
Using the schwartz97 package

David Lüthi, Philipp Erb & Simon Otziger

March 24, 2014

Abstract

The purpose of this document is to show how the R package schwartz97
can be used. This is done by numerous examples and intuitive expla-
nations.

1 Introduction

The package schwartz97 provides a set of functions to work with the two-
factor model of Gibson and Schwartz (1990)1. The two-factor model de-
scribes the joint dynamics of the state variables spot price and spot conve-
nience yield (later simply called convenience yield).

We believe that the value of this package primarily lies in the parame-
ter fitting routine fit.schwartz2f. Once the parameters of the two-factor
model are estimated, a number of functions can be used to, e.g., draw sam-
ples from the model, price derivatives as European options, or filter a futures
price series to get an estimate of the underlying state variables. The doc-
ument is organized as follows: Section 2 briefly describes the model and
section 3 gives an overview of the classes and functions. Then, section 4 to
8 give examples and a case study.

2 The Schwartz Two-Factor Model

The spot price of the commodity and the instantaneous convenience yield
are assumed to follow the joint stochastic process:

dSt = (µ− δt)Stdt+ σSStdWS (1)

dδt = κ(α− δt)dt+ σεdWε, (2)

with Brownian motions WS and Wε under the objective measure P and
correlation dWSdWε = ρdt. Under the pricing measure Q the dynamics are

dSt = (r − δt)Stdt+ σSStdW̃S (3)

dδt = [κ(α− δt) − λ]dt+ σεdW̃ε, (4)

1Because the model was extended in Schwartz (1997) and Miltersen and Schwartz
(1998) we call it the Schwartz two-factor model hereafter.

1

where the constant λ denotes the market price of convenience yield risk and
W̃S and W̃ε are Q-Brownian motions. It may be handy to introduce a new
mean-level for the convenience yield process under Q

α̃ = α− λ/κ. (5)

The dynamics is then

dδt = κ(α̃− δt)dt+ σεdW̃ε. (6)

For more information on the model and pricing formulas we refer to the other
package vignette Technical Document, or to Schwartz (1997) and Hilliard
and Reis (1998).

3 Package Overview

This section gives an overview of the functions and classes contained in the
package schwartz97. In addition, the object-oriented programming approach
followed in this package is explained.

3.1 Functions

The core of the package schwartz97 is built by the following functions2:

R-function Description

dstate Density of the bivariate state vector.
pstate Distribution of the bivariate state vector.
qstate Quantile of the bivariate state vector.
rstate Sample from the state distribution at some future time.
simstate Generate trajectories from the bivariate state vector.
dfutures Density of the futures price.
pfutures Distribution of the futures price.
qfutures Quantile of the futures price.
rfutures Sample from the futures price distribution.
pricefutures Calculate the futures price.
priceoption Calculate the price of European call or put options.
filter.schwartz2f Filter a futures price series.
fit.schwartz2f Fit the two-factor model to data.

Except the function fit.schwartz2f all the above functions are set to
generic and accept three different signatures (see section 3.3).

2There are also a number of utility functions as coef, mean, vcov, plot, resid, and fitted.

2

3.2 Classes

The package schwartz97 provides the class schwartz2f. This class contains
all parameters which are needed to define the dynamics of the state variables
spot price and convenience yield under the objective measure P. The class
schwartz2f has the following slots:

Slot name Class Symbol Description

s0 numeric s0 Initial spot price.
delta0 numeric δ0 Initial convenience yield.
mu numeric µ Drift parameter of the spot price.
sigmaS numeric σS Diffusion parameter of the spot price.
kappaE numeric κ Speed of mean-reversion of the convenience yield.
alpha numeric α Mean-level of the convenience yield.
sigmaE numeric σε Diffusion parameter of the convenience yield.
rhoSE numeric ρ Correlation between the two Brownian motions.
call call The function call.

The above set of parameters contains the symbols appearing in (1) and (2) as
well as the initial values s0 and δ0. To create an object of class schwartz2f
the constructor with the same name can be used (see section 4).

The function fit.schwartz2f, which estimates parameters of the two-
factor model, returns an object of class schwartz2f.fit. This class inherits
from the class schwartz2f and adds the following slots.

Slot name Class Symbol Description

r numeric r Risk-free interest rate.
alphaT numeric α̃ Mean-value of the convenience yield under Q.
lambda numeric λ Market price of convenience yield risk.
deltat numeric Time-increment of the transition equation.
n.iter numeric Number of iterations.
llh numeric Log-likelihood value.
converged logical States whether the fit converged or not.
error.code numeric An error code or 0.
error.message character Contains the error message if any.
fitted.params logical States which parameters were fitted.
trace.pars matrix Parameter evolution during the estimation.
meas.sd numeric Standard deviation of the measurement equation.

These slots together with the ones contained in the class schwartz2f fully
determine the dynamics of the model under both, the objective measure and
the pricing measure. Notice that one of the parameters lambda and alphaT

is redundant according to equation 5.

3

3.3 Object Orientation

As mentioned earlier most of the functions dealing with the state variables
and futures prices are set to generic. The idea is to leave some freedom to the
user, who can decide whether he wants to use an object-oriented approach
or provide a fairly large set of arguments for each function-call.

Consider the function dfutures for example. The function headers for
different signatures are:

S4 method for signature 'ANY,ANY,ANY,numeric':
dfutures(x, time = 0.1, ttm = 1, s0 = 50, delta0 = 0,

mu = 0.1, sigmaS = 0.3, kappa = 1, alpha = 0,

sigmaE = 0.5, rho = 0.75, r = 0.05, lambda = 0,

alphaT = NULL, measure = c("P", "Q"), ...)

S4 method for signature 'ANY,ANY,ANY,schwartz2f':
dfutures(x, time = 0.1, ttm = 1, s0, r = 0.05,

lambda = 0, alphaT = NULL, measure = c("P", "Q"), ...)

S4 method for signature 'ANY,ANY,ANY,schwartz2f.fit':
dfutures(x, time = 0.1, ttm = 1, s0, measure = c("P", "Q"), ...)

