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Abstract

The rebmix package for R provides functions for random univariate and multivariate
finite mixture generation, number of components, component weights and component pa-
rameters estimation, bootstrapping and plotting of the finite mixtures. It relies on the
REBMIX algorithm that requires preprocessing, information criterion and conditionally
independent normal, lognormal, Weibull, gamma, binomial, Poisson or Dirac component
densities. The rest is accomplished by the algorithm optimizing the component param-
eters, mixing weights and number of components successively based on the boundary
conditions, such as the maximum number of components, total of positive relative devia-
tions, number of classes or nearest neighbours. The algorithm is robust and time efficient
and is insensitive to the number of components and random variables. It can be used
either to assess the initial set of the unknown parameters and number of components for,
e.g., the EM algorithm or as a standalone procedure that is a good compromise between
the nonparametric and parametric methods to the finite mixture estimation. The datasets
analysed are the galaxy, iris, wine, complex 1, complex 2 and simulated 1.

Keywords:˜continuous variable, discrete variable, finite mixture, parameter estimation, R soft-
ware, REBMIX algorithm.

1. Introduction

Finite mixture models are used increasingly to model the distributions of a wide variety
of random phenomena. For the multivariate data of continuous nature, attention is paid
to the use of multivariate normal components because of their computational convenience
(McLachlan, Peel, Basford, and Adams 1999; Ingrassia and Rocci 2007; Frühwirth-Schnatter
2006). However, in fatigue and reliability analyses, lognormal and Weibull distributions are
preferred due to their flexibility and their definition for continuous positive random variables
only (Majeske 2003; Sultan, Ismail, and Al-Moisheer 2007; Touw 2009).

The finite mixture models have seen a real boost in popularity over the last decade due to
the tremendous increase in available computing power. These models can be applied to data
where observations originate from various groups and the group affiliations are not known,
and on the other hand to provide approximations for multimodal distributions Leisch (2004).
Some of the latest models can be found also in van Dijk, Hoogerheide, and Ardia (2009);
Benaglia, Chauveau, Hunter, and Young (2009); Grün and Leisch (2008); Fraley and Raftery
(2007); McLachlan and Peel (2000).

The REBMIX algorithm origins in Nagode and Fajdiga (1998) and avoids the drawbacks of
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the EM algorithm:

• The EM algorithm converges to a local maximum of the likelihood function very quickly.

• There are often several other promising local optimal solutions in the vicinity of the
solutions obtained from methods that provide good initial guesses of the solution.

• Model selection criteria usually assumes that the global optimal solution of the log-
likelihood function can be obtained. However, achieving this is computationally in-
tractable.

• Some regions in the search space do not contain any promising solutions. The promising
and non-promising regions co-exist, and it often becomes challenging to avoid wasting
computational resources to search in non-promising regions.

reported in Reddy and Rajaratnam (2010) by updating the number of components, component
weights and component parameters sequentially and not simultaneously (see also Celeux,
Chrétien, Forbes, and Mkhadri 2001). Later on the REBMIX has evolved (Nagode and
Fajdiga 2000; Nagode, Klemenc, and Fajdiga 2001; Nagode and Fajdiga 2006, 2011b,a), but
its kernel has remained almost unchanged. The paper extends it to discrete variables by
adding binomial, Poisson and Dirac parametric families. Gamma parametric family is added
as well.

REBMIX stands for a robust, time efficient tool that can be used either to assess the initial
set of unknown parameters and the number of components for, e.g., the EM algorithm (Bučar,
Nagode, and Fajdiga 2004) or as a standalone procedure that is a good compromise between
the nonparametric and parametric methods to the finite mixture estimation.

The rebmix implementation of REBMIX extends the set of algorithms available for random
univariate and multivariate finite mixture generation, number of components, component
weights and component parameters estimation, bootstrapping and plotting of the finite mix-
tures in the R language and environment for statistical computing (R Development Core˜Team
2011). The rebmix package has been published on the Comprehensive R Archive Network
and is available at http://CRAN.R-project.org/package=rebmix.

The outline of the paper is as follows: Section˜2 presents the algorithm. Section˜3 analyses
the performance of the approach by studying the galaxy, iris, wine, complex 1, complex 2 and
simulated 1 datasets. Section˜4 lists the conclusions and future work.

2. Algorithm

Let y1, . . . ,yn be an observed d˜dimensional dataset of size n of continuous or discrete vector
observations yj . Each observation is assumed to follow predictive mixture density

f(y|c,w,Θ) =

c∑
l=1

wlf(y|θl) (1)

with conditionally independent component densities

f(y|θl) =
d∏
i=1

f(yi|θil) (2)

http://CRAN.R-project.org/package=rebmix
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indexed by vector parameter θl. The components can currently belong to either normal

f(yi|θil) =
1√

2πσil
exp

{
−1

2

(yi − µil)2

σ2
il

}
,

lognornal

f(yi|θil) =
1√

2πσilyi
exp

{
−1

2

(log(yi)− µil)2

σ2
il

}
,

Weibull

f(yi|θil) =
βil
θil

(
yi
θil

)βil−1

exp

{
−
(
yi
θil

)βil}
,

gamma

f(yi|θil) =
1

Γ[βil]yi

(
yi
θil

)βil
exp

{
− yi
θil

}
,

binomial

f(yi|θil) =

(
θil
yi

)
pyiil (1− pil)

θil−yi ,

Poisson

f(yi|θil) =
e−θilθyiil
yi!

or Dirac

f(yi|θil) =

{
1 yi = θil
0 otherwise

parametric family types. The objective of the analysis is the inference about the number c of
components, component weights wl summing to 1 and component parameters θl.

The REBMIX algorithm is an iterative numerical procedure relying on the suppositions:

• It is always possible to assign empirical densities to an arbitrary dataset.

• Based on the empirical densities, global mode position can be identified.

• Once the global mode position and its empirical density are known, rough component
parameters of the predictive component density can be estimated.

• Based on the rough component parameters, the dataset can be clustered successively
into the classes linked to the predictive component densities and the residue.

• The number c of components equals the number of the classes.

• Enhanced component parameters and the component weights can be assessed for all
classes.

