0.0764 0.0187 0.132 0.596 1
CART MICE -0.0876 0.0767 0.0194 0.133 0.601 1
RF Doove MICE 10 -0.0605 0.0691 0.0132 0.12 0.607 1
RF Doove MICE 100 -0.0505 0.0891 0.0184 0.154 0.604 1
RFcont MICE 5 -0.0641 0.0822 0.0176 0.142 0.619 1
RFcont MICE 10 -0.0626 0.0736 0.0148 0.127 0.606 1
RFcont MICE 20 -0.0828 0.0785 0.0192 0.136 0.609 1
RFcont MICE 100 -0.0879 0.0663 0.0165 0.115 0.599 1
Parametric MICE -0.0748 0.0748 0.0168 0.13 0.609 1
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3.2 Partially observed variable

Log hazard ratio for the continuous partially observed variable x3:

Standard Mean SD of Mean 95% 95% CI
Bias error of bias square error estimate CI length coverage

Full data 0.051 0.0405 0.00588 0.0701 0.509 1
missForest 0.013 0.066 0.00889 0.114 0.535 1
CART MICE -0.0438 0.0537 0.00769 0.0931 0.581 1
RF Doove MICE 10 -0.0639 0.084 0.0182 0.146 0.722 1
RF Doove MICE 100 -0.0396 0.0477 0.00612 0.0827 0.662 1
RFcont MICE 5 -0.11 0.0533 0.0178 0.0923 0.696 1
RFcont MICE 10 -0.0665 0.062 0.0121 0.107 0.659 1
RFcont MICE 20 -0.0365 0.0449 0.00536 0.0777 0.685 1
RFcont MICE 100 -0.0518 0.0551 0.00875 0.0954 0.562 1
Parametric MICE -0.0743 0.0417 0.009 0.0723 0.65 1

The following graph shows the bias for RFcont MICE methods by number of trees (bias
estimated from 3 simulations; the lines denote 95% confidence intervals):
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3.3 Pairwise comparisons between methods

3.3.1 Comparison of bias

Difference between absolute bias (negative means that the first method is less biased). P
values from paired sample t tests. Significance level: * P <0.05, ** P <0.01, *** P <0.001.
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RFcont MICE 10 vs RFcont MICE 100 vs RFcont MICE 10 vs
Coefficient parametric MICE parametric MICE RFcont MICE 100

x1 0.022 0.0136 0.00831
x2 -0.0123 * 0.0131 -0.0253
x3 -0.0078 -0.0225 0.0147

RF Doove MICE 10 vs RF Doove MICE 10 vs RF Doove MICE 10 vs
Coefficient RFcont MICE 10 CART MICE RF Doove MICE 100

x1 0.00499 0.0334 ** 0.0000785
x2 -0.00208 -0.0271 0.01
x3 -0.00265 0.0201 0.0242

3.3.2 Comparison of precision

Ratio of variance of estimates (less than 1 means that the first method is more precise).
P values from F test. Significance level: * P <0.05, ** P <0.01, *** P <0.001.

RFcont MICE 10 vs RFcont MICE 100 vs RFcont MICE 10 vs
Coefficient parametric MICE parametric MICE RFcont MICE 100

x1 0.686 0.769 0.893
x2 0.967 0.784 1.23
x3 2.21 1.74 1.27

RF Doove MICE 10 vs RF Doove MICE 10 vs RF Doove MICE 10 vs
Coefficient RFcont MICE 10 CART MICE RF Doove MICE 100

x1 1.3 1.05 1.33
x2 0.88 0.81 0.601
x3 1.84 2.45 3.1

3.3.3 Comparison of confidence interval length

Ratio of mean length of 95% confidence intervals (less than 1 means that the first method
produces smaller confidence intervals). P values from paired sample t test. Significance
level: * P <0.05, ** P <0.01, *** P <0.001.

