
qfaBayes - An R package for Bayesian

Quantitative Fitness Analysis

Jonathan Heydari

April 11, 2014

1 Introduction

Quantitative Fitness Analysis (QFA) is an experimental and computational
workflow for comparing fitnesses of microbial cultures grown in parallel. QFA
can be applied to focused observations of single cultures but is most useful for
genome-wide genetic interaction or drug screens investigating up to thousands
of independent cultures. The central experimental method is the inoculation of
independent, dilute liquid microbial cultures onto solid agar plates which are
incubated and regularly photographed. Photographs from each time-point are
analyzed, producing quantitative cell density estimates, which are used to con-
struct growth curves, allowing quantitative fitness measures to be derived. Cul-
ture fitnesses can be compared to quantify and rank genetic interaction strengths
or drug sensitivities. The effect on culture fitness of any treatments added into
substrate agar (e.g. small molecules, antibiotics or nutrients) or applied to plates
externally (e.g. UV irradiation, temperature) can be quantified by QFA.
Detailed descriptions of how to carry out QFA experiments are available in open
access articles, particularly in Banks et al. (2012) and Addinall et al. (2011).
The purpose of this document is to describe, in detail, some of the computational
methods available in the qfaBayes R package for summarising experimentally
observed growth curves during QFA, and to demonstrate the computational
component of QFA using some small, example datasets.

2 QFA data

The raw experimental data generated by QFA consists of timeseries photographs
of cultures growing on agar plates. The first step in the computational com-
ponent of the QFA workflow is to convert these photographic observations into
cell density estimates for cultures in each position on each plate analysed. The
Colonyzer image analysis tool (Lawless et al. (2010)) is designed for this task
and can be downloaded from its website. Once all the images have been suc-
cessfully analysed, the next step is to use the qfaBayes R package to associate
culture locations with genotypes and to construct growth curves (cell density
estimates over time) for each culture.

1

http://dx.doi.org/10.3791/4018
http://dx.doi.org/10.1371/journal.pgen.1001362
http://dx.doi.org/10.1186/1471-2105-11-287
http://research.ncl.ac.uk/colonyzer/

3 Installing the qfaBayes package

The qfaBayes package source code is available for download from R-Forge, and
so it should be possible to install the latest version using the R package manage-
ment system on a wide range of operating systems by executing the following
command within an R environment:

install.packages("qfaBayes",repos="http://r-forge.r-project.org")

Once installed, the package can be loaded ready for use with

library(qfaBayes)

Please note that this installation method will typically only work using the latest
version of R (which can be freely downloaded from the R website). Alternatively,
instructions for accessing the source code for the package from are available here.

4 Function documentation

The following command will provide an overview of functions available within
the qfaBayes package together with brief descriptions of what they do and links
to detailed descriptions indicating input arguments and output:

help(package="qfaBayes")

This document can be accessed at any time with:

vignette("qfaBayes")

5 General overview

This R package is intended to fit the three Bayesian Models described in J Hey-
dari, C Lawless, D Lydall and D J Wilkinson. Bayesian hierarchical modelling
for inferring genetic interactions in yeast. Journal of the Royal Statistical Soci-
ety: Series C (Applied Statistics), in submission. The three Bayesian models are
the SHM (Single hierarchical model), IHM (Interacation hierarchical model),
and JHM (Joint hierarchical model). There are six demos included in this
packge, three of which (SHM_simple_C, IHM_simple_C and JHM_simple_c)have
been made for ease of use, hiding all post-processing. The other three (SHM_C,
IHM_C and JHM_C) consist of many lines of code that can be more easily edited
to create a much more tailored post-processing. Variables burn, iter and thin

control the burn-in period, output sample size and thinning. These are all set
to 1 in all the six of the demo’s so that a user can get familiar with the workflow
first, it is essential that you change them to much larger numbers for sufficient
convergence to happen. Typically the models need a computational time that
ranges from range from days to weeks.

5.1 SHM

SHM_simple_C This demo runs the SHM for the ura3∆ data set at 27 ◦C trimmed
to only include plate 15, which accounts for only 50 of the 4294 orf∆s avalible.