Without object-orientation (first header) the function has 15 arguments.
Ten parameters are needed to describe the dynamics under both measures.

If a schwartz2f.fit object is provided for s0 the only additional ar-
guments required are x (quantiles), time (time where the futures process is
evaluated), and ttm (time to maturity of the futures contract).

4 Object Initialization

A schwartz2f object with reasonable parameters is constructed in the fol-
lowing code chunk.

> s0 <- 100

> delta0 <- 0

> mu <- 0.1

> sigmaS <- 0.2

> kappa <- 1

> alpha <- 0.1

> sigmaE <- 0.3

> rho <- 0.4

> obj <- schwartz2f(s0 = s0, delta0 = delta0, alpha = alpha,

+ mu = mu, sigmaS = sigmaS, sigmaE = sigmaE,

+ rho = rho, kappa = kappa)

> obj

4

--

Schwartz97 two-factor model:

SDE

d S_t = S_t * (mu - delta_t) * dt + S_t * sigmaS * dW_1

d delta_t = kappa * (alpha - delta_t) * dt + sigmaE * dW_2

E(dW_1 * dW_2) = rho * dt

Parameters

s0 : 100

delta0: 0

mu : 0.1

sigmaS: 0.2

kappa : 1

alpha : 0.1

sigmaE: 0.3

rho : 0.4

--

Objects of class schwartz2f.fit are constructed via the function fit.schwartz2f

(see section 8).

5 Working with the state variables

As soon as a schwartz2f object is initialized, it can be passed to the func-
tions dstate, pstate, qstate, rstate, and simstate. The distribution of
the state variables depend on the horizon. Once this point in time is defined
the above functions can be used like the standard R distribution functions
for, e.g., the normal distribution (dnorm, pnorm, qnorm, rnorm).

In this example a sample of the spot price and the convenience yield in
five years is generated by the function rstate. Then, the probability that
the spot price is below 150 and the convenience yield is lower than 0 in five
years is computed. The mean of the state variables in one and ten years is
calculated next. Finally, trajectories of the state variables are plotted (see
fig. 1).

> time <- 5

> sample.t <- rstate(n = 2000, time, obj)

> pstate(c(0, -Inf), c(150, 0), time, obj)

[1] 0.2243732

attr(,"error")

[1] 1e-15

attr(,"msg")

[1] "Normal Completion"

5

> mean(obj, time = c(1, 10))

s.t delta.t

[1,] 106.3906 0.06321206

[2,] 130.5386 0.09999546

> plot(obj, n = 30, time = 5, dt = 1 / 52)

50
10

0
20

0
30

0

S
(t

)

Trajectories
Mean
99% CI
95% CI
90% CI

0 1 2 3 4 5

−
0.

5
0.

0
0.

5

time

de
lta

(t
)

Figure 1: Thirty trajectories of the state variables are plotted on a weekly
interval and a five years horizon. The initial values of the state variables
are 100 for the spot price (s0) and 0 for the convenience yield (δ0). The
spot price has a drift µ of 10% and a volatility σS of 20%. The speed of
mean-reversion parameter κ of the convenience yield process is 1, and the
long-term mean (α) is 10%. The volatility of the convenience yield σε is
30% and the correlation ρ between the Brownian motions driving the state
variables is 40%.

6 Working with derivatives

In this example we calculate some futures prices and plot the dynamics of
the term structure (“forward curve”). In addition prices of European options
are computed.

We work through this section by looking at corn and assuming all the
parameters are known. The current price (s0) of 1000 bushels of corn is
assumed to be 80 USD. The convenience yield (δ0) is zero at the moment

6

but it’s long-term mean (α) is 5%. The drift (µ) of corn is 10% and the
volatility is 30%. The speed of mean-reversion of the convenience yield (κ)
is 1.5 and its volatility is 40%. Correlation is assumed to be 60%. The
risk-free rate is 3% and the market price of convenience yield risk (λ) is
zero.

First the object is initialized. Next a trajectory is generated based on
weekly sampling over five years. Then futures prices are calculated with time
to maturities ranging from zero (which is the spot) to two years. Finally,
a call option which matures in one year written on a futures contract with
time to maturity of two years is priced. Forward curves are shown in fig. 2.

> s0 <- 80

> delta0 <- 0.05

> mu <- 0.1

> sigmaS <- 0.3

> kappa <- 1.5

> alpha <- 0.05

> sigmaE <- 0.4

> rho <- 0.6

> lambda <- 0.04

> r <- 0.03

> set.seed(1)

> obj <- schwartz2f(s0, delta0, mu, sigmaS, kappa, alpha, sigmaE, rho)

> state.traj <- simstate(n = 52 * time, time, obj)

> pricefutures(seq(0, 2, by = 0.4), obj, lambda = lambda, r = r)

[1] 80.00000 79.28309 78.64870 78.17279 77.81715 77.53741

> priceoption(type = "call", time = 1, Time = 2, K = 85,

+ obj, r = r, lambda = lambda)

[1] 4.991482

7 Contango, Backwardation, and Hump Shapes

Fig. 2 shows the ability of the Schwartz two-factor model to generate con-
tango and backwardation situations. Mixed shapes (humps and “inverse
humps”) are possible too. E.g. an upwards sloping forward curve at the
short end which points downwards at the long end.

Looking at the Q-dynamics in equations (3) and (4) it is obvious that,
locally, the drift of the spot price is positive when δt < r. This corresponds to
a (local) contango situation. However, the long-term mean of δt, α̃, defines
the shape at the far end of the term structure. Four different shapes are
generated in the following example and plotted in fig. 3:

7

60
70

80
90

11
0

dates

Closest to maturity contract
Forward Curves

2014 2015 2016 2017 2018 2019 2020

−
0.

2
0.

0
0.

2
0.

4

dates

C
on

ve
ni

en
ce

 y
ie

ld

Figure 2: Forward curves with time to maturity up to two years are plotted
for the trajectory state.traj. The closest to maturity contract is in fact the
spot price because the time to maturity is zero.

Pure contango: If δt < r and α̃ < r.

