
Short Introduction to tm.plugin.webmining

Mario Annau
mario.annau@gmail.com

January 9, 2014

Abstract

This vignette gives a short introduction to tm.plugin.webmining which facilitates the retrieval of textual
data from the web. The main focus of tm.plugin.webmining is the retrieval of web content from structured
news feeds in the XML (RSS, ATOM) and JSON format. Additionally, retrieval and extraction of HTML
documents is implemented. Numerous data sources are currently supported through public feeds/APIs,
including Google– and Yahoo! News, Reuters, New York Times, and Twitter.

1 Getting Started

After package installation we make the functionality of tm.plugin.webmining available through

> library(tm.plugin.webmining)

tm.plugin.webmining depends on numerous packages, most importantly tm by Feinerer et˜al. (2008) for
text mining capabilities and data structures. RCurl functions are used for web data retrieval and XML for
the extraction of XML/HTML based feeds. As a first experiment, we can retrieve a (Web-)Corpus using data
from Yahoo! News and the search query "Microsoft":

> yahoonews <- WebCorpus(YahooNewsSource("Microsoft"))

Users already familiar with tm will notice the different function call WebCorpus() for corpus construction.
Like tm’s Corpus() constructor it takes a (Web-)Source object as input and constructs a (Web-)Corpus object.
A Review of the object’s class()

> class(yahoonews)

[1] "WebCorpus" "VCorpus" "Corpus" "list"

reveals, that WebCorpus is directly derived from Corpus and adds further functionality to it. It can
therefore be used like a ”normal” Corpus using tm’s text mining capabilities.

> yahoonews

A corpus with 20 text documents

Under the hood, a call of YahooNewsSource() retrieves a data feed from Yahoo! News and pre–parses its
contents. Subsequently, WebCorpus() extracts (meta–)data from the WebSource object and also downloads
and extracts the actual main content of the news item (most commonly an HTML–Webpage). In effect, it
implements a two–step procedure to

1. Download meta data from the feed (through WebSource)

2. Download and extract main content for the feed item (through WebCorpus)

These procedures ensure that the resulting WebCorpus not only includes a rich set of meta data but also
the full main text content for text mining purposes. An examination of the meta data for the first element
in the corpus is shown below.

> meta(yahoonews[[1]])

Available meta data pairs are:

Author :

DateTimeStamp: 2012-11-19 13:59:10

Description : Microsoft Corp.) signed a multiyear agreement with Telefonica Brasil,...

Heading : Microsoft Inks Deal with Telefonica

ID : http://finance.yahoo.com/news/microsoft-inks-deal-telefonica-215910330...

Language :

Origin : http://finance.yahoo.com/news/microsoft-inks-deal-telefonica-215910330...

1

Source Name Items URL Auth Format
GoogleBlogSearchSource 100 http://www.google.com/blogsearch - RSS
GoogleFinanceSource 20 http://www.google.com/finance - RSS
GoogleNewsSource 100 http://news.google.com - RSS
GoogleReaderSource 1000+ http://www.google.com/reader/atom/feed x ATOM
NYTimesSource 100 http://api.nytimes.com x JSON
ReutersNewsSource 20 http://www.reuters.com/tools/rss - ATOM
TwitterSource 1500 http://search.twitter.com/api - ATOM
YahooFinanceSource 20 http://finance.yahoo.com - RSS
YahooInplaySource 100+ http://finance.yahoo.com/marketupdate/inplay - HTML
YahooNewsSource 20 http://news.search.yahoo.com/rss - RSS

Table 1: Overview of implemented WebSources listing the maximum number of items per feed, a descriptive
URL, if authentification is necessary (x for yes) and the feed format.

For a Yahoo! News TextDocument we get useful meta–data like DateTimeStamp, Description, Heading,
ID and Origin. The main content, as specified in the Origin of a TextDocument can be examined as follows
(shortened for output):

> yahoonews[[1]]

Follow @bobmcmillan

Microsoft will use fuel-cell power plants -- similar to the three pictured here ...

It has been extracted from an unstructured HTML page and freed from ads and sidebar content by
boilerpipeR’s DefaultExtractor(). To view the entire corpus main content also consider inspect() (output
omitted):

> inspect(yahoonews)

2 Implemented Sources

All currently implemented (web–)sources are listed on Table˜1. The following commands show, how to use
the implemented Sources. If available, the search query/stock ticker Microsoft has been used. Since Reuters
News only offers a predefined number of channels we selected businessNews.