• The residue can be distributed between the existing components by the Bayes decision
rule and the parameters of the finite mixture can be fine-tuned.
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Sections˜2.1 to 2.7 give the theoretical backgrounds for the algorithm, while Section˜2.8 lists
and explains its flow.

2.1. Preprocessing of observations

The algorithm requires the preprocessing of observations. By the histogram approach, the
dataset is counted into a finite number of nonoverlapping, equally sized and regularly dis-
tributed bins. Assuming that bin means ȳj = (ȳ1j , . . . , ȳdj)

> are given by

ȳij = ȳi0 + ’An arbitrary integer’× hij , i = 1, . . . , d, (3)

the fraction of observations kj for j = 1, . . . , v falling into volume Vj is counted out, where ȳi0
stands for an arbitrary origin and v depicts the number of bins. Similarly, if the Parzen window
is employed, the fraction of observations falling into Vj centered on observation yj is obtained.
In both cases, the volume is taken to be a hypersquare with the sides of length hij . This yields

Vj =
∏d
i=1 hij . Moreover, hij = hi and Vj = V . If the k-nearest neighbour approach is used,

the fraction of observations falling into normalized hypersphere Vj = πd/2Rdj/Γ[1 + d/2] of
radius Rj centered on observation yj contains kj = k observations.

The class widths for the histogram and Parzen window and continuous parametric families

hi =
yimax − yimin

v

depend on the minimum yimin = min yij and maximum yimax = max yij observations. For the
histogram preprocessing and continuous parametric families origin is preset to

ȳi0 = yimin +
hi
2
.

However, discrete parametric families require hi = 1 and ȳi0 = yimin. The k − 1 nearest
neighbours are searched around yj based on the normalized Euclidean distance

R =

√√√√ d∑
i=1

(
yik − yij

hi

)2

for k 6= j, where hi = yimax − yimin.

If N ≥ k nearest neighbours coincide, then R is the distance to the nearest non-coincident
neighbour multiplied by (k/(N + 1))1/d.

2.2. Global mode detection

Argument m at which empirical density flj

m = arg max
j

flj (4)

attains its maximum determines the global mode. If observations are binned into the his-
togram, then

flj =
klj
nl

1

Vj
, j = 1, . . . , v, (5)
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where frequencies klj are all set to kj initially and number of observations in class l is

nl =

v∑
j=1

klj .

If the Parzen window or k-nearest neighbour approach is applied,

flj =
klj
nl

kj
Vj
, j = 1, . . . , n. (6)

Frequencies klj are all set to 1 initially, nl =
∑n

j=1 klj and component weight wl = nl/n. More-
over, the lth component conditional empirical density at the global mode for the histogram
approach

fi|̂i.lm =
klm∑v

j=1, ȳîj=ȳîm
klj

1

him
=

klm
ki|̂i.lm

1

him
(7)

is required, where index î = 1, . . . , i−1, i+1, . . . , d. If d = 1, then ki|̂i.lm = nl and fi|̂i.lm = flm.
For the Parzen window and k-nearest neighbour approach

fi|̂i.lm =
klm∑n

j=1, yîj=yîm
klj

km
him

=
klm
ki|̂i.lm

km
him

. (8)

2.3. Clustering of observations

The clustering of observations is an iterative procedure of identifying the observations be-
longing to the lth component. The deviations between klj and the predictive component
frequencies for the histogram approach are given by

elj = klj − nlf(ȳj |θl)Vj . (9)

However, for the Parzen window and k-nearest neighbour approach

elj = klj − nlf(yj |θl)Vj/kj . (10)

To identify the most deviating observations, relative positive deviations εlj = elj/klj and
maximum positive relative deviation εlmax are calculated. Total of positive and negative
deviations

elp =
v∑

j=1, elj>0

elj and eln =
v∑

j=1, elj<0

max{elj ,−rj},

where rj stand for the residual frequencies. If index v is replaced by n the equation can
be used with the Parzen window and k-nearest neighbour approach, too. Total of positive
relative deviations of the lth component is then

Dl =
elp
nl
, (11)

where 0 ≤ Dl ≤ 1. The observations that inequality εlj > εlmax(1 − ar) holds for are not
assumed to belong to the lth component and therefore move to the residue. Number of



6 rebmix: An R Package for Finite Mixture Models

iterations depends on acceleration rate 0 < ar ≤ 1. It is best to keep ar close to zero. The
recommended value is 0.1. On the contrary, the observations where elj < 0 are transferred
back to the lth component. The clustering of observations continues with the renewed rough
parameter and component weight estimation until

Dl ≤
Dmin

wl
. (12)

Constant 0 < Dmin ≤ 1 is optimized by the information criterion. The clustering of observa-
tions ends with the enhanced component parameter estimation.

2.4. Rough component parameter estimation

The clustering of observations depends on the rough component parameters. Proper extrac-
tion of observations belonging to the lth component is assured by the restraints that prevent
the component from its flowing away from the global mode as at least one component is
supposed to be in the vicinity.

The equivalence of component conditional empirical densities (Nagode and Fajdiga 2006) at
ŷm = ȳm for the histogram or at ŷm = ym for the Parzen window and k-nearest neighbour
results in

εfi|̂i.lm = f(yi = ŷim|θil) = fi|̂i.lmax, i = 1, . . . , d. (13)

Restraint (13) is sufficient for single parameter component densities, such as for Dirac and
exponential. Allowing for the independence of components (2) it yields

flm =

d∏
i=1

εfi|̂i.lm,

where

ε = min

1,

(
flm∏d

i=1 fi|̂i.lm

) 1
d

 . (14)

On the other hand, for Rayleigh, Poisson or binomial distribution with known θil it is assumed

∂f(yi = ŷim|θil)
∂yi

= 0, i = 1, . . . , d. (15)

The rough component parameters for single parameter distributions are thus gained from
(13) or (15). For two parameter normal, lognormal, Weibull or gamma distribution Lagrange
multiplier

Λ(θil, λil) = −
∫ +∞

−∞
f(yi|θil) log(f(yi|θil))dyi + λil log(f(yi = ŷim|θil)/fi|̂i.lmax) (16)

provides a strategy for entropy maximization subject to logarithm of (13). The rough com-
ponent parameters for two parameter distributions are then a solution of