Short end backwardation, long end contango: If δt > r and α̃ < r.

Pure backwardation: If δt > r and α̃ > r.

Short end contango, long end backwardation: If δt < r and α̃ > r.

> s0 <- 1

> delta0 <- 0.0

> sigmaS <- 0.3

> kappa <- 1

> sigmaE <- 0.4

> rho <- 0.5

> r <- 0.03

> ttm <- 0:4

> ## Pure contango

> pricefutures(ttm, s0 = s0, delta0 = 0, sigmaS = sigmaS,

+ kappa = kappa, sigmaE = sigmaE, rho = rho,

+ r = r, alphaT = 0)

8

[1] 1.000000 1.021605 1.054220 1.099526 1.152367

> ## Backwardation and then contango

> pricefutures(ttm, s0 = s0, delta0 = 2 * r, sigmaS = sigmaS,

+ kappa = kappa, sigmaE = sigmaE, rho = rho,

+ r = r, alphaT = 0)

[1] 1.0000000 0.9835835 1.0009214 1.0385929 1.0864517

> ## Pure backwardation

> pricefutures(ttm, s0 = s0, delta0 = r, sigmaS = sigmaS,

+ kappa = kappa, sigmaE = sigmaE, rho = rho,

+ r = r, alphaT = 2 * r)

[1] 1.0000000 0.9805302 0.9595804 0.9449587 0.9335775

> ## Contango and then backwardation

> pricefutures(ttm, s0 = s0, delta0 = -r, sigmaS = sigmaS,

+ kappa = kappa, sigmaE = sigmaE, rho = rho,

+ r = r, alphaT = 2 * r)

[1] 1.0000000 1.0184332 1.0106773 1.0003988 0.9902179

9

0 1 2 3 4

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

Term structure shapes

Time to maturity [y]

F
ut

ur
es

 p
ric

e

Common parameters: s0 = 1, sigmaS = 30%, kappa = 1, sigmaE = 40%, rho = 50%, lambda = 0, r = 3%

delta0 = 0%, alpha = 0%
delta0 = 6%, alpha = 0%
delta0 = 3%, alpha = 6%
delta0 = −3%, alpha = 6%

Figure 3: Four term structure shapes which can be generated by the
Schwartz two-factor model. For a given risk-free interest rate r, the shape
is determined by th value of the convenience yield δt and by the mean level
of the convenience yield α̃ under the pricing measure Q (see (3) and (4)).

10

8 Parameter Estimation

As mentioned in section 1, we believe that the package’s most valuable piece
of code is the function fit.schwartz2f. This function estimates the param-
eters involved in equations (1) - (4) including the initial values of the state
variables s0 and δ0. Because log-futures prices linearly depend on a bivariate
Gaussian random vector (the log-spot price and the convenience yield), it
is most straightforward to use a linear state-space model. Therefore, the
estimation procedure is based on the Kalman filter as proposed in Schwartz
(1997).

The header of the function fit.schwartz2f looks like

> args(fit.schwartz2f)

function (data, ttm, deltat = 1/260, s0 = data[1, 1], delta0 = 0,

mu = 0.1, sigmaS = 0.3, kappa = 1, alpha = 0, sigmaE = 0.3,

rho = 0.7, lambda = 0, meas.sd = rep(0.1, ncol(data)), opt.pars = c(s0 = FALSE,

delta0 = FALSE, mu = TRUE, sigmaS = TRUE, kappa = TRUE,

alpha = TRUE, sigmaE = TRUE, rho = TRUE, lambda = FALSE),

opt.meas.sd = c("scalar", "all", "none"), r = 0.03, silent = FALSE,

...)

NULL

The data inputs are data and ttm. data must be a regularly spaced
time-series matrix of futures prices and ttm a matrix giving the time-to-
maturity.

The time-to-maturity matrix admits the following interpretation: data[i,j]
denotes the futures price whose time to maturity was ttm[i,j] when it was
observed. The unit is defined by deltat which is the time between obser-
vations data[i,j] and data[i+1,j].

The arguments from s0 to lambda are initial values of the parameters.
meas.sd gives (initial) values of the measurement error standard devia-

tions.
opt.pars states which parameters shall be estimated. Observe that some

parameters are held constant by default.
opt.meas.sd specifies how measurement uncertainty is treated in the

fit: According to the model there should be a one-to-one correspondance
between the spot and the futures price. In reality, the term structure does
not fully match for any set of parameters. This is reflected in the measure-
ment uncertainty-vector meas.sd. All components of meas.sd can be fitted.
However, it might be sufficient to fit only a scalar where the measurement un-
certainty is parametrized by scalar * meas.sd (this is the default). In this
case define the vector meas.sd and set opt.meas.sd to“scalar”. meas.sd can
be set to a vector with each component set to the same value, thereby giving

11

each point on the term structure equal weight. Another reasonable specifi-
cation takes open interest or volumes into account: The higher the volume,
the higher the weight and therefore the lower the corresponding component
of meas.sd. If all components of meas.sd shall be fitted choose “all”. If the
measurement uncertainty is known set meas.sd to “none”. Note that the
measurement errors are assumed to be independent in this implementation
(even though the model and the filter do not require independence). This is
reflected in zero off-diagonals of the measurement error covariance matrix.

Finally, the risk-free rate r must be given.

8.1 Statistical and Computational Considerations

Estimation of the Schwartz two-factor model parameters is statistically frag-
ile and computationally demanding. Multiple local maxima of the likelihood
may exist which can result in absurd parameter estimates as, e.g., a yearly
drift of 300% and or a market price of convenience yield risk of -200%.
Therefore, a reasonable parameter estimation is most likely an iteration
where several initial values are used and different combinations of parame-
ters are held constant during estimation. Also, simulation studies showed
that a fairly large sample is required to get adequate estimates (e.g. 20000
daily observations, depending on the number of parameters which shall be
estimated). For this reason the default is to hold s0, delta0, and lambda

constant.
Several utility functions as fitted, resid, plot, and coef may help to

investigate the quality of the fit (see example below).
The fitting procedure generally requires a large number of iterations to

achieve a reasonable tolerance level. Each optimization iteration involves
the filtering of the data set by the Kalman filter. Therefore, an efficient
implementation of the Kalman filter is key.