RFcont MICE 10 vs RFcont MICE 100 vs RFcont MICE 10 vs
Coefficient parametric MICE parametric MICE RFcont MICE 100

x1 1.024 0.9834 1.042
x2 0.9956 0.984 1.012
x3 1.014 0.8644 1.173

RF Doove MICE 10 vs RF Doove MICE 10 vs RF Doove MICE 10 vs
Coefficient RFcont MICE 10 CART MICE RF Doove MICE 100

x1 0.9749 0.9955 1.019
x2 1.001 1.009 1.005
x3 1.095 1.243 * 1.09

3.3.4 Comparison of confidence interval coverage

Difference between percentage coverage of 95% confidence intervals (positive means that
the first method has greater coverage). P values for pairwise comparisons by McNemar’s
test. Significance level: * P <0.05, ** P <0.01, *** P <0.001.
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RFcont MICE 10 vs RFcont MICE 100 vs RFcont MICE 10 vs
Coefficient parametric MICE parametric MICE RFcont MICE 100

x1 0.0 0.0 0.0
x2 0.0 0.0 0.0
x3 0.0 0.0 0.0

RF Doove MICE 10 vs RF Doove MICE 10 vs RF Doove MICE 10 vs
Coefficient RFcont MICE 10 CART MICE RF Doove MICE 100

x1 0.0 0.0 0.0
x2 0.0 0.0 0.0
x3 0.0 0.0 0.0

4 Discussion

In this simulation, parametric MICE using the default settings yielded a biased estimate
for the coefficient for the partially observed variable x3. This is because the interaction
between x1 and x2 was not included in the imputation models. The estimate using the
CART or Random Forest MICE methods were less biased, more precise and had shorter
confidence intervals with greater coverage. Omissions of interactions between predictors
can potentially result in bias using parametric MICE even if, as in this case, the interaction
is not present in the substantive model.

4.1 CART versus Random Forest MICE

CART MICE produced estimates for the x3 coefficient that were less precise than the
Random Forest MICE methods, and coverage of 95% confidence intervals was only 93%.

4.2 Comparison of Random Forest MICE methods

Coefficients estimated after impuTation using CART or Random Forest MICE methods
were slightly biased. The bias was statistically significant but small in magnitude. Using
RFcont MICE, the x3 coefficient was biased towards the null with 5 or 10 trees and biased
away from the null with 20 or more trees; bias was minimised using 10 or 20 trees.

Confidence intervals estimated using Doove’s Random Forest MICE method were slightly
shorter than those obtained using RFcont MICE but coverage was >95% with both meth-
ods.

Doove’s method was slightly slower than RFcont and the computation time for each
Random Forest method was proportional to the number of trees.

4.3 missForest

Parameters estimated after imputation using missForest were biased and the coverage of
95% confidence intervals was less than 95%. Failure to draw from the correct conditional
distribution leads to bias and underestimation of the uncertainty when statistical models
are fitted to imputed data.

4.4 Implications for further research

This simulation demonstrates a situation in which Random Forest MICE methods have an
advantage over parametric MICE. Both Doove’s method (RF) and our method (RFcont)
performed well, and on some performance measures Doove’s method was superior.

It would be useful to compare these methods in simulations based on real datasets.
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5 Appendix: R code

5.1 R functions

This R code needs to be run in order to load the necessary functions before running the
script (Section 5.2).

5.1.1 Data generating functions

makeSurv <- function(n = 2000, loghr = kLogHR){

# Creates a survival cohort of n patients. Assumes that censoring is

# independent of all other variables

# x1 and x2 are random normal variables

data <- data.frame(x1 = rnorm(n), x2 = rnorm(n))

# Create the x3 variable

data$x3 <- 0.5 * (data$x1 + data$x2 - data$x1 * data$x2) + rnorm(n)

# Underlying log hazard ratio for all variables is the same

data$y <- with(data, loghr * (x1 + x2 + x3))

data$survtime <- rexp(n, exp(data$y))

# Censoring - assume uniform distribution of observation times

# up to a maximum

obstime <- runif(nrow(data), min = 0,

max = quantile(data$survtime, 0.5))

data$event <- as.integer(data$survtime <= obstime)

data$time <- pmin(data$survtime, obstime)

# Observed marginal cumulative hazard for imputation models

data$cumhaz <- nelsonaalen(data, time, event)

# True log hazard and survival time are not seen in the data

# so remove them

data$y <- NULL

data$survtime <- NULL

return(data)

}

makeMarSurv <- function(data, pmissing = kPmiss){

# Introduces missing data dependent on event indicator

# and cumulative hazard and x1 and x2

logistic <- function(x){

exp(x) / (1 + exp(x))

