PSSeg: Parent-Specifc copy number segmentation

M. Pierre-Jean, P. Neuvial

April 3, 2013

Abstract

This vignette describes how to use the PSSeg function from the jointSeg
package to partition bivariate DNA copy number signals into segments
of constant parent-specific copy number. The first proposed method [4]
starts by identifying a list of candidate change points through a fast
(greedy) recursive binary segmentation (RBS). This list is then pruned
using dynamic programming [I]. The second proposed method is the im-
plementation in R of GFLARS initially programming in Matlab by [5]. The
resulting approach is able to quickly and accurately identify true changes
in DNA copy numbers.

keywords: segmentation, change point model, binary segmentation,
dynamic programming, DNA copy number, parent-specific copy number.

Contents

-

{1 Preparing data to be segmented|

2 PSSeg segmentation using RBS|
2.1 Initial segmentation and pruningf

[2.2_Plot segmented profile]

Uk =

3 PSSeg segmentation using GFLARS|

[3.1 Initial segmentation and pruning|

3.2 Plot segmented profile] 0.,

T oo

1 Preparing data to be segmented

PSSeg requires normalized copy number signals, in the form of total copy number
estimates and allele B fractions for tumor, the (germline) genotype of SNP. Loci
are assumed to come from a single chromosome and to be ordered by genomic
position.

For illustration, we show of such a data set may be created from real data.
We use data from a public microarray data set, which is distributed in the acnr
package (from which the jointSeg package depends).

> library(jointSeg)

> ## load known real copy number regions

> data <- loadCnRegionData(platform="Affymetrix", tumorFraction=1)
> str(data)

'data.frame': 192667 obs. of 4 variables:
$c :num 0.909 0.859 1.304 0.647 0.947 ...
$ b : num NaN NaN NaN NaN NaN NaN NaN -0.035 NaN NaN ...

$ genotype: num NA NA NA NA NA NA NA O NA NA ...
$ region : chr "(0,1)" "(O0,1)" "(O,1)" "(O,1)"

This data set consists of copy number signals from 8 types of genomic regions:
These regions are coded as (C1, Cy), where C denotes the minor copy num-
ber and C5 denotes the major copy number, i.e. the smallest and the largest of
the two parental copy numbers (see e.g. [3] for more detailed definitions). For
example, (1,1) corresponds to a normal state, (0,1) to an hemizygous deletion,
(1,2) to a single copy gain and (0, 2 to a copy-neutral LOH (loss of heterowygos-

ity).

> idxs <- sort(sample(l:nrow(data), 2e4))
> plotSeg(datal[idxs, 1)

0 — . .
Lo p—
[&] < —
N —
o —
0 5000 10000 15000 20000
o _|
o _
o
S -

0 5000 10000 15000 20000

position

These real data can then be used to create a realistic DNA copy number pro-
file of user-defined length, and harboring a user-defined number of breakpoints.
This is done using the getCopyNumberDataByResampling function. Breakpoint
positions are drawn uniformly) among all possible loci. Between two break-
points, the copy number state corresponds to one of the types of regions in

data, and each data point is drawn with replacement from the corresponding
true copy number signal from the region. More options are available from the
documentation of getCopyNumberDataByResampling.

> K <- 10

> bkp <- c(408,1632,3905, 5890,6709, 10481, 12647,14089,17345,18657)

> len <- 2e4

> sim <- getCopyNumberDataByResampling(len, bkp=bkp, minLength=500, regData=data)
> datS <- sim$profile

> str(datS)

'data.frame': 20000 obs. of 4 variables:

$c :num 3.01 2.83 3.68 3.12 2.16 ...

$b : num 0.973 1.064 0.355 NaN NaN ...

$ genotype: num 1 1 0.5 NA NA 1 NA NA 1 NA ...
$ region : chr "(2,3)" "(2,3)" "(2,3)" "(2,3)"

The resulting copy-number profile is plotted below.

> plotSeg(datS, sim$bkp)

m —]
o]
< -
O p—
0 5000 10000 15000 20000
e
o]
o
S

0 5000 10000 15000 20000

position

2 PSSeg segmentation using RBS

We can now use the PSSeg function to segment signals. The method consists in
three steps:

1. run a fast (yet approximate) segmentation on these signals in order to
obtain a set of (at most hundreds of) candidate change points. This is
done using Recursive Binary Segmentation (RBS) [4];

2. prune the obtained set of change points usign dynamic programming [I]
3. select the best number of change points using a model selection criterion

proposed by [2]

2.1 Initial segmentation and pruning

> resRBS <- PSSeg(data=datS, K=2*K, flavor="RBS", profile=TRUE)

Note that this is fast:

> resRBS$prof [, "time"]

segmentation dpseg
0.26 0.00

2.2 Plot segmented profile
To plot the PSSeg segmentation results together with the true breakpoints, do

> plotSeg(datS, list(true=sim$bkp, est=resRBS$bestBkp))

m —]
o]
< -
O p—
0 5000 10000 15000 20000
e
o]
o
S

0 5000 10000 15000 20000

position

2.3 Results evaluation

The PSSeg function returns the original segmentation (by RBS), the result of the
pruning step, and the best model (among those selected by dynamic program-
ming) according to the criterion proposed by [2].