∇θil,λilΛ(θil, λil) = 0, i = 1, . . . , d. (17)
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Constrained entropy (16) maximization enables rough Weibull and gamma parameter estima-
tion for shape parameter βil > 0 and not only for βil > 1 as in Nagode and Fajdiga (2011b,a).
Rough normal component parameters are given by

µil = ŷim and σil =
1√

2πfi|̂i.lmax

. (18)

Similarly, rough lognormal

f(λil) =
λil − 1

λil
+ log(λil(λil − 1)) + 2 log(

√
2πfi|̂i.lmaxŷim) = 0,

µil = λil − 1 + log(ŷim) and σil =
√
λil(λil − 1), (19)

Weibull

f(αil) =
αil − 1

λil
e

1
αil − fi|̂i.lmaxŷime = 0, λil =

αil
βil

,

βil = αil + γ + log

(
αil − 1

αil

)
, θil = ŷim

(
αil

αil − 1

) 1
βil

and βil > 0, (20)

gamma

f(αil) =
1

2
log(βil) + βil

(
log

(
αil − 1

αil

)
+

1

αil

)
− log(

√
2πfi|̂i.lmaxŷim) = 0,

βil =
γ(1 + αil)

γ − 1− αil log
(
αil−1
αil

) , λil =
αil
βil

, θil =
ŷimλil
αil − 1

and βil > 0, (21)

binomial

pil =


1− f1/θil

i|̂i.lmax
ŷim = 0

f
1/θil
i|̂i.lmax

ŷim = θil

ŷim/θil otherwise,

(22)

rough Poisson

θil =

{
− log(fi|̂i.lmax) ŷim = 0

ŷim otherwise
(23)

and rough Dirac
θil = ŷim (24)

component parameters are derived, where γ is the Euler-Mascheroni constant. When deriving
(21) Γ[βil] is approximated by the Stirling’s formula and digamma function by ψ(βil) =
log(βil)−γ/βil. Rough binomial parameter θil = θi is fixed and equals the number of categories
minus one. The rigid restraints become loose if ŷim and fi|̂i.lmax of (18) to (24) are supposed
to be bounded by

ŷim − ahim ≤ ŷim ≤ ŷim + ahim and fi|̂i.lmin ≤ fi|̂i.lm ≤ fi|̂i.lmax. (25)

Constant a is one for the histogram approach, except for the distributions with yi ≥ 0 and
ŷim < him, where a = ŷim/him. For the Parzen window and k-nearest neighbour a = ŷim/2him
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for the distributions with yi ≥ 0 and ŷim < him/2, otherwise a = 1/2. The observations at
fi|̂i.lmin are supposed to follow a uniform distribution

fi|̂i.lmin =
1

yi|̂i.lmax − yi|̂i.lmin

,

where yi|̂i.lmax = max yi|̂i.lm and yi|̂i.lmin = min yi|̂i.lm. Optimal ŷim and fi|̂i.lm are obtained by
minimizing the maximum relative positive deviation

min max
j=1,...,v or n|εlj>0, 0.001<F (ŷij |θil)<0.999

εlj → (ŷim, fi|̂i.lm)

as explained thoroughly by Nagode and Fajdiga (2011b,a). The loose restraints do no affect
the Dirac parameter as here fi|̂i.lmin = fi|̂i.lmax. The loose restraints prevent superfluous
component occurrence if their modes collide considerably.

2.5. Enhanced component parameter estimation

Maximum likelihood is applied to get enhanced component parameters. When the histogram
is applied, enhanced normal component parameters are given by

µil =
1

nl

v∑
j=1

klj ŷij and σ2
il =

1

nl

v∑
j=1

klj ŷ
2
ij − µ2

il. (26)

Likewise, enhanced lognormal

µil =
1

nl

v∑
j=1

klj log(ŷij) and σ2
il =

1

nl

v∑
j=1

klj log(ŷij)
2 − µ2

il, (27)

Weibull

θβilil =
1

nl

v∑
j=1

klj ŷ
βil
ij and f(βil) =

1

βil
+

1

nl

v∑
j=1

klj log(ŷij)−
∑v

j=1 klj ŷ
βil
ij log(ŷij)∑v

j=1 klj ŷ
βil
ij

= 0, (28)

gamma

θil =
1

βilnl

v∑
j=1

klj ŷij and f(βil) =
1

nl

v∑
j=1

klj log(ŷij)− log(θil)−
Γ′[βil]

Γ[βil]
= 0, (29)

binomial

pil =
1

nlθil

v∑
j=1

klj ŷij , (30)

Poisson

θil =
1

nl

v∑
j=1

klj ŷij (31)

and Dirac component parameters

θil = ŷim (32)
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are estimated. Index v should be replaced by n if the Parzen window or k-nearest neighbour
approach is used.

2.6. First and second moment calculation

The first and second moment of the normal

mil = µil and Vil = σ2
il + µ2

il, (33)

lognormal

mil = eµil+
σ2il
2 and Vil = e2µil+2σ2

il , (34)

Weibull

mil = θilΓ

[
1 +

1

βil

]
and Vil = θ2

ilΓ

[
1 +

2

βil

]
, (35)

gamma

mil = θilβil and Vil = θ2
ilβil(1 + βil) (36)

and the first moment of binomial

mil = θilpil, (37)

Poisson

mil = θil (38)

and Dirac

mil = θil (39)

distributions are calculated to enable the classification of the remaining observations.