8.2 Example: Estimating Wheat Parameters

This section takes you through a “real-world” example of a Schwartz two-
factor parameter estimation. There are daily observations of the five closest
to maturity wheat futures prices from Jan. 1995 to April 2010 (approx.
4000 observations).

The default parameters of fit.schwartz are used, i.e., all parameters
except the initial values of the state variables and the market price of conve-
nience yield risk lambda are estimated. The maximum number of iterations
is limited to 300 to save (build and check) time. Then the object is printed
and the parameter evolution is plotted.

> data(futures)

> wheat.fit <- fit.schwartz2f(futures$wheat$price, futures$wheat$ttm / 260,

12

+ deltat = 1 / 260, control = list(maxit = 300), silent = TRUE)

> wheat.fit

--

Fitted Schwartz97 two-factor model:

SDE (P-dynamcis)

d S_t = S_t * (mu - delta_t) * dt + S_t * sigmaS * dW_1

d delta_t = kappa * (alpha - delta_t) * dt + sigmaE * dW_2

E(dW_1 * dW_2) = rho * dt

SDE (Q-dynamcis)

d S_t = S_t * (r - delta_t) * dt + S_t * sigmaS * dW*_1

d delta_t = kappa * (alphaT - delta_t) * dt + sigmaE * dW*_2

alphaT = alpha - lambda/kappa

Parameters

s0 : 395.5

delta0: 0

mu : 0.250267865481006

sigmaS: 0.376161779933002

kappa : 0.0049924899685365

alpha : -0.12065663312003

sigmaE: 0.159902538320822

rho : 0.904453926049466

r : 0.03

lambda: 0

alphaT: -0.12065663312003

--

Optimization information

Converged: FALSE

Fitted parameters: mu, sigmaS, kappa, alpha, sigmaE, rho, meas.sd1; (Number: 7)

log-Likelihood: -3343706937

Nbr. of iterations: 302

--

> plot(wheat.fit, type = "trace.pars")

Observe that the fit did not converge as the maximum of 300 iterations
is not sufficient to achieve to required tolerance (here optim’s default). Let’s
discuss the parameters: A µ of 25% is probably not far off and the spot price
volatility σS of 37% seems to be fine too. The speed of mean reversion of
the convenience yield process κ is alarmingly close to zero which means that
the convenience yield can drift far away from it’s mean. The mean level

13

●●●●●●●

●

●

●

●●
●●
●
●
●
●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●
●
●
●
●

●
●●
●
●●●●

●
●
●
●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

25
00

0
35

00
0

45
00

0

lo
gL

ik

●

●●

●●

●

●
●

●●

●

●
●
●
●
●
●
●
●
●●

●

●●●

●

●

●

●●●
●
●
●

●●
●

●●
●

●

●●●●●●●
●●

●

●●
●●
●●
●●●●

●

●

●
●

●●

●

●

●●

●

●

●●
●

●
●

●
●

●●

●
●
●

●
●

●
●●
●

●
●
●
●●

●

●●●
●

●
●

●
●

●
●

●

●●

●

●
●
●●
●●

●●
●

●

●
●

●

●●●●●
●
●

●
●

●
●●
●●

●
●
●

●
●●●●

●

●
●
●●

●
●

●●

●
●

●

●

●●
●

●

●
●●
●

●●●
●●
●

●●
●●
●●●

●

●
●

●●

●

●

●

●
●●●

●

●
●
●●
●●●●

●
●
●●●
●●
●●
●

●
●

●

●

●

●

●
●
●●●

●

●

●
●

●

●
●

●●

●

●
●
●
●●

●

●

●
●
●

●
●
●

●●●

●

●

●

●●
●●●●●

●

●

●
●

●
●●
●●

●
●
●
●●
●

●
●
●
●●
●●
●

●
●

●
●

●●●

●

●
●

●

●

●●
●

●

●●
●
●

−
6

−
4

−
2

lo
g1

0(
re

l.t
ol

)

●●●●●●

●

●

●

●

●
●
●
●
●
●
●

●
●

●●

●

●
●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●●●●●●●

●
●

●
●●
●●●●

●●●●
●●●●

●●
●●
●●
●●0

40
00

10
00

0

ab
s.

to
l

●●

●

●●●●●●
●
●●●
●
●
●
●

●
●

●
●

●

●●
●●
●
●
●
●●●●

●

●

●

●

●●
●

●

●
●●●

●
●
●
●

●

●

●
●

●●

●
●●●
●

●

●

●

●
●
●●
●

●
●●

●

●
●
●●
●
●
●
●●
●
●●●
●●●●●●

●
●●●●●●●●●

●●●●
●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●
●●●●●●

●●●●●●
●●
●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●

●
●
●
●●
●

●
●
●
●

●
●

●

●
●
●
●

●
●
●●
●
●
●
●
●

●

●

●●●
●

●●
●●
●

●
●●●●

●●
●●
●
●
●●
●●●
●
●●●●●

●
●●
●●●●●

●
●●
●●
●●●●●●●

●●●●
●●●
●
●
●●●●

●●●●●●

0.
2

0.
4

0.
6

0.
8

m
u

●●●

●

●●●●●

●
●●
●

●

●

●●●●●●●●●●

●

●

●

●

●●
●
●●
●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●
●●

●

●

●

●

●
●

●●

●

●

●●
●

●

●
●●
●

●

●

●
●
●
●

●●●●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●

●
●
●●●
●●

●

●
●●●●

●

●
●
●

●
●

●
●

●●

●●
●
●
●
●

●

●●
●
●●●●

●

●

●

●
●
●

●●

●
●
●
●

●

●

●●

●
●

●●

●
●
●●
●
●
●●
●●●
●

●
●
●●●●

●●●●

●●
●●

●
●

●●

●●
●●
●●
●●
●
●●
●

●
●

●
●●●●●

●
●
●
●
●●

●

●
●●
●●
●
●

●●●●

●

●

●●
●

●●●●
●●
●

●

●

●
●

●
●
●
●
●●
●
●
●

●

●●

●
●●
●●
●●
●
●●
●●

●●●●
●●●●●●●

●●●
●●●●

●●
●●●●●

●
●●●●●●●●

●
●

0.
25

0.
35

0.
45

0 50 100 150 200 250 300

si
gm

aS

Iteration

●●●●

●

●●●●
●●●●●●

●●

●
●
●●
●
●●●●●●●●●

●

●

●
●●
●

●●●●
●●●●

●
●
●
●

●
●

●●●●
●●
●●●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●
●●●●●

●
●
●●●●●●●

●●
●
●●●
●
●
●●
●
●
●
●●●●●

●●
●
●
●
●
●●
●
●
●
●●●●●

●●●●●
●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●0.