2

http://r-forge.r-project.org/projects/qfa
http://www.r-project.org/
http://r-forge.r-project.org/scm/?group_id=880

It is expected that you will wish to create ouput with larger sample size, burn
in period and thinning, to do this simply copy all the code from the demo and
change the variables burn, iter and thin.
The typical model computation time of the SHM alone is one week with burn-in
of 800000, sample size of 10000 and thinning of 10.
A more detailed workflow which is compatible with the standalone C code is
given in demo SHM_C.

5.2 IHM

IHM_simple_C This demo runs the SHM for the ura3∆ data set at 27 ◦C,
trimmed to only include plate 15, which accounts for only 50 of the 4294 orf∆s
available. Next, the SHM is then run for the cdc13-1∆ data set at 27 ◦C,
trimmed to only include plate 15, which accounts for only 50 of the 4294 orf∆s
available. The IHM is then run using the output from the SHM output for the
two data sets. Finally you will be asked if you wish to create a fitness plot with
your results.
It is expected that you will wish to create ouput with larger sample size, burn
in period and thinning, to do this simply copy all the code from the demo and
change the variables burn, iter and thin where they appear. The typical model
computation time of the IHM alone is one day with burn-in of 800000, sample
size of 10000 and thinning of 10.
A more detailed workflow which is compatible with the standalone C code is
given in demo IHM_C.

5.3 JHM

JHM_simple_C This demo runs the JHM for the ura3∆ and cdc13-1∆ data sets,
both at 27 ◦C, trimmed to only include plate 15, which accounts for only 50 of
the 4294 orf∆s available. At the end of the demo you will be asked if you wish
to create a fitness plot with your results.
It is expected that you will wish to create ouput with larger sample size, burn
in period and thinning, to do this simply copy all the code from the demo and
change the variables burn, iter and thin where they appear. The typical model
computation time of the JHM alone is two weeks with burn-in of 800000, sample
size of 5000 and thinning of 10.
A more detailed workflow which is compatible with the standalone C code is
given in demo JHM_C.

6 SHM simple C Demo

To see how the SHM_simple_C demo works the following detailed explaination
is provided and is to be used in conjunction with the R package manual. The
SHM_simple_C demo runs the following commands:

> data("URA3_Raw_extratrim_15")

> a<-a_15

The above commands load a trimmed ura3Del data set consisting of only of

3

master plate 15 to the variable a_15 and copys this to a variable ”a”.

> data("priors_SHM")

> PRIORS=as.double((priors_SHM)[[1]])[1:18]

The above commands loads a broad set of prior values for the SHM to the
variable priors_SHM and then copys this to variable PRIORS.

> qfa.variables(a)

The above command lists the avalible options for the treatment, screen number
and master plate.

> Screen<-unique(a$Screen.Name)

The above command selects all screens for the following SHM analysis.

> SHM<-SHM_postpro(a=a,Treat=27,Screen=Screen,MPlate=15)

The above command runs the post processing for the SHM, organising the
Colonyser ouput in variable a for use with the SHM. The dataset will be
trimmed to only include the data corresponding to the specified Treat, Screen
and MPlate.

> SHM_output<-SHM_main(burn=1,iters=1,thin=1,CAPL=50,

QFA.I=SHM$QFA.I,QFA.y=SHM$QFA.y,QFA.x=SHM$QFA.x,

QFA.NoORF=SHM$QFA.NoORF,QFA.NoTIME=SHM$QFA.NoTIME,PRIORS=PRIORS)

The above command runs the C code for the SHM in R. burn, iters and thin

which have all been set to 1 for the purpose of the demo. CAPL is the number
of orfs for the SHM to proform the analysis on. The output SHM_output will
be a table of posterior samples, where each coloumn corresponds to a different
model paramater; a table header is included to idendify each coloumn.
> ask_plot_simple()

The above command will ask the user if they would like an example of some
plots created form the posterior sample.
> plot_SHM_simple(SHM_output,SHM)

The above commands outputs fitted logistic growth curve plots for each ORF,
where black is for the repeat fitted curves and red for orf level fitted curves.

4

	Introduction
	QFA data
	Installing the qfaBayes package
	Function documentation
	General overview
	SHM
	IHM
	JHM

	SHM_simple_C Demo