2.7. Bayes classification of the remaining observations

With the increase of the number of components, the number nl of the remaining observations
decreases. When the component weight attains the minimum weight

wl ≤ wmin = 2Dmin((l − 1)b+ 1) (40)

it is assumed that remaining observations klj belong to the existing classes and do not form
the new ones. Minimum weight multiplier 0 ≤ b ≤ 1. The default value is 1. If it decreases,
c increases and the predictive mixture density tends to overfit the dataset. Set b = 0 for the
Dirac parametric family type to obtain an exact fit of the empirical density. The classification
of the remaining observations is accomplished by the Bayes decision rule (Duda and Hart 1973)

l = arg max
l

wlf(yj |θl)

wl = wl +
klj
n

, mil = mil +
klj(yij −mil)

nwl
and Vil = Vil +

klj(y
2
ij − Vil)
nwl

, (41)

where klj is added to the lth class and the component weight and both moments are recalcu-
lated (Bishop 1995). Once all v bin means or all n observations are processed, the predictive
mixture parameters are gained by inverting (33) to (39).
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2.8. Algorithm flow

The REBMIX is listed in Algorithm˜1. It requires fifteen arguments, whereby depending on
the parametric families five or six of them are mandatory, the rest is optional. It consists
of three main loops: the inner 9 → 37, the middle 6 → 41 and the outer loop 4 → 47.
The numbers are line indices. In line 2 the observations are preprocessed as described in
Section˜2.1. In line 3, counter I1, constant Dmin and frequencies klj are initiated. Next, the
outer loop begins. Line 5 presumes that the mixture consists of one component, then the
number r of observations to separate is set to n and nl to n. If ratio nl/n is greater than
the minimum weight introduced in Section˜2.7, the middle loop enters. Otherwise, the finite
mixture parameter estimation for v ∈ K is completed.

In lines 7 and 8, global mode argument m is detected as explained in Section˜2.2, counter I2 is
initiated, component weight wl is calculated and frequencies rj are all set to zero. If I2 ≤ Imax,
the inner loop enters, otherwise in line 38 the first and second moments are calculated (see
Section˜2.6). Next, number of components c is set to l, number of observations r is decreased
by nl, l is incremented, number r of the remaining observations joins nl, residue frequencies
rj are all moved to klj , and the Stop criterion is determined.

The inner loop is divided into three sections. In line 10 the component parameters are
estimated roughly (see Section˜2.4). In the second section 11→ 23, total of positive relative
deviations Dl and maximum relative deviation εlmax are calculated. The number of iterations
depends on acceleration rate ar. In the third section 24 → 35, the maximum and negative
deviations are transferred between frequencies klj and residue rj . This way deviations elj are
reduced gradually. The negative value of elj can never be higher than residue value rj . If this
is not true, deviation elj is corrected as listed in line 19. When the condition in line 24 is not
fulfilled, the enhanced component parameter estimation is carried out (see Section˜2.5) and
the inner loop ends.

The enhanced component parameter estimation may fail. In this instance, the component
parameters are reset to the state just before the failure occurred. In line 42 the remaining
observations are classified by the Bayes decision rule as depicted in Section˜2.7. Further on,
information criterion, e.g., Akaike (1974)

IC = −2 logL(c,w,Θ) + 2M (42)

is calculated, whereas the number of free parameters for the normal, lognormal, Weibull and
gamma mixtures can be written as

M = 2cd+ c− 1. (43)

The binomial, Poisson and Dirac mixtures require M = cd+c−1. The log likelihood function
for the binned observations is given by

logL(c,w,Θ) =
v∑
j=1

kj log f(ȳj |c,w,Θ). (44)

Otherwise,

logL(c,w,Θ) =
n∑
j=1

log f(yj |c,w,Θ). (45)
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Finally, total of positive relative deviations for the histogram

D =
v∑
j=1

〈
kj
n
− f(ȳj |c,w,Θ)Vj

〉
, (46)

Parzen window or k-nearest neighbour

D =

n∑
j=1

〈
1

n
− f(yj |c,w,Θ)Vj

kj

〉
(47)

is calculated, where 〈x〉 = x if x > 0 and 〈x〉 = 0 if x ≤ 0. This way global optimum ICopt

corresponding to the optimal number copt of components, weights wopt and parameters Θopt

can always be found. In line 46, the Stop criterion is redetermined and Dmin is decreased in
such a way that total of positive relative deviations

cDold
min = (c+ 1)Dnew

min

for c and c+1 components is preserved. When line 47 is fulfilled, the procedure stops. If index
v in Algorithm˜1 is replaced by n and line 15 is replaced by (10) the algorithm, presented for
the histogram approach, can also be used with the Parzen window and k-nearest neighbour.

3. Examples

To illustrate the use of the REBMIX algorithm, two univariate and four multivariate samples
are considered. The rebmix is loaded and the prompt before starting new page is set to TRUE.

R> library("rebmix")

R> devAskNewPage(ask = TRUE)

3.1. Galaxy dataset

The dataset analysed in Roeder (1990) contains the measurements of the velocities of 82
galaxies diverging away from our own galaxy. The multimodality of the velocities may indicate
the presence of super clusters of galaxies surrounded by large voids, each mode representing a
cluster moving away at its own speed (Roeder 1990, gives more background). Richardson and
Green (1997) concluded from their approach that the number of components ranged from 5
to 7, while McLachlan and Peel (1997) provided the support for six components. Stephens
(2000) reported that three components were optimal for the mixture of normal and four for
the mixture of t˜distributions.

The galaxy dataset is loaded, the galaxyest object is initialized and function REBMIX is called
for normal, lognormal and Weibull parametric families. Maximum number of components
cmax is set to 8. The influence of the Akaike (Akaike 1974) information criterion AIC and
the Bayesian (Schwarz 1978) information criterion BIC for the histogram and Parzen window
preprocessing on predictive number of components c is studied. The optimal number of classes
are searched within broad utmost limits K. Argument b is set to 0 as components with a low
probability of occurrence may occur.

1Mandatory argument.
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Algorithm 1 REBMIX

Require: Dataset1, Preprocessing1, D, cmax, Criterion, Variables1, pdf1, Theta11, Theta2, K1, ymin, ymax,
b, ar and Restraints.

Ensure: Dataset contains datasets, Preprocessing is one of "histogram", "Parzen window" or "k-nearest

neighbour", 0 ≤ D ≤ 1, cmax ∈ N, Criterion is one of "AIC", "AIC3", "AIC4", "AICc", "BIC", "CAIC",
"HQC", "MDL2", "MDL5", "AWE", "CLC", "ICL", "PC", "ICL-BIC", "D" or "SSE", Variables are "continuous"
or "discrete", pdf is one of "normal", "lognormal", "Weibull", "gamma", "binomial", "Poisson" or
"Dirac", Theta1 may contain initial binomial parameters, Theta2 is inactive, K ⊂ N, ymin and ymax may
contain minimum and maximum observations, 0 ≤ b ≤ 1, 0 < ar ≤ 1 and Restraints are "loose" or
"rigid".