0
0.

5
1.

0
1.

5

ka
pp

a

●●●●●

●

●●●

●
●

●

●

●●●●●●●●●
●●
●

●

●

●
●●●

●

●●

●

●
●

●

●

●

●

●

●

●
●●●●●

●
●

●

●

●

●
●
●
●
●

●

●

●

●

●
●

●●●
●●
●

●

●●●
●

●
●●
●●
●●
●●
●●●●●●●●●

●
●●●●●●

●●●●●●●●
●●
●●●●●●●●●●●●

●●●●●●
●●●●●

●●●●●●
●
●●
●●●●

●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●

●
●
●●●●●●●●●

●●●
●
●
●
●●●●

●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●
●●
●●
●●
●

●

●

●●●●●●
●●

●

●
●●●●

●●
●●●
●
●●●●

●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●
●●
●●●
●
●●
●
●
●
●
●
●●●
●

−
0.

3
−

0.
1

0.
1

0.
3

al
ph

a

●●●●●●

●

●●
●
●●●
●
●

●

●

●●●●
●
●●●
●
●●
●

●

●
●●●●

●●●●●

●
●
●
●●

●

●

●

●

●●
●●●●●●

●
●

●

●

●

●
●●●●

●
●●●
●
●
●●

●

●
●●●●

●●●●
●●
●●●●●●●●

●
●
●●
●●●●●●●●●●

●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●
●
●●●●●●

●
●●●●●●●

●●

●●
●●●●●●

●●
●●●●●●

●●
●●●
●
●
●
●●
●●●●

●
●
●●●
●
●●

●
●
●
●●
●

●
●
●
●
●
●●

●
●
●

●
●

●
●
●
●

●

●●

●
●

●
●
●
●
●●

●●
●

●

●

●●●
●
●●●
●
●

●
●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●

●
●●●●●●

●●●●●●●
●

0.
15

0.
25

0.
35

si
gm

aE

●●●●●●●

●

●
●●●●●●

●●
●●
●●
●
●

●●
●
●●
●●
●
●
●
●
●
●

●
●
●●
●
●●●●

●●●●
●
●

●●

●
●●●●●●●

●
●●●
●●●●●●●

●●●●●
●
●
●●●●●●●●●

●●●●●●
●
●●
●●●●

●●●●●●
●●
●●●●●●●●●●

●●●●●
●●●●

●
●●●●

●●●●
●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●
●●●●

●
●●●●

●
●●●
●●●●

●
●●
●●●
●●
●●
●●
●
●●
●●
●
●●
●
●●
●●●
●

●
●●●
●
●●●
●●

●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

0.
70

0.
80

0.
90

rh
o

●●●●●●●●

●

●

●

●●●●
●
●
●
●

●
●

●

●●

●

●

●
●

●
●
●

●

●
●

●
●

●
●
●

●

●

●
●
●
●
●
●
●●●
●
●●●●●●●●●

●●
●●●●●●

●●●0.
2

0.
6

1.
0

0 50 100 150 200 250 300

m
ea

s.
sd

1

Iteration

Parameter evolution

Figure 4: This figure shows the parameter evolution of the first 300 iterations
of the unconstrained parameter estimation of wheat. While the relative
tolerance gets below 10−4 after around 200 iterations the parameter values
still fluctuate substantially.

of the convenience yield α of -12% is not intuitive to say the least. The
correlation ρ of 90% is very high, making the parameters even harder to
interpret and the process dynamic less intuitive. In addition, the parameter
evolution shown in fig. 4 is concerning.

Two measures are introduced as an attempt to make parameters more
appealing: κ is constrained to 1 and the measurement error standard de-
viations are set proportional to the average traded volumes. The average
initial value of the measurement error standard deviations is set to 1%.

> vol.std <- colSums(futures$wheat$vol, na.rm = TRUE) / sum(futures$wheat$vol, na.rm = TRUE)

> wheat.fit.constr <- fit.schwartz2f(futures$wheat$price, futures$wheat$ttm / 260,

+ kappa = 1,

+ opt.pars = c(s0 = FALSE, delta0 = FALSE, mu = TRUE,

+ sigmaS = TRUE, kappa = FALSE, alpha = TRUE,

+ sigmaE = TRUE, rho = TRUE, lambda = FALSE),

+ meas.sd = 1 / vol.std / sum(1 / vol.std) * length(vol.std) * 0.01,

+ deltat = 1 / 260, control = list(maxit = 300), silent = TRUE)

14

> wheat.fit.constr

--

Fitted Schwartz97 two-factor model:

SDE (P-dynamcis)

d S_t = S_t * (mu - delta_t) * dt + S_t * sigmaS * dW_1

d delta_t = kappa * (alpha - delta_t) * dt + sigmaE * dW_2

E(dW_1 * dW_2) = rho * dt

SDE (Q-dynamcis)

d S_t = S_t * (r - delta_t) * dt + S_t * sigmaS * dW*_1

d delta_t = kappa * (alphaT - delta_t) * dt + sigmaE * dW*_2

alphaT = alpha - lambda/kappa

Parameters

s0 : 395.5

delta0: 0

mu : 0.0973917026862634

sigmaS: 0.315675278006403

kappa : 1

alpha : 0.0439034736965484

sigmaE: 0.280503762575771

rho : 0.543979631300506

r : 0.03

lambda: 0

alphaT: 0.0439034736965484

--

Optimization information

Converged: FALSE

Fitted parameters: mu, sigmaS, alpha, sigmaE, rho, meas.sd1; (Number: 6)

log-Likelihood: -3927591873

Nbr. of iterations: 301

--

> plot(wheat.fit.constr, type = "trace.pars")

Parameters are more reasonable now: µ, α, and ρ seem to be fine at 10%,
4.3%, and 54%, respectively, as well as the parameter evolution presented in
fig. 5. Also, as a quick check, simulated trajectories in fig. 6 look plausible.
Real term structures are compared to model generated term structures in
fig. 7.

