
Advanced R programming: solutions 1
Dr Colin Gillespie
January 2, 2014

1 Argument matching

R allows a variety of ways to match function arguments.1 We didn’t 1 For example, by position, by complete
name, or by partial name.cover argument matching in the lecture, so let’s try and figure out the

rules from the examples below. First we’ll create a little function to
help

arg_explore = function(arg1, rg2, rg3)

paste("a1, a2, a3 = ", arg1, rg2, rg3)

Next we’ll create a few examples. Try and predict what’s going to
happen before calling the functions One of these examples will raise an error

- why?

arg_explore(1, 2, 3)

arg_explore(2, 3, arg1 = 1)

arg_explore(2, 3, a = 1)

arg_explore(1, 3, rg = 1)

Can you write down a set of rules that R uses when matching argu-
ments?

SOLUTION

See http://goo.gl/NKsved for the offical document

To summeriase, matching happens in a three stage pass:

#1. Exact matching on tags

#2. Partial matching on tags.

#3. Positional matching

Following on from the above example, can you predict what will
happen with

plot(type = "l", 1:10, 11:20)

and

rnorm(mean = 4, 4, n = 5)

SOLUTION

#plot(type="l", 1:10, 11:20) is equivilent to

plot(x=1:10, y=11:20, type="l")

#rnorm(mean=4, 4, n=5) is equivilent to

rnorm(n=5, mean=4, sd=4)

advanced r programming: solutions 1 2

2 The ... argument

A common argument2 is We can explore what happens using 2 Especially when dealing with S3 ob-
jects and functions.the eval and substitute functions.

arg_explore2 = function(arg1 = 5, ...)

eval(substitute(alist(...)))

• What do alist, substitute and eval do?3 3 Hint: the easiest way to figure this out
is to alter the arg_explore2 function, i.e.
remove eval, then remove substitute,
etc.## SOLUTION

#1. eval - just evalulats an R expression

#2. substritute - returns the unevaluated expression

#3. alist - Used to parse the arguments

#Look at ?alist, ?eval and ?substitute

#Also, run the examples - example(eval)

• Repeat the examples used in arg_explore, but include the ...

argument.

3 Variable scope

Scoping can get tricky. Before running the example code below,
predict what is going to happen

1. A simple one to get started

f = function(x) return(x + 1)

f(10)

##Nothing strange here. We just get

f(10)

[1] 11

2. A bit more tricky

f = function(x) {

f = function(x) {

x + 1

}

x = x + 1

return(f(x))

}

f(10)

3. More complex

advanced r programming: solutions 1 3

f = function(x) {

f = function(x) {

f = function(x) {

x + 1

}

x = x + 1

return(f(x))

}

x = x + 1

return(f(x))

}

f(10)

Solution: The easiest way to understand

is to use print statements

f = function(x) {

f = function(x) {

f = function(x) {

message("f1: = ", x)

x + 1

}

message("f2: = ", x)

x = x + 1

return(f(x))

}

message("f3: = ", x)

x = x + 1

return(f(x))

}

f(10)

f3: = 10

f2: = 11

f1: = 12

[1] 13

4. f = function(x) {

f = function(x) {

x = 100

f = function(x) {

x + 1

}

x = x + 1

return(f(x))

}

x = x + 1

advanced r programming: solutions 1 4

return(f(x))

}

f(10)

Solution: The easiest way to understand

is to use print statements as above

4 Function closures

Following the examples in the notes, where we created a function
closure for the normal and uniform distributions. Create a similar
closure for

• the Poisson distribution,4 4 Hint: see rpois and dpois.

poisson = function(lambda) {

r = function(n = 1) rpois(n, lambda)

d = function(x, log = FALSE) dpois(x,

lambda, log = log)

return(list(r = r, d = d))

}

• and the Geometric distribution.5 5 Hint: see rgeom and dgeom.

geometric = function(prob) {

r = function(n = 1) rgeom(n, prob)

d = function(x, log = FALSE) dgeom(x,

prob, log = log)

return(list(r = r, d = d))

}

5 Mutable states

In chapter 2, we created a random number generator where the state,
was stored between function calls.

• Reproduce the randu generator from the notes and make sure that
it works as advertised.

• When we initialise the random number generator, the very first
state is called the seed. Store this variable and create a new function
called get_seed that will return the initial seed, i.e.

r = randu(10)

r$r()

[1] 0.0003052

advanced r programming: solutions 1 5

r$get_state()

[1] 655390

r$get_seed()

[1] 10

Solutions - see below

• Create a variable that stores the number of times the generator has
been called. You should be able to access this variable with the
function get_num_calls

r = randu(10)

r$get_num_calls()

[1] 0

r$r()

[1] 0.0003052

r$r()

[1] 0.001831

r$get_num_calls()

[1] 2

Solutions

randu = function(seed) {

state = seed

calls = 0 #Store the number of calls

r = function() {

state <<- (65539 * state)%%2^31

Update the variable outside of this

enviroment

calls <<- calls + 1

state/2^31

}

set_state = function(initial) state <<- initial

get_state = function() state

get_seed = function() seed

get_num_calls = function() calls

list(r = r, set_state = set_state, get_state = get_state,

advanced r programming: solutions 1 6

get_seed = get_seed, get_num_calls = get_num_calls)

}

r = randu(10)

r$r()

[1] 0.0003052

r$get_state()

[1] 655390

r$get_seed()

[1] 10

Solutions

Solutions are contained within the course package

library("nclRadvanced")

vignette("solutions1", package = "nclRadvanced")

	Argument matching
	The ... argument
	Variable scope
	Function closures
	Mutable states