1: for all v such that v ∈ K do
2: Preprocessing of observations
3: I1 ← 1, Dmin ← 0.25, klj ← kj for j = 1 to v
4: repeat
5: l← 1, r ← n, nl ← n
6: while nl/n > 2Dmin((l − 1)b + 1) do
7: Global mode detection
8: I2 ← 1, wl ← nl/n, rj ← 0 for j = 1 to v
9: while I2 ≤ Imax do

10: Rough component parameter estimation
11: elp ← 0, eln ← 0, elmax ← 0
12: for j = 1 to v do
13: elj ← 0, εlj ← 0
14: if klj > 0 or rj > 0 then
15: elj ← klj − nlf(ȳj |θl)Vj
16: if elj > 0 then
17: εlj ← elj/klj , εlmax ← max{εlmax, εlj}, elp ← elp + elj
18: else
19: elj ← max{elj ,−rj}, eln ← eln − elj
20: end if
21: end if
22: end for
23: Dl ← elp/nl, εlmax ← εlmax(1− ar)
24: if Dl > Dmin/wl then
25: for all j such that 1 ≤ j ≤ v and εlj > εlmax do
26: klj ← klj − elj , rj ← rj + elj , nl ← nl − elj
27: end for
28: elp ← elp/Dl − nl, f ← elp/eln if eln > elp otherwise f ← 1
29: for all j such that 1 ≤ j ≤ v and elj < 0 do
30: elj ← felj , klj ← klj − elj , rj ← rj + elj , nl ← nl − elj
31: end for
32: wl ← nl/n
33: else
34: Enhanced component parameter estimation, break
35: end if
36: I2 ← I2 + 1
37: end while
38: First and second moment calculation
39: c← l, r ← r − nl, l← l + 1, nl ← r, klj ← rj for j = 1 to v
40: Stop← c ≥ v or c ≥ cmax, break if Stop = true
41: end while
42: Bayes classification of the remaining observations, log likelihood logL, information criterion IC and

total of positive relative deviations D calculation
43: if IC < ICopt then
44: logL→ logLopt, IC→ ICopt, c→ copt, w → wopt, Θ→ Θopt

45: end if
46: Stop← Stop or D ≤ D or I1 ≥ Imax, Dmin ← cDmin/(c + 1), I1 ← I1 + 1
47: until Stop = true

48: end for
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R> data("galaxy")

R> galaxyest <- list(normal = NULL, lognormal = NULL, Weibull = NULL)

R> pdf <- c("normal", "lognormal", "Weibull")

R> for (i in 1:3) {

+ galaxyest[[i]] <- REBMIX(Dataset = list(galaxy = galaxy),

+ Preprocessing = c("histogram", "Parzen window"),

+ cmax = 8, Criterion = c("AIC", "BIC"), Variables = "continuous",

+ pdf = pdf[i], K = 7:20, b = 0)

+ }

See help("REBMIX") in rebmix for details about specifying arguments for the function re-
turning an object of class REBMIX. List of data frames w contains component weights wl sum-
ming to 1, Theta stands for a list of data frames containing parametric family types pdfi.
One of "normal", "lognormal", "Weibull", "gamma", "binomial", "Poisson" or "Dirac".
Component parameters theta1.i follow the parametric family types. One of µil for normal
and lognormal distributions and θil for Weibull, gamma, binomial, Poisson and Dirac dis-
tributions. Component parameters theta2.i follow theta1.i. One of σil for normal and
lognormal distributions, βil for Weibull and gamma distributions and pil for binomial distri-
bution. Character vector Variables contains types of variables. One of "continuous" or
"discrete". In the summary data frame additional information about dataset, preprocessing,
D, cmax, information criterion type, b, ar, restraints type, optimal c, optimal k, ȳi0, optimal
hi, information criterion IC and log likelihood logL is stored. Position pos in the summary

data frame at which log likelihood logL attains its maximum is available, too.

The summary output for normal, lognormal and Weibull mixture may be obtained using the
summary method.

R> summary(galaxyest$normal)

Dataset Preprocessing Criterion c v/k IC logL M

1 galaxy histogram AIC 5 15 423 -197 14

2 galaxy histogram BIC 3 19 442 -204 8

3 galaxy Parzen window AIC 4 16 430 -204 11

4 galaxy Parzen window BIC 4 16 456 -204 11

Maximum logL = -197 at pos = 1.

R> summary(galaxyest$lognormal)

Dataset Preprocessing Criterion c v/k IC logL M

1 galaxy histogram AIC 5 15 424 -198 14

2 galaxy histogram BIC 3 15 450 -207 8

3 galaxy Parzen window AIC 4 16 428 -203 11

4 galaxy Parzen window BIC 4 16 455 -203 11

Maximum logL = -198 at pos = 1.

R> summary(galaxyest$Weibull)
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Dataset Preprocessing Criterion c v/k IC logL M

1 galaxy histogram AIC 6 18 427 -196 17

2 galaxy histogram BIC 4 17 460 -206 11

3 galaxy Parzen window AIC 8 10 457 -206 23

4 galaxy Parzen window BIC 2 7 482 -230 5

Maximum logL = -196 at pos = 1.

The minimum information criterion and the maximum log likelihood are observed for the
histogram preprocessing, whereas the maximum log likelihood resulting in 6 components
coincides with the Weibull parametric family type, the histogram preprocessing and the AIC.
Most frequently four components appear. The rebmix leads thus to the number of components
similar to Stephens (2000). The two spurious components reported about by McLachlan and
Peel (1997) can not be identified by the algorithm. For the particular dataset the AIC is
favorable. It gives 4 to 6 components.

Figure 1: Galaxy dataset. Empirical density and distribution function (circles) and predictive
Weibull mixture density and distribution function (solid line).

R> plot(galaxyest$Weibull, pos = 1, what = c("den", "dis"),

+ ncol = 2, npts = 1000)

The plot method delivers a fitted finite mixture with the legend in Figure˜1. The corre-
sponding predictive Weibull mixture parameters are given by the coef method.