> wheat.2007 <- lapply(futures$wheat,

+ function(x)x[as.Date(rownames(x)) > "2007-01-01" & as.Date(rownames(x)) < "2008-07-01",])

15

●●●

●

●●

●

●

●

●●
●
●
●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●

●
●●●●●●●●●●●●●●●

●●

−
40

00
0

0
40

00
0

lo
gL

ik

●

●

●●

●

●

●

●●
●●●
●●●●

●

●

●●
●●
●
●●●
●●
●
●

●
●●●●

●

●●
●
●
●●
●●●
●
●●
●●●●

●●
●●
●●

●

●
●
●
●●●●●●

●●●
●●●
●●
●●
●●
●●●●

●
●
●●

●●

●
●
●●

●
●●●●●●

●
●●●●●

●

●●●●●
●
●

●

●●

●

●
●●●

●

●●●
●●
●

●
●
●
●●●
●
●
●●●●

●
●
●
●
●
●

●●●

●

●
●
●
●
●
●

●●●●
●
●●
●

●●●●
●
●●
●
●
●

●
●
●
●
●
●
●●
●
●
●
●●

●

●●●●
●
●
●
●●●●

●
●
●
●●
●

●

●●
●●
●
●
●●●●

●●●

●
●●●
●

●●●

●

●●
●●
●
●
●
●
●●

●●●●
●●
●●

●●●
●
●
●●●●

●
●
●●
●
●●●
●●●

●●●

●

●●●

●●●●●

●

●

●●●●●●●●●
●●
●●●●●

●
●

−
8

−
4

0
2

lo
g1

0(
re

l.t
ol

)

●●

●●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●
●

●●

●

●
●
●
●●

●

●
●●●●●●

●●●●
●●0

20
00

0
50

00
0

ab
s.

to
l

●●

●

●●●●●
●
●
●●

●

●
●●●●

●
●●●

●

●

●
●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●
●
●

●
●

●
●●

●
●●

●
●

●●
●●
●
●
●
●

●●

●
●
●●
●●
●●●●

●
●
●●●●●

●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●

●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●

●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●
●●●●

●●●
●●●
●●
●
●●●
●●●●

●
●

●●
●●
●

●

●
●●
●

●
●●
●
●
●

●

●

●●
●●●●

●
●

●●
●●
●●
●
●
●
●●
●●●
●
●●●

−
0.

4
0.

0
0.

2

m
u

●●●

●

●●●●

●
●
●●
●
●
●
●

●
●

●

●

●

●

●●●●●●

●
●

●

●

●

●

●
●

●
●

●
●●●

●
●

●

●●

●
●
●

●
●

●

●

●
●

●
●

●

●●●
●
●

●

●

●●

●

●

●
●

●●
●●

●

●
●●
●
●

●

●

●●
●●
●●
●

●●●
●●●●

●●●●●●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●

0.
25

0.
35

0 50 100 150 200 250 300

si
gm

aS

Iteration

●●●●

●

●●●

●

●

●●
●●
●
●

●
●

●

●

●
●

●●
●●

●

●
●

●●

●

●

●

●
●
●
●

●

●

●
●●●

●
●

●

●●●

●
●●
●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●●●
●●
●
●

●

●●●●
●●●
●
●
●●
●●●●●●

●●●●●●
●●●

●●●

−
0.

2
0.

0
0.

1
0.

2

al
ph

a

●●●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●●

●

●

●
●

●
●

●●
●●

●

●

●

●

●
●
●●
●
●●●●●

●
●

●●

●
●●●
●
●
●
●

●●●●●●●●●●●●
●

●●●●
●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●
●●
●●
●●●●●●●●

●●
●●●
●
●●●●●●

●●●●
●●●●●

●●●●●
●
●
●●●●●●●●

0.
26

0.
30

0.
34

si
gm

aE

●●●●●●

●

●●●

●
●●●●●●●●

●●
●

●●
●●●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●
●●●
●
●
●●●

●

●

●
●
●●

●
●

●
●
●●

●
●

●●●●
●
●●●
●

●
●
●
●●●●●●

●

●●●●●●●●●●●●●●●●
●●

●●●●●●●●
●●●●●●●●●●●

0.
45

0.
55

0.
65

rh
o

●●●●●●●
●●●●●●●●●●●

●●●
●●●
●●
●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●●

●
●
●

●

●
●
●●●●

●●●
●●
●●●●●●●●●

●
●●●●●●●●●

●●

1
2

3
4

5
6

0 50 100 150 200 250 300

m
ea

s.
sd

1

Iteration

Parameter evolution

Figure 5: This figure shows the parameter evolution of the first 300 iterations
of the constrained parameter estimation of wheat. The relative tolerance
gets below 10−6 after 150 iterations and the parameter values get more and
more stationary. “mu” is an exception: Between iteration number 250 and
300 it goes from negative territory to 20% and back to 10%.

> par(mfrow = c(1, 2))

> futuresplot(wheat.2007, type = "forward.curve")

> plot(wheat.fit.constr, type = "forward.curve", data = wheat.2007$price,

+ ttm = wheat.2007$ttm / 260)

> ##xx <- filter.schwartz2f(data = wheat.2007$price,

> ## ttm = wheat.2007$ttm / 260, wheat.fit.constr)

> ##plot(ts(xx$state, frequency = 260, start = 2007))

16

0
10

00
20

00
30

00
40

00

S
(t

)

Trajectories
Mean
99% CI
95% CI
90% CI

0 1 2 3 4 5

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

time

de
lta

(t
)

Figure 6: Thirty trajectories based on the constrained parameter estimates
of wheat on a five years horizon and weekly sampling.