}

predictions <- function(lp, n){

# uses the vector of linear predictions (lp) from a logistic model

# and the expected number of positive responses (n) to generate

# a set of predictions by modifying the baseline
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trialn <- function(lptrial){

sum(logistic(lptrial))

}

stepsize <- 32

lptrial <- lp

while(abs(trialn(lptrial) - n) > 1){

if (trialn(lptrial) > n){

# trialn bigger than required

lptrial <- lptrial - stepsize

} else {

lptrial <- lptrial + stepsize

}

stepsize <- stepsize / 2

}

# Generate predictions from binomial distribution

as.logical(rbinom(logical(length(lp)), 1, logistic(lptrial)))

}

data$x3[predictions(0.1 * data$x1 + 0.1 * data$x2 +

0.1 * data$cumhaz + 0.1 * data$event, nrow(data) * pmissing)] <- NA

return(data)

}

5.1.2 Functions to analyse data

coxfull <- function(data){

# Full data analysis

coefs <- summary(coxph(myformula, data = data))$coef

# return a vector of coefficients (est), upper and lower 95% limits

confint <- cbind(coefs[, 'coef'] - qnorm(0.975) * coefs[, 'se(coef)'],
coefs[, 'coef'] + qnorm(0.975) * coefs[, 'se(coef)'])

out <- cbind(coefs[, 'coef'], confint,

kLogHR >= confint[,1] & kLogHR <= confint[,2])

colnames(out) <- c('est', 'lo 95', 'hi 95', 'cover')
out

}

coximpute <- function(imputed_datasets){

# Analyses a list of imputed datasets

docoxmodel <- function(data){

coxph(myformula, data=data)

}

mirafits <- as.mira(lapply(imputed_datasets, docoxmodel))

out <- summary(pool(mirafits))

out <- cbind(out, kLogHR >= out[, 'lo 95'] & kLogHR <= out[, 'hi 95'])
# Whether this confidence interval contains the true hazard ratio

colnames(out)[length(colnames(out))] <- 'cover'
out

}

domissf <- function(missdata, reps = NIMPS){

# Imputation by missForest

out <- list()

for (i in 1:reps){
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invisible(capture.output(

out[[i]] <- missForest(missdata)$ximp))

}

out

}

mice.impute.cart <- function(y, ry, x, minbucket = 5, cp = 1e-04,

...){

xobs <- as.matrix(x[ry,])

xmis <- as.matrix(x[!ry,])

yobs <- y[ry]

if (is.factor(yobs)==F){

fit <- rpart(yobs~., data = cbind(yobs,xobs), method = "anova",

control = rpart.control(minbucket = minbucket, cp = cp), ...)

leafnr <- floor(as.numeric(row.names(fit$frame[fit$where,])))

fit$frame$yval <- as.numeric(row.names(fit$frame))

nodes <- predict(object = fit, newdata = xmis)

donor <- lapply(nodes, function(s) yobs[leafnr == s])

impute <- sapply(1:length(donor), function(s){

sample(donor[[s]], 1)

})

} else {

fit <- rpart(yobs~., data = cbind(yobs, xobs),

method = "class", control = rpart.control(

minbucket = minbucket, cp = cp), ...)

nodes <- predict(object = fit, newdata = xmis)

impute <- apply(nodes, MARGIN = 1, FUN = function(s){

sample(colnames(nodes), size = 1, prob = s)

})

}

return(impute)

}

mice.impute.rfdoove10 <- function(y, ry, x, ...){

mice.impute.rfcont(y = y, ry = ry, x = x, ntrees = 10)

}

mice.impute.rfdoove100 <- function(y, ry, x, ...){

mice.impute.rf(y = y, ry = ry, x = x, ntrees = 100)

}

mice.impute.rfcont5 <- function(y, ry, x, ...){

mice.impute.rfcont(y = y, ry = ry, x = x, ntree_cont = 5)

}

mice.impute.rfcont10 <- function(y, ry, x, ...){

mice.impute.rfcont(y = y, ry = ry, x = x, ntree_cont = 10)

}

mice.impute.rfcont20 <- function(y, ry, x, ...){

mice.impute.rfcont(y = y, ry = ry, x = x, ntree_cont = 20)