R> coef(galaxyest$Weibull, pos = 1)

comp1 comp2 comp3 comp4 comp5 comp6

w 0.367 0.259 0.228 0.0854 0.0372 0.0237

pdf Weibull Weibull Weibull Weibull Weibull Weibull

theta1 19.7 22.7 24.4 9.9 33 21

theta2 30.6 20.4 16.5 19.3 42.2 41

For the details about specifying arguments for the plot and coef methods see help("plot.REBMIX")
and help("coef.REBMIX"), respectively.
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3.2. Iris dataset

The well known set of iris data as collected originally by Anderson (1935) and first analysed
by Fisher (1936), is considered here. It is available at Asuncion and Newman (2007) consisting
of the measurements of the length and width of both sepals and petals of 50 plants for each
of the three types of iris species setosa, versicolor and virginica. The iris dataset is loaded
and the Species column is removed.

R> data("iris")

R> iris <- iris[, !(colnames(iris) %in% "Species")]

The three preprocessing types and six selection criteria AIC, AWE (Banfield and Raftery
1993), BIC, classification likelihood criterion CLC (Biernacki and Govaert 1997), integrated
classification likelihood criterion ICL as proposed by Biernacki, Celeux, and Govaert (1998)
implemented with α = 0.5 and its approximation ICL-BIC for the multivariate normal para-
metric family type are compared. The optimal number of classes and nearest neighbours are
searched within broad utmost limits K.

R> irisest <- REBMIX(Dataset = list(iris = iris), Preprocessing = c("histogram",

+ "Parzen window", "k-nearest neighbour"), Criterion = c("AIC",

+ "AWE", "BIC", "CLC", "ICL", "ICL-BIC"), Variables = rep("continuous",

+ 4), pdf = rep("normal", 4), K = list(6:25, 6:25,

+ 3:13))

The number of components is assessed for the set. The results of the analysis are summarized
below.

R> summary(irisest)

Dataset Preprocessing Criterion c v/k IC logL M

1 iris histogram AIC 13 25 517 -143 116

2 iris histogram AWE 3 19 992 -317 26

3 iris histogram BIC 5 17 749 -264 44

4 iris histogram CLC 15 25 316 -137 134

5 iris histogram ICL 5 17 772 -264 44

6 iris histogram ICL-BIC 5 17 774 -264 44

7 iris Parzen window AIC 13 19 563 -166 116

8 iris Parzen window AWE 3 22 997 -323 26

9 iris Parzen window BIC 5 12 769 -274 44

10 iris Parzen window CLC 14 25 357 -159 125

11 iris Parzen window ICL 3 22 788 -323 26

12 iris Parzen window ICL-BIC 3 22 788 -323 26

13 iris k-nearest neighbour AIC 5 3 661 -286 44

14 iris k-nearest neighbour AWE 3 3 1106 -376 26

15 iris k-nearest neighbour BIC 5 3 793 -286 44

16 iris k-nearest neighbour CLC 5 3 616 -287 44

17 iris k-nearest neighbour ICL 5 3 834 -287 44

18 iris k-nearest neighbour ICL-BIC 5 3 837 -287 44

Maximum logL = -137 at pos = 4.
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It can be concluded that AIC and CLC overestimate the number of components for the
histogram and Parzen window significantly. Hence, maximum logL does not necessarily lead
to accurate predictions. In all other cases either 3 or 5 components are predicted, which is in
accordance with Wilson (1982), who suggested that both, the versicolor and virginica species
should be split into two subspecies although the analysis by McLachlan and Peel (2000) using
maximum likelihood methods suggests that this is not justified for the virginica subset. Also,
Stephens (2000) reported that the superfluous components might appear to model the lack of
normality in the subset rather than interpretable groups. The plot method delivers Figure˜2.

R> plot(irisest, pos = 5, what = c("den", "IC", "logL",

+ "D"), nrow = 3, ncol = 3, npts = 1000)

Figure 2: Iris dataset. Empirical densities (circles), predictive multivariate marginal normal
mixture densities (contour lines) and progress charts.

3.3. Wine dataset

Next, the results of a wine recognition problem are considered. The set consists of 178
13˜dimensional exemplars that are a set of chemical analysis of three types of wine (Asuncion
and Newman 2007).

The AIC and CLC overestimate the number of components and are thus not applicable.
The AWE, BIC, ICL and ICL-BIC recognize three components for the histogram and Parzen
window preprocessing. In a classification context, this is a well posed problem with well
behaved class structures (see also Roberts, Everson, and Rezek 2000).
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R> data("wine")

R> wine <- wine[, !(colnames(wine) %in% "Cultivar")]

R> wineest <- REBMIX(Dataset = list(wine = wine), Preprocessing = c("histogram",

+ "Parzen window"), Criterion = c("AIC", "AWE", "BIC",

+ "CLC", "ICL", "ICL-BIC"), Variables = rep("continuous",

+ 13), pdf = rep("normal", 13), K = 8:27)

R> summary(wineest)

Dataset Preprocessing Criterion c v/k IC logL M

1 wine histogram AIC 15 8 6845 -3019 404

2 wine histogram AWE 3 9 8277 -3589 80

3 wine histogram BIC 3 9 7593 -3589 80

4 wine histogram CLC 15 8 6090 -3019 404

5 wine histogram ICL 3 9 7622 -3589 80

6 wine histogram ICL-BIC 3 9 7622 -3589 80

7 wine Parzen window AIC 15 8 6594 -2893 404

8 wine Parzen window AWE 3 17 8368 -3629 80

9 wine Parzen window BIC 3 17 7673 -3629 80

10 wine Parzen window CLC 15 8 5839 -2893 404

11 wine Parzen window ICL 3 17 7714 -3629 80

12 wine Parzen window ICL-BIC 3 17 7714 -3629 80

Maximum logL = -2893 at pos = 7.

Maximum logL = -2893 at pos = 10.

3.4. Complex 1 dataset

Next, a 15 component univariate normal mixture is generated by calling the RNGMIX function.
It demands character vector Dataset containing list names of data frames that datasets are
written in, random seed rseed, vector n containing number of observations in classes nl
and a matrix containing c parametric family types pdfi. One of "normal", "lognormal",
"Weibull", "gamma", "binomial", "Poisson" or "Dirac". Component parameters theta1.i
follow the parametric family types. One of µil for normal and lognormal distributions and
θil for Weibull, gamma, binomial, Poisson and Dirac distributions. Component parameters
theta2.i follow theta1.i. One of σil for normal and lognormal distributions, βil for Weibull
and gamma distributions and pil for binomial distribution.