17

2007 2008 2009

40
0

60
0

80
0

10
00

12
00

dates

Closest to maturity contract
Forward Curves

0.0 0.5 1.0 1.5 2.0 2.5

40
0

60
0

80
0

10
00

12
00

Time

Filtered spot price
Fitted Forward Curves

Figure 7: Real term structures (left panel) and model generated term struc-
tures (right panel) from Jan. 2007 to June 2008. The backwardation starting
at mid of 2007 is not captured by the model initially, and underestimated
later in 2007. The shape of the term structure at the peak starting in 2008
can not be produced by the Schwartz two-factor model. The model’s pre-
diction looks reasonable in Q1 2007 and Q2 2008.

18

8.2.1 Residual Analysis

Model validation is done here via graphical residual analysis. “Residuals”
refer to prediction errors of the Kalman filter’s measurement equation. Ac-
cording to the model residuals should be serially independent Gaussian ran-
dom variables.

Different types of residulas can be obtained by the generic resid function
and the specific argument type, which can be “filter” (raw filter residuals),
“filter.std” (standardized filter residuals), and “real” (observed minus fitted
prices). Standardized residuals are of interest here, hence the argument
is “filter.std”. First, serial independence is checked and then normality of
residuals. Both assumptions are violated as shown in fig. 8 and fig. 9.

Before rejecting the two-factor model one should first increase the max-
imum number of iterations from 300 to, e.g., 3000 and investigate the pa-
rameters estimates again. Then, different settings for the measurement error
standard deviations (argument meas.sd) could be tried, e.g. “all”. Beside
that different parameters could be hold constant.

> model.resid <- resid(wheat.fit.constr, data = futures$wheat$price, ttm = futures$wheat$ttm / 260,

+ type = "filter.std")

> acf(model.resid, na.action = na.pass)

> par(mfrow = c(3, 2))

> invisible(apply(model.resid, 2, function(x)plot(density(na.omit(x)))))

19

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

W.1.COMB.Comdty

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.1. & W.2.

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.1. & W.3.

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.1. & W.4.

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.1. & W.5.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

W.2. & W.1.

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.2.COMB.Comdty

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.2. & W.3.

0 5 10 15 20 25
−

0.
5

0.
0

0.
5

1.
0

Lag

W.2. & W.4.

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.2. & W.5.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

W.3. & W.1.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

W.3. & W.2.

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.3.COMB.Comdty

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.3. & W.4.

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.3. & W.5.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

W.4. & W.1.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

W.4. & W.2.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

W.4. & W.3.

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.4.COMB.Comdty

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.4. & W.5.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

W.5. & W.1.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

W.5. & W.2.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

W.5. & W.3.

−25 −20 −15 −10 −5 0

−
0.

5
0.

0
0.

5
1.

0

Lag

W.5. & W.4.

0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0

Lag

W.5.COMB.Comdty

Figure 8: Residual’s auto- and crosscorrelation estimates. Recall that off-
diagonals of the measurement error covariance matrix are not estimated,
hence the crosscorrelation is not relevant. Residuals of the closest to ma-
turity futures show insignificant autocorrelation. However, residuals of all
other futures are heavily autocorrelated. As the measurement error standard
deviations are set proportional to the average traded volumes of the wheat
futures, the two closest to maturity futures clearly get highest weights.

20

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

density.default(x = na.omit(x))

N = 3952 Bandwidth = 0.1495

D
en

si
ty

−20 −15 −10 −5 0 5

0.
0

0.
2

0.
4

0.
6

density.default(x = na.omit(x))

N = 3952 Bandwidth = 0.1065

D
en

si
ty

−10 −5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

density.default(x = na.omit(x))

N = 3952 Bandwidth = 0.07811

D
en

si
ty

−8 −6 −4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

density.default(x = na.omit(x))

N = 3952 Bandwidth = 0.06435

D
en

si
ty

−3 −2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

density.default(x = na.omit(x))

N = 3952 Bandwidth = 0.05244

D
en

si
ty

Figure 9: Non of the residual distributions look normal. The first distribu-
tion looks normally shaped but exhibits outliers on both tails. The second
to fifth distributions look asymmetric and fat tailed.

21

8.2.2 Confidence Intervals and Value-at-Rsik

Confidence intervals and values-at-risk are computed here regardless of the
misspecification of the model estimated above. In order to estimate the
most recent values of the spot price and the convenience yield the function
filter.schwartz2f is called first. Then, the 5% and 95% quantiles are
computed and plotted (see fig. 10) for a one week horizon . Note that the
5% quantile is the 95% value-at-risk.

> state <- filter.schwartz2f(data = futures$wheat$price, ttm = futures$wheat$ttm / 260, wheat.fit.constr)$state

> coefs <- coef(wheat.fit.constr)

> n <- nrow(futures$wheat$price)

> q.fut <- sapply(futures$wheat$ttm[n,] / 260, function(ttm, ...)

+ qfutures(ttm = ttm, ...),

+ p = c(0.05, 0.95), time = 5 / 260, s0 = state[n,1], delta0 = state[n,2],

+ mu = coefs$mu, sigmaS = coefs$sigmaS, kappa = coefs$kappa, alpha = coefs$alpha,

+ sigmaE = coefs$sigmaE, rho = coefs$rho, r = coefs$r, lambda = coefs$lambda)

> plot(futures$wheat$ttm[n,], futures$wheat$price[n,], ylim = c(650, 850), type = "b",

+ xlab = "Time to maturity [d]", ylab = "Price")

> points(futures$wheat$ttm[n,], q.fut[1,], col = "blue", type = "b")

> points(futures$wheat$ttm[n,], q.fut[2,], col = "blue", type = "b")

> legend("topleft", c("Current observed futures price", "One week ahead 90% confidence interval"),

+ fill = c("black", "blue"))

> ## q.fut <- sapply(1:nrow(state), function(i, s0, delta0, ttm, ...)