> googleblogsearch <- WebCorpus(GoogleBlogSearchSource("Microsoft"))

> googlefinance <- WebCorpus(GoogleFinanceSource("NASDAQ:MSFT"))

> googlenews <- WebCorpus(GoogleNewsSource("Microsoft"))

> nytimes <- WebCorpus(NYTimesSource("Microsoft", appid = nytimes_appid))

> reutersnews <- WebCorpus(ReutersNewsSource("businessNews"))

> twitter <- WebCorpus(TwitterSource("Microsoft"))

> yahoofinance <- WebCorpus(YahooFinanceSource("MSFT"))

> yahooinplay <- WebCorpus(YahooInplaySource())

> yahoonews <- WebCorpus(YahooNewsSource("Microsoft"))

3 Extending/Updating Corpora

Most data feeds only contain 20–100 feed items. A text corpus of such a small size may not be sufficient for
text mining purposes. For that reason, the corpus.update() method has been implemented. In a nutshell,
it first downloads a feed’s meta data, checks which items are new (as determined by the meta–data ID field)
and finally downloads the main content of new web documents. Since most time of WebCorpus construction
is spend downloading the main content of corpus items, this procedures ensures a more efficient and faster
WebCorpus–update.
The Yahoo! News corpus can now simply be updated:

> yahoonews <- corpus.update(yahoonews)

To continously update a WebCorpus a scheduled task/cron job could be set up which runs cor-

pus.update() in a script.

2

http://www.google.com/blogsearch
http://www.google.com/finance
http://news.google.com
http://www.google.com/reader/atom/feed
http://api.nytimes.com
http://www.reuters.com/tools/rss
http://search.twitter.com/api
http://finance.yahoo.com
http://finance.yahoo.com/marketupdate/inplay
http://news.search.yahoo.com/rss

Weekly Histogram of R−Bloggers

rbloggers.dates

F
re

qu
en

cy

0
10

20
30

40
50

60

Jul Aug Aug Sep Oct Oct Nov Dec Dec

Figure 1: Weekly histogram of DateTimeStamps from R-Bloggers corpus metadata.

4 Google Reader for more data

A main limitation of most data feeds is the little number of items per feed. 20–100 items are barely enough
for more serious text mining research. Continously updating corpora (e.g. by using corpus.update()) can
be a quite time consuming task if a lot of history needs to be generated immediately.
At this point the Google Reader API comes into play. Google stores the histories of numerous news feeds for
its Google Reader application. Accessing any feed through the provided Google Reader API can result in a
much larger number of content items. To get access to the Google Reader API one first needs to retrieve an
authentification token from Google (using a standard Google account):

> token <- auth.google.reader(email="<username>@gmail.com", password="<password>")

With the retrieved token string it is possible to get the content of any web-feed through the Google–Reader
API. We can, for example, retrieve the content of the R-Bloggers feed with the command:

> rbloggers <- WebCorpus(GoogleReaderSource("http://feeds.feedburner.com/RBloggers", token,

+ params = list(n = 1000)))

Depending on the internet connection and number of items, this command can take quite a while. For
larger requests and richer user feedback it is better to set the verbose option TRUE. Further we recommend
to build an empty corpus first, without downloading any main content items. That way we can first check if
the feed throught the Google Reader API is available and makes sense for our research purposes. By simply
setting the WebSource’s $postFUN1 field to NULL, we build a corpus only consisting of meta data:

> rbloggers <- WebCorpus(GoogleReaderSource("http://feeds.feedburner.com/RBloggers", token,

+ params = list(n = 1000)), postFUN = NULL)

The number of items retrieved and the histogram of meta–DateTimeStamps gives us information about
the size and the update frequency of the feed. Figure˜1 shows the histogram for the feed.

> length(rbloggers)

[1] 1000

> rbloggers.dates <- do.call(c,lapply(rbloggers, meta, "DateTimeStamp"))

> hist(rbloggers.dates, breaks = "weeks", col = "grey", freq=T,

+ main = "Weekly Histogram of R-Bloggers")

We can therefore start to download the entire feed with the verbose option enabled:

> options(verbose = TRUE)

> rbloggers <- WebCorpus(GoogleReaderSource("http://feeds.feedburner.com/RBloggers", token,

+ params = list(n = 1000)))

1specifies a function to be called after corpus generation. Typically set to retrieve main content items.

3

5 Conclusion

This vignette has given a short introduction to tm.plugin.webmining, a package to retrieve textual data from
the web. Although tm.plugin.webmining has been tested for the retrieval of 10000+ items per feed it is
generally not recommended to start massive feed downloads due to memory– and RCurl restrictions. For
this purpose, web scraping frameworks like Scrapy (scrapy.org), Heritrix (crawler.archive.org) or Nutch
(nutch.apache.org) are much better suited.
Keeping these issues in mind, tm.plugin.webmining is well suited for the retrieval and processing of small to
medium sized text corpora. By using the full meta data and textual contents, quite interesting text mining
experiments can be done using the full capabilities of the tm package.

References

Ingo Feinerer, Kurt Hornik, and David Meyer. Text mining infrastructure in R. Journal of Statistical
Software, 25(5):1–54, 2 2008. ISSN 1548-7660. URL http://www.jstatsoft.org/v25/i05.

4

scrapy.org
crawler.archive.org
nutch.apache.org
http://www.jstatsoft.org/v25/i05

	Getting Started
	Implemented Sources
	Extending/Updating Corpora
	Google Reader for more data
	Conclusion