R> n <- c(998, 263, 1086, 487, 213, 1076, 232, 784, 840,

+ 461, 773, 24, 811, 1091, 861)

R> Theta <- rbind(pdf = "normal", theta1 = c(688.4, 265.1,

+ 30.8, 934, 561.6, 854.9, 883.7, 758.3, 189.3, 919.3,

+ 98, 143, 202.5, 628, 977), theta2 = c(12.4, 14.6,

+ 14.8, 8.4, 11.7, 9.2, 6.3, 10.2, 9.5, 8.1, 14.7,

+ 11.7, 7.4, 10.1, 14.6))

R> complex1 <- RNGMIX(Dataset = "complex1", n = n, Theta = Theta)
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Figure 3: Complex 1 dataset. Empirical density (circles) and predictive rebmix normal
mixture density in black solid line.

The complex1$Dataset holds a list of data frames of size n × d. See help("RNGMIX") in
rebmix for details. The preprocessing is set to histogram, maximum number of components
to 20 and information criterion to BIC. The number of classes ranges from 14 (Sturges 1926) to
200 corresponding to the RootN rule and function REBMIX is called for the normal parametric
family type.

R> time <- system.time(complex1est1 <- REBMIX(Dataset = complex1$Dataset,

+ Preprocessing = "histogram", cmax = 20, Criterion = "BIC",

+ Variables = "continuous", pdf = "normal", K = seq(14,

+ 200, 4), b = 0))

As the true number of components is supposed to be unknown, the predictive normal mixture
parameters are estimated for 2 ≤ k ≤ 20 as in the case of the REBMIX algorithm. The REBMIX
function yields logL = −62017 at 16 components in 10.3 s. To plot the rebmix mixture in
Figure˜3 the plot method is called.

R> plot(complex1est1, npts = 1000)

3.5. Complex 2 dataset

A multivariate mixed continuous-discrete 5 component mixture is generated here by calling
the RNGMIX function.

R> n <- c(390, 110, 300, 70, 130)

R> Theta <- rbind(pdf1 = rep("lognormal", 5), theta1.1 = c(0.8,

+ 1.3, 3.4, 2.7, 4.3), theta2.1 = c(0.5, 0.7, 0.2,

+ 0.4, 0.1), pdf2 = rep("Poisson", 5), theta1.2 = c(10,

+ 7.3, 1.7, 3.3, 5), pdf3 = rep("binomial", 5), theta1.3 = c(10,

+ 10, 10, 10, 10), theta2.3 = c(0.9, 0.7, 0.5, 0.3,

+ 0.1), pdf4 = rep("Weibull", 5), theta1.4 = c(20,

+ 45, 60, 90, 120), theta2.4 = c(2, 3.1, 6.3, 2.5,
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+ 7))

R> complex2 <- RNGMIX(Dataset = "complex2", n = n, Theta = Theta)

The preprocessing is set to histogram, maximum number of components to 8 and information
criterion to BIC. The number of classes ranges from 10 (Sturges 1926) to 64 corresponding to
the RootN rule and function REBMIX is called for the multivariate lognormal-Poisson-binomial-
Weibull parametric family type. Let initial component parameter Theta1 for the binomial
parametric family type be known and be set to 10. The others do not require Theta1.
Therefore they equal NA. Minimum weight multiplier b = 0.

R> time <- system.time(complex2est <- REBMIX(Dataset = complex2$Dataset,

+ Preprocessing = "histogram", cmax = 8, Criterion = "BIC",

+ Variables = c("continuous", "discrete", "discrete",

+ "continuous"), pdf = c("lognormal", "Poisson",

+ "binomial", "Weibull"), Theta1 = c(NA, NA, 10,

+ NA), K = seq(10, 64, 1), b = 0))

The REBMIX function yields logL = −11754 at 6 components in 9.56 s. To plot the rebmix
mixture in Figure˜4 the plot method is called.

R> plot(complex2est, what = c("dens", "marg", "IC", "D"),

+ nrow = 4, ncol = 3, npts = 1000)

By calling the boot.REBMIX method B bootstrap samples of length n are generated for the
x object of class REBMIX at position pos, where bootstrap Bootstrap can be one of default
"parametric" or "nonparametric". Arguments replace and prob affect the nonparamet-
ric bootstrap only, see help("sample") and McLachlan and Peel (1997) for details about
replacement and weighted bootstrap.

R> complex2boot <- boot.REBMIX(x = complex2est, pos = 1,

+ Bootstrap = "p", B = 100, n = NULL, replace = TRUE,

+ prob = NULL)

R> complex2boot

$c

[1] 8 7 7 8 7 8 8 8 8 7 7 7 8 8 8 7 6 7 7 8 8 8 6 7 2 8 7 8 8 8 8 8

[33] 8 7 2 7 8 7 8 8 2 8 8 7 8 8 8 8 8 6 8 6 8 8 5 8 7 8 8 6 7 6 8 5

[65] 8 8 8 8 7 8 7 6 8 8 6 8 7 8 8 7 8 8 8 6 8 7 7 7 8 8 8 7 7 8 8 8

[97] 8 5 8 8

$c.mode

[1] 8

$c.prob

[1] 0.59
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$c.se

[1] 1.22

$theta1.1.se

[1] 0.466 0.966 0.995 0.946 1.133 1.166 0.997 0.888

$theta1.2.se

[1] 1.95 4.06 4.01 3.47 3.74 3.55 2.38 2.19

$theta1.3.se

[1] 0 0 0 0 0 0 0 0

$theta1.4.se

[1] 10.1 19.8 27.4 26.4 35.8 38.0 35.4 28.5

$theta2.1.se

[1] 0.257 0.503 0.495 0.387 0.341 0.378 0.316 0.354

$theta2.3.se

[1] 0.105 0.272 0.288 0.256 0.303 0.305 0.222 0.194

$theta2.4.se

[1] 1.35 2.97 3.83 4.99 3.71 2.82 4.49 4.47

$w.se

[1] 0.0559 0.0634 0.0738 0.0684 0.0417 0.0457 0.0479 0.0341

$c.cv

[1] 0.167

$theta1.1.cv

[1] 0.318 0.418 0.392 0.339 0.404 0.364 0.319 0.313

$theta1.2.cv

[1] 0.206 0.607 0.693 0.729 0.626 0.604 0.467 0.478

$theta1.3.cv

[1] 0 0 0 0 0 0 0 0

$theta1.4.cv

[1] 0.412 0.490 0.626 0.471 0.597 0.481 0.430 0.387

$theta2.1.cv

[1] 0.254 0.746 0.813 0.859 0.805 0.929 0.745 0.770

$theta2.3.cv

[1] 0.121 0.409 0.490 0.478 0.552 0.771 0.562 0.419
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$theta2.4.cv

