
Tutorial for the opair package

Rune Haubo B Christensen

October 6, 2013
file: opair_tutorial.Rnw

1 Introduction

The opair package contains functions that facilitate analysis of ordinal paired comparisons.

The opair function fits the Thurstonian model and estimates d′. It also provides confidence
intervals for d′ and p-values for difference and similarity tests. The plot method for opair

objects provide dot plots or bar plots of the estimated d′ values, and the save.opair function
writes the coefficient table including d′ values, confidence limits and p-values to a csv file.
This allows the user to import d′ values into, for example, Microsoft Excel and make custom
plots here. The package also includes two sample data sets; NV and BG.

This tutorial explains the functionality in the opair package using examples.

All the functions have help pages or manual pages available with, for example help(opair).
This document is meant as a supplement — not a substitute to these pages.

The opair package is loaded with the following command:

R> library(opair)

This makes all the functions in the opair package available to us. Note that the package
automatically loads the ordinal package as well as a couple of additional packages. The
ordinal package is used internally to compute the d′ values. If library(opair) gives an
error message, you probably need to install one or more packages on your computer. The
opair package, for example, can be installed with

R> install.packages("opair")

which requires that you are one the internet. Note: This will only work when the package
has been published on CRAN (www.cran.r-project.org).

Information about version of R and various packages used in this document is provided in
Appendix˜A.

2 Estimation of d′ with the opair function

The opair function estimates the Thurstonian model for ordinal paired comparisons. It
takes the following arguments:

1

R> args(opair)

function (descriptors, products, d.equiv = 0.5, conf.level = 0.95,

abbreviate.names = FALSE, ...)

NULL

where descriptors is a data.frame of descriptor variables, products is a factor indicating
different products with the reference product being the first level, d.equiv is the point
of equivalence used in computing the p-value of the equivalence test, conf.level specifies
the confidence level (0.95 is the default), and abbreviate.names controls if names of the
descriptors should be abbreviated to compact the printed output table.

As an example we will consider the NV data set (see help(NV) for details) that is included in
the package. The data set has the following format (first six lines of the data set are shown):

R> head(NV)

Taster Samples Red color Thickness Fruit quantity Smooth Compact Sweetness

1 1 432 0 0 0 0 0 0

2 1 568 0 0 0 -1 0 0

3 1 841 -1 0 0 0 0 0

4 2 432 -1 0 1 0 0 0

5 2 568 -1 1 1 -1 0 1

6 2 841 -1 1 1 -1 0 0

Acidity Fruit intensity Global Dairy Off notes Lasting fruit Lasting sweet

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 1 0 0 -1 -1

4 1 0 0 0 0 1

5 1 0 0 1 0 1

6 1 1 0 0 1 0

The data is organized such that each row corresponds to a single trial or sample being eval-
uated on a number of attributes. Here the Taster column indicates which of 13 tasters
provided the ratings, the Samples column indicates the three products involved in the ex-
periment (432 is the reference product), and the remaining 12 columns hold the ratings for
each of the 12 attributes or descriptors. The ratings take on the values (–2, –1, 0, 1, 2)
corresponding to (much less, less, same, more, and much more).

We can now use the str function to reveal the internal structure of the data set:

R> str(NV)

'data.frame': 33 obs. of 14 variables:

$ Taster : Factor w/ 11 levels "1","10","11",..: 1 1 1 4 4 4 5 5 5 6 ...

$ Samples : Factor w/ 3 levels "432","568","841": 1 2 3 1 2 3 1 2 3 1 ...

$ Red color : int 0 0 -1 -1 -1 -1 -1 0 -1 1 ...

$ Thickness : int 0 0 0 0 1 1 -1 -1 2 0 ...

$ Fruit quantity : int 0 0 0 1 1 1 -1 0 1 1 ...

$ Smooth : int 0 -1 0 0 -1 -1 0 -1 0 0 ...

$ Compact : int 0 0 0 0 0 0 -1 0 1 0 ...

$ Sweetness : int 0 0 0 0 1 0 0 -1 -1 0 ...

$ Acidity : int 0 0 0 1 1 1 0 1 0 0 ...

$ Fruit intensity: int 0 0 1 0 0 1 -1 0 0 0 ...

$ Global Dairy : int 0 0 0 0 0 0 1 -1 -1 0 ...

$ Off notes : int 0 0 0 0 1 0 0 0 0 0 ...

2

$ Lasting fruit : int 0 0 -1 0 0 1 -1 1 0 0 ...

$ Lasting sweet : int 0 0 -1 1 1 0 0 1 0 0 ...