The quality of the best segmentation can be assessed by calculating the
true positive rate and true negative rate. The true positive rate (TPR) is
defined as the proportion of true change points for which there exists a can-
didate change point closer than a given tolerance tol. The false positive rate
(FPR) is defined as the proportion of true negative (all those which are not
change points) for which the candidate change points are out of tolerance area
and those in tolerance area where there already exists a candidate change
point. The true negative rate (TNR) is defined as 1-FPR. By construction,
TPR € {0,1/K,---,1—1/K,1} where K is the number of true change points
and TNR is very close to 1.

> print (getTprTnr (resRBS$bestBkp, sim$bkp, nrow(datS), tol=5, relax = -1))

TPR TNR
0.8000000 0.9998999

Obviously, this performance measure depends on the chosen tolerance:

> perf <- sapply(0:10, FUN=function(tol) {
+ getTprTnr (resRBS$bestBkp, sim$bkp, nrow(datS), tol=tol,relax = -1)
+ 1)
> print(perf)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

TPR 0.2000000 0.7000000 0.7000000 0.7000000 0.8000000 0.8000000 0.8000000

TNR 0.9995998 0.9998499 0.9998499 0.9998499 0.9998999 0.9998999 0.9998999
[,8] [,9] [,10] [,11]

TPR 0.8000000 0.8000000 0.8000000 0.90000

TNR 0.9998999 0.9998999 0.9998999 0.99995

3 PSSeg segmentation using GFLARS

We can now use the PSSeg function to segment signals with GFLARS method
only on heterozygous SNP. The method consists in three steps:

1. run a fast (yet approximate) segmentation on these signals in order to
obtain a set of (at most hundreds of) candidate change points. This is
done using Group Fused Lars [5l;

2. prune the obtained set of change points usign dynamic programming [1]

3. select the best number of change points using a model selection criterion
proposed by [2]

3.1 Initial segmentation and pruning

> resGFL <- PSSeg(data=datS, K=5*K, flavor="GFLars", profile=TRUE, stat = "(c,d) |het")

Note that this is fast due to the low number in the data.

> resGFL$prof[, "time"]

smoothing segmentation dpseg
0.00 0.18 0.06

3.2 Plot segmented profile
To plot the PSSeg segmentation results together with the true breakpoints, do

> plotSeg(datS, list(true=sim$bkp, est=resGFL$bestBkp))

w —
I3) —
Q— —_
O —
0 5000 10000 15000 20000
e]
o —
e |
o

0 5000 10000 15000 20000

position

3.3 Results evaluation

The PSSeg function returns the original segmentation (by GFLARS), the result
of the pruning step, and the best model (among those selected by dynamic
programming) according to the criterion proposed by [2].

> print (getTprTnr (resGFL$bestBkp, sim$bkp, nrow(datS), tol=15, relax = -1))

TPR TNR
1.0000000 0.9995498

Obviously, this performance measure depends on the chosen tolerance:

> perf <- sapply(0:20, FUN=function(tol) {

+ getTprTnr (resGFL$bestBkp, sim$bkp, nrow(datS), tol=tol, relax = -1)
+ 1)

> print(perf)

[,1] [,2] [,3] [,4] [,5] [,6] L,7]

TPR 0.0000000 0.2000000 0.3000000 0.5000000 0.5000000 0.6000000 0.6000000
TNR 0.9990495 0.9991495 0.9991996 0.9992996 0.9992996 0.9993496 0.9993496
[,8] [,9] [,10] [,11] [,12] [,13] [,14]

TPR 0.6000000 0.7000000 0.7000000 0.8000000 0.9000000 0.9000000 1.0000000
TNR 0.9993496 0.9993997 0.9993997 0.9994497 0.9994997 0.9994997 0.9995498
[,15] [,16] [,17] [,18] [,19] [,20] [,21]

TPR 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
TNR 0.9995498 0.9995498 0.9995498 0.9995498 0.9995498 0.9995498 0.9995498

A Session information

> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:
[1] C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] jointSeg_0.3.8 acnr_0.1.2 matrixStats_0.6.2 R.utils_1.19.3
[5] R.oo_1.11.4 R.methodsS3_1.4.2

loaded via a namespace (and not attached):
[1] tools_2.15.2

References

[1] R. Bellman. Dynamic programming and lagrange multipliers. Proceedings
of the National Academy of Sciences, 42(10):767, 1956.

[2] E. Lebarbier. Detecting multiple change-points in the mean of gaussian
process by model selection. Signal processing, 85(4):717-736, 2005.

[3] Pierre Neuvial, Henrik Bengtsson, and Terence P Speed. Statistical analysis
of single nucleotide polymorphism microarrays in cancer studies. In Hand-
book of Statistical Bioinformatics, Springer Handbooks of Computational
Statistics. Springer, 1st edition, March 2011.

[4] Morgane Pierre-Jean and Pierre Neuvial. In preparation.

[5] J.-P. Vert and K. Bleakley. Fast detection of multiple change-points shared
by many signals using group LARS. Advances in Neural Information Pro-
cessing Systems, 23:2343-2351, 2010.

	Preparing data to be segmented
	PSSeg segmentation using RBS
	Initial segmentation and pruning
	Plot segmented profile
	Results evaluation

	PSSeg segmentation using GFLARS
	Initial segmentation and pruning
	Plot segmented profile
	Results evaluation

	Session information