[1] 0.474 0.517 0.610 0.651 0.463 0.380 0.552 0.529

$w.cv

[1] 0.191 0.358 0.590 0.636 0.625 0.559 0.594 0.501

attr(,"class")

[1] "boot.REBMIX"

The complex2boot object of class boot.REBMIX holds a data frame c containing numbers c of
components for B bootstrap samples, standard error c.se, coefficient of variation c.cv, mode
c.mode and mode probability c.prob of the numbers of components. Component weights w,
component parameters theta1.i and theta2.i, standard errors w.se, theta1.i.se and
theta2.i.se and coefficients of variation w.cv, theta1.i.cv and theta2.i.cv for those
bootstrap samples for which c equals mode cm are returned, too. See help("boot.REBMIX")

in rebmix for details.

3.6. Simulated 1 dataset

Dataset consists of n = 625 four˜dimensional observations obtained by generating samples
separately from each of five normal distributions. The component˜sample sizes, means and
covariance matrices, which are those adopted in Bozdogan (1993) and Celeux and Soromenho
(1996), are displayed below

µ1 = (10, 12, 10, 12)> Σ1 = Ip n1 = 75
µ2 = (8.5, 10.5, 8.5, 10.5)> Σ2 = Ip n2 = 100
µ3 = (12, 14, 12, 14)> Σ3 = Ip n3 = 125
µ4 = (13, 15, 7, 9)> Σ4 = 4Ip n4 = 150
µ5 = (7, 9, 13, 15)> Σ5 = 9Ip n5 = 175

The optimal c = 5 component normal mixture model with diagonal component˜covariance
matrices is fitted (McLachlan and Ng 2000; McLachlan and Peel 2000) by using the EMMIX
algorithm McLachlan et˜al. (1999). It results in BIC = 11479.

The EMMIX algorithm recognizes five components as optimal regardless of the selection
criterion. Ten random starts are performed to initialize the EM algorithm. The solution
corresponding to the largest local maximum of the log likelihood located is taken as the MLE
after the elimination of local maximizers considered to be spurious on the basis of the relevant
sizes of the fitted generalized component variances.

Next, 100 samples are generated with random seeds rseed ranging from −1 to −100.

R> n <- c(75, 100, 125, 150, 175)

R> Theta <- rbind(rep("normal", 5), c(10, 8.5, 12, 13, 7),

+ c(1, 1, 1, 2, 3), rep("normal", 5), c(12, 10.5, 14,

+ 15, 9), c(1, 1, 1, 2, 3), rep("normal", 5), c(10,

+ 8.5, 12, 7, 13), c(1, 1, 1, 2, 3), rep("normal",

+ 5), c(12, 10.5, 14, 9, 15), c(1, 1, 1, 2, 3))
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R> simulated1 <- RNGMIX(Dataset = paste("Simulated1_", 1:100,

+ sep = ""), n = n, Theta = Theta)

In total, 100 finite mixture estimations are performed by calling the REBMIX function.

R> time <- system.time(simulated1est1 <- REBMIX(simulated1$Dataset,

+ Preprocessing = "histogram", Criterion = "BIC", Variables = rep("continuous",

+ 4), pdf = rep("normal", 4), K = seq(10, 28, 2),

+ b = 0))

R> c <- as.numeric(simulated1est1$summary$c)

R> IC <- as.numeric(simulated1est1$summary$IC)

The results are as follows:

R> summary(c)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.00 5.00 5.00 5.44 6.00 9.00

R> summary(IC, digits = 5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

11646 11825 11890 11889 11953 12154

The REBMIX function predicts 5.44 components on average in 56.4 s, where probability P
of identifying exactly c = 5 components equals 0.35. The fastest histogram preprocessing
results in the highest probability of identifying the true number of components and in the
most suitable average number of components c for the simulated 1 dataset. The Parzen
window and k-nearest neighbour are therefore left out here.

4. Conclusions and future work

The article presents the REBMIX algorithm and the rebmix package. The galaxy, iris, wine,
complex 1, complex 2 and simulated 1 datasets are studied on the x64 architecture. By
applying the tikzDevice package (Sharpsteen and Bracken 2010), LATEX plots with legends
can be obtained.

The REBMIX algorithm can be used to assess the initial set of the unknown parameters and
number of components for, e.g., the EM algorithm or as a standalone procedure that is a
good compromise between the nonparametric and parametric methods to the finite mixture
estimation. The number of components affects the computational time, but it does not
contribute to the numerical instability of the algorithm. Its major superiorities are robustness
and time efficiency especially with the histogram preprocessing for all sample sizes. The
Parzen window and k-nearest neighbour are more suitable for smaller samples. Its advantages
are more stressed for complex mixtures composed of numerous components. The predict

method that enables class membership prediction is already available in the rebmix package
and has been validated. See help("predict.list") for details. The REBMIX can thus also
be used for pattern recognition.
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There are several possibilities to further improve the algorithm that have been left for the
future. The rebmix could be extended to other parametric family types including the multi-
variate normal ones with full covariance matrices (Nagode et˜al. 2001).
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Figure 4: Complex 2 dataset. Empirical densities (coloured large circles), predictive mul-
tivariate marginal lognormal-Poisson-binomial-Weibull mixture densities (coloured lines and
small circles), empirical densities (circles), predictive univariate marginal lognormal, Poisson,
binomial and Weibull mixture densities and progress charts (solid line).
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