}

mice.impute.rfcont100 <- function(y, ry, x, ...){

mice.impute.rfcont(y = y, ry = ry, x = x, ntree_cont = 100)

}
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domice <- function(missdata, functions, reps = NIMPS){

mids <- mice(missdata, defaultMethod = functions,

m = reps, visitSequence = 'monotone',
printFlag = FALSE, maxit = 10)

lapply(1:reps, function(x) complete(mids, x))

}

doanalysis <- function(x){

# Creates a dataset, analyses it using different methods, and outputs

# the result as a matrix of coefficients / SE and coverage

data <- makeSurv(kSampleSize)

missdata <- makeMarSurv(data)

out <- list()

out$full <- coxfull(data)

out$missf <- coximpute(domissf(missdata))

out$rf5 <- coximpute(domice(missdata, 'rfcont5'))
out$rf10 <- coximpute(domice(missdata, 'rfcont10'))
out$rf20 <- coximpute(domice(missdata, 'rfcont20'))
out$rf100 <- coximpute(domice(missdata, 'rfcont100'))
out$rfdoove10 <- coximpute(domice(missdata, 'rfdoove10'))
out$rfdoove100 <- coximpute(domice(missdata, 'rfdoove100'))
out$cart <- coximpute(domice(missdata, 'cart'))
out$mice <- coximpute(domice(missdata, 'norm'))
out

}

5.1.3 Functions to compare methods

pstar <- function(x){

if (x < 0.001){

'***'
} else if (x < 0.01){

'**'
} else if (x < 0.05){

'*'
} else {

''
}

}

compareBias <- function(method1, method2){

# Generates a table comparing bias

# Comparison statistic is the difference in absolute bias

# (negative means first method is better)

compareBiasVar <- function(varname){

# All coefficients should be kLogHR

bias1 <- sapply(results, function(x){

x[[method1]][varname, 'est']
}) - kLogHR

bias2 <- sapply(results, function(x){

x[[method2]][varname, 'est']
}) - kLogHR
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if (sign(mean(bias1)) == -1){

bias1 <- -bias1

}

if (sign(mean(bias2)) == -1){

bias2 <- -bias2

}

paste(formatC(mean(bias1) - mean(bias2), format = 'fg', digits = 3),

pstar(t.test(bias1 - bias2)$p.value))

}

sapply(variables, compareBiasVar)

}

compareVariance <- function(method1, method2){

# Generates a table comparing precision between two methods

# Comparison statistic is ratio of variance

# (smaller means first method is better)

compareVarianceVar <- function(varname){

e1 <- sapply(results, function(x){

x[[method1]][varname, 'est']
})

e2 <- sapply(results, function(x){

x[[method2]][varname, 'est']
})

paste(formatC(var(e1) / var(e2), format = 'fg', digits = 3),

pstar(var.test(e1, e2)$p.value))

}

sapply(variables, compareVarianceVar)

}

compareCIlength <- function(method1, method2){

# Generates a table comparing coverage percentage between two methods

# Comparison statistic is the ratio of confidence interval lengths

# (less than 1 = first better)

compareCIlengthVar <- function(varname){

# Paired t test for bias (difference in estimate)

len1 <- sapply(results, function(x){

x[[method1]][varname, 'hi 95'] -

x[[method1]][varname, 'lo 95']
})

len2 <- sapply(results, function(x){

x[[method2]][varname, 'hi 95'] -

x[[method2]][varname, 'lo 95']
})

paste(formatC(mean(len1) / mean(len2),

format = 'fg', digits = 4),

pstar(t.test(len1 - len2)$p.value))
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}

sapply(variables, compareCIlengthVar)

}

compareCoverage <- function(method1, method2){

# Generates a table comparing coverage percentage between two methods

# Comparison statistic is the difference in coverage

# (positive = first better)

compareCoverageVar <- function(varname){

# Paired t test for bias (difference in estimate)

cov1 <- sapply(results, function(x){

x[[method1]][varname, 'cover']
})

cov2 <- sapply(results, function(x){

x[[method2]][varname, 'cover']
})

paste(formatC(100 * (mean(cov1) - mean(cov2)), format = 'f',
digits = 1),

pstar(binom.test(c(sum(cov1 == TRUE & cov2 == FALSE),

sum(cov1 == FALSE & cov2 == TRUE)))$p.value))