Here we see that the data set is stored as a data.frame. Note that Samples is stored as a
factor and that the reference product 432 is the first level as required. Also note that the
descriptor ratings are stored as integers and not as factors. The opair function will convert
the variables into factors internally.

2.1 Estimation of d′ for a single descriptor

We can use the opair function to estimate d′ for a single descriptor of interest. Suppose
we want to estimate d′ for the Thickness descriptor, then we can extract a data.frame for
Thickness with:

R> thick <- NV["Thickness"]

and check that it looks ok by displaying the first six rows with

R> head(thick)

Thickness

1 0

2 0

3 0

4 0

5 1

6 1

We are now ready to fit the Thurstonian model and estimate d′:

R> opair(descriptors=thick, products=NV$Samples, d.equiv=0.5,

+ conf.level=0.95)

Thurstonian model for ordinal paired comparisons

d-prime estimates:

Descriptor Product d.prime lower upper p.diff p.equiv

Thickness 568 0.2745 -0.9851 1.534 0.669261 0.3629

Thickness 841 1.8927 0.5453 3.240 0.005903 0.9786

The output contains two d′ values — one for each of the test products. Also provided is
the two-sided 95% confidence limits for d′, the two-sided p-value for the difference test (if
p.diff is small, e.g.˜less than 0.05, there is evidence that d′ is different from zero), and the
two-sided p-value for the equivalence test (if p.equiv is small there is evidence that d′ is
larger than -d.equiv and smaller than d.equiv, where d.equiv = 0.5) based on the TOST
method.

The equivalence region (-d.equiv, d.equiv), and the confidence level can changed as one
may find appropriate.

Since d.equiv=0.5 and conf.level=0.95 are the defaults and because descriptors and
products are the first two arguments, we would get the same result with

R> opair(thick, NV$Samples)

We could also extract the Thickness data.frame within the opair function:

3

R> opair(NV["Thickness"], NV$Samples)

2.2 Estimation of d′ for multiple descriptors

The opair function can estimate d′ for multiple descriptors at once. For example, the results
for Thickness and Sweetness are provided by

R> opair(NV[c("Thickness", "Sweetness")], NV$Samples)

Thurstonian model for ordinal paired comparisons

d-prime estimates:

Descriptor Product d.prime lower upper p.diff p.equiv

Thickness 568 0.2745 -0.9851 1.534 0.669261 0.3629

Thickness 841 1.8927 0.5453 3.240 0.005903 0.9786

Sweetness 568 0.5860 -0.6736 1.846 0.361857 0.5532

Sweetness 841 0.4332 -0.8195 1.686 0.497862 0.4584

We can also get the results for all the descriptors in the NV data set. First extract a vector
of descriptor names and then fit the opair model to all 12 descriptors:

R> (desc.names <- names(NV)[4:ncol(NV)])

[1] "Thickness" "Fruit quantity" "Smooth" "Compact"

[5] "Sweetness" "Acidity" "Fruit intensity" "Global Dairy"

[9] "Off notes" "Lasting fruit" "Lasting sweet"

R> opair(NV[desc.names], NV$Samples)

Thurstonian model for ordinal paired comparisons

d-prime estimates:

Descriptor Product d.prime lower upper p.diff p.equiv

Thickness 568 0.2745 -0.98508 1.5341 0.669261 0.3629

Thickness 841 1.8927 0.54527 3.2401 0.005903 0.9786

Fruit quantity 568 0.9738 -0.32046 2.2681 0.140299 0.7635

Fruit quantity 841 1.5933 0.25225 2.9343 0.019878 0.9450

Smooth 568 -0.8294 -2.16235 0.5036 0.222671 0.6859

Smooth 841 -0.8590 -2.20003 0.4820 0.209295 0.7001

Compact 568 -0.4825 -1.84022 0.8753 0.486130 0.4899

Compact 841 1.4652 0.03723 2.8931 0.044319 0.9074

Sweetness 568 0.5860 -0.67361 1.8456 0.361857 0.5532

Sweetness 841 0.4332 -0.81945 1.6859 0.497862 0.4584

Acidity 568 1.5632 0.09869 3.0277 0.036436 0.9226

Acidity 841 1.5632 0.09869 3.0277 0.036436 0.9226

Fruit intensity 568 1.1423 -0.20063 2.4853 0.095483 0.8257

Fruit intensity 841 0.9718 -0.34627 2.2900 0.148437 0.7585

Global Dairy 568 -0.4054 -1.72922 0.9185 0.548408 0.4443

Global Dairy 841 -0.2059 -1.52493 1.1131 0.759619 0.3311

Off notes 568 0.6035 -1.30613 2.5131 0.535662 0.5423

Off notes 841 0.0000 -2.07676 2.0768 1.000000 0.3185

Lasting fruit 568 1.1147 -0.22798 2.4573 0.103701 0.8152

Lasting fruit 841 0.5592 -0.73910 1.8575 0.398574 0.5356

Lasting sweet 568 1.1879 -0.13711 2.5130 0.078892 0.8456

Lasting sweet 841 -0.1850 -1.45942 1.0895 0.776070 0.3140

4

If the descriptors or products have long labels, it can be difficult to view the table in
its entire width. For that reason it is possible to abbreviate the labels of descriptors and
products by setting the argument abbreviate.names to TRUE. For the ’Fruit quantity

