
Advanced R programming: practical 2
Dr Colin Gillespie
January 2, 2014

1 S3 objects

1. Following the cohort example in the notes, suppose we want to
create a mean method.

• List all S3 methods associated with the mean function.

• Examine the source code of mean.default.

• What are the arguments of mean.default?

• Create a function called mean.cohort that returns a vector con-
taining the mean weight and mean height.1 1 Ensure that you can pass in the stan-

dard mean arguments, i.e. na.rm.
2. Let’s now make a similar function for the standard deviation

• Look at the arguments of the sd function.

• Create an function call sd.cohort that returns a vector contain-
ing the weight and height standard deviation.2 2 Ensure that you can pass in the stan-

dard sd arguments, i.e. na.rm.• Create a default sd function. Look at cor.default in the notes
for a hint.

2 S4 objects
I’ve intentionally mirrored the functions
from section 1 of this practical to high-
light the differences.

1. Following the Cohort example in the notes, suppose we want to
make a generic for the mean function.

• Using the isGeneric function, determine if the mean function is
an S4 generic. If not, use setGeneric to create an S4 generic.

• Using setMethod, create a mean method for the Cohort class.3 3 Be careful to match the arguments.

2. Repeat the above steps for the sd function.

3 Reference classes

The example in the notes created a random number generator using
a reference class.

• Reproduce the randu generator from the notes and make sure that
it works as advertised.4 4 The reference class version, not the

function closure generator.
• When we initialise the random number generator, the very first

state is called the seed. Store this variable and create a new function
called get_seed that will return the initial seed, i.e. Reference classes also have an initialise

method - that way we would only spec-
ify the seed and would then initialise the
other variables. I’ll give you an example
in the solutions.

r = randu(calls = 0, seed = 10, state = 10)

r$r()

[1] 0.0003052

advanced r programming: practical 2 2

r$get_state()

[1] 655390

r$get_seed()

[1] 10

• Create a variable that stores the number of times the generator has
been called. You should be able to access this variable with the
function get_num_calls

r = randu(calls = 0, seed = 10, state = 10)

r$get_num_calls()

[1] 0

r$r()

[1] 0.0003052

r$r()

[1] 0.001831

r$get_num_calls()

[1] 2

Solutions

Solutions are contained within the course package

library("nclRadvanced")

vignette("solutions2", package = "nclRadvanced")

	S3 objects
	S4 objects
	Reference classes