}

sapply(variables, compareCoverageVar)

}

5.1.4 Functions to compile and display results

getParams <- function(coef, method){

estimates <- sapply(results, function(x){

x[[method]][coef, 'est']
})

bias <- mean(estimates) - kLogHR

se_bias <- sd(estimates) / sqrt(length(estimates))

mse <- mean((estimates - kLogHR) ^ 2)

ci_len <- mean(sapply(results, function(x){

x[[method]][coef, 'hi 95'] - x[[method]][coef, 'lo 95']
}))

ci_cov <- mean(sapply(results, function(x){

x[[method]][coef, 'cover']
}))

out <- c(bias, se_bias, mse, sd(estimates), ci_len, ci_cov)

names(out) <- c('bias', 'se_bias', 'mse', 'sd', 'ci_len', 'ci_cov')
out

}

showTable <- function(coef){

methods <- c('full', 'missf', 'cart', 'rfdoove10',
'rfdoove100', 'rf5', 'rf10', 'rf20', 'rf100', 'mice')

methodnames <- c('Full data', 'missForest', 'CART MICE',

15



'RF Doove MICE 10', 'RF Doove MICE 100',
paste('RFcont MICE', c(5, 10, 20, 100)),

'Parametric MICE')
out <- t(sapply(methods, function(x){

getParams(coef, x)

}))

out <- formatC(out, digits = 3, format = 'fg')
out <- rbind(c('', 'Standard', 'Mean', 'SD of', 'Mean 95%',

'95% CI'), c('Bias', 'error of bias', 'square error', 'estimate',
'CI length', 'coverage'), out)

out <- cbind(c('', '', methodnames), out)

print(xtable(out), floating = FALSE, include.rownames = FALSE,

include.colnames = FALSE, hline.after = c(0, 2, nrow(out)))

}

maketable <- function(comparison){

# comparison is a function such as compareCoverage, compareBias

compare <- cbind(comparison('rf10', 'mice'),
comparison('rf100', 'mice'),
comparison('rf10', 'rf100'))

compare <- cbind(rownames(compare), compare)

compare <- rbind(

c('', 'RFcont MICE 10 vs', 'RFcont MICE 100 vs',
'RFcont MICE 10 vs'),

c('Coefficient', 'parametric MICE',
'parametric MICE', 'RFcont MICE 100'),

compare)

print(xtable(compare), include.rownames = FALSE,

include.colnames = FALSE, floating = FALSE,

hline.after = c(0, 2, nrow(compare)))

cat('\n\\vspace{1em}\n')

compare <- cbind(comparison('rfdoove10', 'rf10'),
comparison('rfdoove10', 'cart'),
comparison('rfdoove10', 'rfdoove100'))

compare <- cbind(rownames(compare), compare)

compare <- rbind(

c('', 'RF Doove MICE 10 vs', 'RF Doove MICE 10 vs',
'RF Doove MICE 10 vs'),

c('Coefficient', 'RFcont MICE 10',
'CART MICE', 'RF Doove MICE 100'),

compare)

print(xtable(compare), include.rownames = FALSE,

include.colnames = FALSE, floating = FALSE,

hline.after = c(0, 2, nrow(compare)))

}

5.2 R script

Run this script after loading the functions above.

# Install CALIBERrfimpute if necessary:

# install.packages("CALIBERrfimpute", repos="http://R-Forge.R-project.org")
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library(CALIBERrfimpute)

library(missForest)

library(survival)

library(xtable)

library(parallel) # Use parallel processing on Unix

# Initialise constants

kPmiss <- 0.2 # probability of missingness

kLogHR <- 0.5 # true log hazard ratio

# Set number of patients in simulated datasets

NPATS <- 2000

# Set number of samples

N <- 1000

# Set number of imputations

NIMPS <- 10

# Perform the simulation

results <- mclapply(1:N, doanalysis)

# Show results

showTable('x1'); showTable('x2'); showTable('x3')

# Names of the variables in the comparison

variables <- c('x1', 'x2', 'x3')

# Show comparisons between methods

maketable(compareBias)

maketable(compareVariance)

maketable(compareCIlength)

maketable(compareCoverage)
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