> ## qfutures(s0 = s0[i], delta0 = delta0[i], ttm = ttm[i], ...),

> ## p = 0.05, time = 1 / 12, ttm = futures$wheat$ttm / 260, s0 = state[,1],

> ## delta0 = state[,2], mu = coefs$mu, sigmaS = coefs$sigmaS, kappa = coefs$kappa, alpha = coefs$alpha,

> ## sigmaE = coefs$sigmaE, rho = coefs$rho, r = coefs$r, lambda = coefs$lambda)

>

> ## par(mfrow = c(1, 2))

> ## plot(ts(cbind(state[,1], futures$wheat$price[,1], q.fut), freq = 260, start = 1995),

> ## plot.type = "single", col = c("black", "blue", "red"))

> ## plot(ts(state[,2], freq = 260, start = 1995))

> ## abline(h = coefs$alphaT)

22

●

●

●
●

●

0 50 100 150 200 250 300

65
0

70
0

75
0

80
0

85
0

Time to maturity [d]

P
ric

e

●

●

●

●
●

●

●

●

●

●

Current observed futures price
One week ahead 90% confidence interval

Figure 10: Current observed futures prices and one week ahead confidence
intervals for the Sept. 2010, Dec. 2010, Mar. 2011, May 2011, and July
2011 wheat constracts as of Sept. 7, 2010. The July 2011 futures is already
at the lower bound of the confidence interval. This is due to the fact that
the current shape of the term structure cannot be captured fully by the
Schwartz two-factor model

23

8.3 Example: Estimating Soybean Meal Parameters

Soybean meal parameters are estimated in this example based on weekly
observations. All measurement error standard deviations are estimated
(opt.meas.sd = ”all”=), but kappa and lambda are held constant. Time-
to-maturity (ttm) is divided by 260 as it is in unit of days and deltat is set
to 1/52 because weekly price observations are used here.

First, data has to be made weekly. Wednesday observations are taken.
Second, the estimation is carried out. Finally, real and fitted term structures
are plotted in fig. 11. Residuals could be analysed as outlined in sec. 8.2.1.

> futures.w <- rapply(futures, function(x)x[format(as.Date(rownames(x)), "%w") == 3,],

+ classes = "matrix", how = "list")

> soybean.meal.fit <- fit.schwartz2f(data = futures.w$soybean.meal$price,

+ ttm = futures.w$soybean.meal$ttm / 260,

+ kappa = 1, mu = 0,

+ opt.pars = c(s0 = FALSE, delta0 = FALSE, mu = TRUE,

+ sigmaS = TRUE, kappa = FALSE, alpha = TRUE,

+ sigmaE = TRUE, rho = TRUE, lambda = FALSE),

+ opt.meas.sd = "all", deltat = 1 / 52,

+ control = list(maxit = 1000), silent = TRUE)

> soybean.meal.fit

--

Fitted Schwartz97 two-factor model:

SDE (P-dynamcis)

d S_t = S_t * (mu - delta_t) * dt + S_t * sigmaS * dW_1

d delta_t = kappa * (alpha - delta_t) * dt + sigmaE * dW_2

E(dW_1 * dW_2) = rho * dt

SDE (Q-dynamcis)

d S_t = S_t * (r - delta_t) * dt + S_t * sigmaS * dW*_1

d delta_t = kappa * (alphaT - delta_t) * dt + sigmaE * dW*_2

alphaT = alpha - lambda/kappa

Parameters

s0 : 150.7

delta0: 0

mu : 0.249899307721834

sigmaS: 0.444902598205518

kappa : 1

alpha : -0.0891182726227762

sigmaE: 0.542971414981194

rho : 0.912601358692617

24

r : 0.03

lambda: 0

alphaT: -0.0891182726227762

--

Optimization information

Converged: FALSE

Fitted parameters: mu, sigmaS, alpha, sigmaE, rho, meas.sd1, meas.sd2, meas.sd3, meas.sd4, meas.sd5, meas.sd6; (Number: 11)

log-Likelihood: -121733027

Nbr. of iterations: 1002

--

> par(mfrow = c(1, 2))

> futuresplot(futures.w$soybean.meal, type = "forward.curve")

> plot(soybean.meal.fit, type = "forward.curve", data = futures.w$soybean.meal$price,

+ ttm = futures.w$soybean.meal$ttm / 260)

2000 2002 2004 2006 2008 2010

15
0

20
0

25
0

30
0

35
0

40
0

45
0

dates

Closest to maturity contract
Forward Curves

0 2 4 6 8 10 12

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Time

Filtered spot price
Fitted Forward Curves

Figure 11: Real and fitted term structures of soybean meal data. Direction-
ally fitted term structures mostly match observed term structures.

25

References

Rajna Gibson and Eduardo S. Schwartz. Stochastic convenience yield and
the pricing of oil contingent claims. The Journal of Finance, 45(3):959–
976, 1990.

Jimmy E. Hilliard and Jorge Reis. Valuation of commodity futures and
options under stochastic convenience yields, interest rates, and jump dif-
fusions in the spot. Journal of Financial and Quantitative Analysis, 33
(1):61–86, 1998.

Kristian R. Miltersen and Eduardo S. Schwartz. Pricing of options on com-
modity futures with stochastic term structures of convenience yields and
interest rates. Journal of Financial and Quantitative Analysis, 33:33–59,
1998.

Eduardo S. Schwartz. The stochastic behavior of commodity prices: Im-
plications for valuation and hedging. Journal of Finance, 52(3):923–973,
1997.

26

	Introduction
	The Schwartz Two-Factor Model
	Package Overview
	Functions
	Classes
	Object Orientation

	Object Initialization
	Working with the state variables
	Working with derivatives
	Contango, Backwardation, and Hump Shapes
	Parameter Estimation
	Statistical and Computational Considerations
	Example: Estimating Wheat Parameters
	Residual Analysis
	Confidence Intervals and Value-at-Rsik

	Example: Estimating Soybean Meal Parameters