impression’ descriptor this looks like

R> opair(NV[desc.names[2]], NV$Samples, abbreviate.names=TRUE)

Thurstonian model for ordinal paired comparisons

d-prime estimates:

Descriptor Product d.prime lower upper p.diff p.equiv

Fruitqntty 568 0.9738 -0.3205 2.268 0.14030 0.7635

Fruitqntty 841 1.5933 0.2523 2.934 0.01988 0.9450

Partial matching can be used, so

R> opair(NV[desc.names[2]], NV$Samples, abbrev=TRUE)

will give the same results.

3 Plotting d′ values from the opair function

Two types of plots are directly available for illustrating d′ values produced by the opair

function; a dot plot and a bar plot.

To produce the plots, we first save the opair model in the object fit:

R> fit <- opair(NV[desc.names], NV$Samples)

Note that this does not print anything. Evaluating

R> fit

will however product the printed output shown above.

We can produce the dot plot with the following command:

R> plot(fit, type=1)

The result is shown in Figure˜1. Here labels and dots are blue for negative d′ values and
red for positive d′ values.

The plot method for opair objects can also produce a bar plot using type = 2:

R> plot(fit, type=2)

The result is shown in Figure˜2. Here, also, bars are blue for negative d′ values and red for
positive d′ values. Bars are labeled by consecutive numbers.

4 Saving d′ values to a csv file

The function save.opair will save the coefficient table including d′ values, confidence limits
and p-values to a csv file.

The results from above can be saved with

5

Thickness, 568
Thickness, 841
Fruit quantity, 568
Fruit quantity, 841
Smooth, 568
Smooth, 841
Compact, 568
Compact, 841
Sweetness, 568
Sweetness, 841
Acidity, 568
Acidity, 841
Fruit intensity, 568
Fruit intensity, 841
Global Dairy, 568
Global Dairy, 841
Off notes, 568
Off notes, 841
Lasting fruit, 568
Lasting fruit, 841
Lasting sweet, 568
Lasting sweet, 841

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

d−prime

Figure 1: Illustration of d′ values in a dot plot.

d−
pr

im
e

1 3 5 7 9 11 13 15 17 19 21

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 2: Illustration of d′ values in a bar plot.

6

R> save.opair(fit, "myDprimes")

This will produce the file myDprimes.csv, and it will put the file in the working directory.
If you do not remember where that is, you can find out by running

R> getwd()

By default the columns of the file will be separated by a comma, and the decimal operator
will be a dot. This can be changed, though, for instance, the following will produce a
semi-colon separated file where a comma is used as decimal separator.

R> save.opair(fit, "myDprimes", sep=";", dec=".")

Microsoft Excel will open csv files correctly if the column and decimal separators are selected
appropriately. The right setting depends on the language or regional settings in Microsoft
Excel (for example, sep=";", dec="." works in the Excel settings for Denmark).

If you want to save the file somewhere else, you can supply the path to the folder where you
want to save the file. For example, to save the file in the root of the C-drive, use

R> save.opair(fit, "C:/myDprimes")

5 Reading in data from spreadsheets to use with the
opair function

To analyze data stored in Microsoft Excel spreadsheet, there are two main obstacles:

1. Getting the data into R

2. Making sure data are in the right format.

The are many ways to get data from a spreadsheet into R. I find that the easiest way is to
first save the data as a comma separated csv file using the save as menu and then reading
the data into R using the R function read.table with something like

R> myData <- read.table("myData", header=TRUE, sep=",")

If in doubt about how the data should be structured in the spreadsheet before loading into
R, take a look at the data set produced by

R> write.table(NV, file="NV.csv", row.names=FALSE)

A SessionInfo

R> sessionInfo()

R version 3.0.2 Patched (2013-10-04 r64027)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

7

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] opair_0.2-0

loaded via a namespace (and not attached):

[1] MASS_7.3-29 Matrix_1.0-14 grid_3.0.2 lattice_0.20-23

[5] ordinal_2013.9-30 tools_3.0.2 ucminf_1.1-3

8

