Advanced R programming: practical 1
Dr Colin Gillespie

January 2, 2014

1 Arqument matching

R allows a variety of ways to match function arguments.” We didn’t
cover argument matching in the lecture, so let’s try and figure out the
rules from the examples below. First we’ll create a little function to
help

arg_explore = function(argl, rg2, rg3)

paste("al, a2, a3 = ", argl, rg2, rg3)

Next we'll create a few examples. Try and predict what’s going to
happen before calling the functions

arg_explore(1l, 2, 3)
arg_explore(2, 3, argl = 1)
arg_explore(2, 3, a = 1)
arg_explore(l, 3, rg = 1)

Can you write down a set of rules that R uses when matching argu-
ments?

Following on from the above example, can you predict what will
happen with

plot(type = "1", 1:10, 11:20)
and

rnorm(mean = 4, 4, n = 5)

2 The ... arqument

A common argument? is We can explore what happens using
the eval and substitute functions.

arg_explore2 = function(argl =5, ...)

eval (substitute(alist(...)))

¢ What do alist, substitute and eval do?3

* Repeat the examples used in arg_explore, but include the ...
argument.

3 Variable scope

Scoping can get tricky. Before running the example code below,
predict what is going to happen

* For example, by position, by complete
name, or by partial name.

One of these examples will raise an error
- why?

2 Especially when dealing with S3 ob-
jects and functions.

3 Hint: the easiest way to figure this out
is to alter the arg_explore2 function, i.e.
remove eval, then remove substitute,
etc.

ADVANCED R PROGRAMMING: PRACTICAL 1 2

1. A simple one to get started

f = function(x) return(x + 1)
f(10)

2. A bit more tricky

f = function(x) {

f = function(x) {
X + 1

}

X =Xx+1

return(f(x))

}
f(10)

3. More complex

f = function(x) {
f = function(x) {

f = function(x) {
X + 1

}

X =x+1

return(f(x))
}
X =x+1
return(f(x))
}
f(10)

4. f = function(x) {
f = function(x) {

x = 100

f = function(x) {
X + 1

}

X=X+ 1

return(f(x))
}
X =Xx+1
return(f(x))
}
f(10)

ADVANCED R PROGRAMMING: PRACTICAL 1

4 Function closures

Following the examples in the notes, where we created a function
closure for the normal and uniform distributions. Create a similar
closure for

¢ the Poisson distribution,4

¢ and the Geometric distribution.>

5 Mutable states

In chapter 2, we created a random number generator where the state,
was stored between function calls.

® Reproduce the randu generator from the notes and make sure that
it works as advertised.

* When we initialise the random number generator, the very first
state is called the seed. Store this variable and create a new function
called get_seed that will return the initial seed, i.e.

r = randu(10)
r$r()

[1] 0.0003052
r$get_state()

[1] 655390
ré¢get_seed()

[1] 10

¢ Create a variable that stores the number of times the generator has
been called. You should be able to access this variable with the
function get_num_calls

r = randu(10)
r$get_num_calls()

[1] O

rér()

[1] 0.0003052
rér()

[1] 0.001831
r$get_num_calls()

[1] 2

4+ Hint: see rpois and dpois.

5 Hint: see rgeom and dgeom.

3

ADVANCED R PROGRAMMING: PRACTICAL 1 4

Solutions
Solutions are contained within the course package

library("nclRadvanced")
vignette("solutionsl", package = "nclRadvanced")

	Argument matching
	The ... argument
	Variable scope
	Function closures
	Mutable states

