
hyperSpec Plotting functions

Claudia Beleites <chemometrie@beleites.de>
CENMAT and DI3, University of Trieste
Spectroscopy · Imaging, IPHT Jena e.V.

February 20, 2014

This file is currently undergoing a thorough revision. Changes may happen frequently.

Vignette under Development

All spectra used in this manual are installed automatically with hyperSpec.
Note that some definitions are executed in vignette.defs, and others invisibly at the beginning of
the file in order to have the code as similar as possible to interactive sessions.

Reproducing the Examples in this Vignette

Contents

1 Predefined functions 2

2 Arguments for plot 4

3 Spectra 7
3.1 Stacked spectra . 9

4 Calibration Plots, (Depth) Profiles, and Time Series Plots 11
4.1 Calibration plots . 11
4.2 Time series and other Plots of the Type Intensity-over-Something 13

5 Levelplot 13

6 Spectra Matrix 14

7 False-Colour Maps: plotmap 15

8 3 D (with rgl) 17

9 Using ggplot2 with hyperSpec objects 18

10 Troubleshooting 19
10.1 No output is produced . 19

1

<chemometrie@beleites.de>

11 Interactive Graphics 19
11.1 spc.identify: finding out wavelength, intensity and spectrum 20
11.2 map.identify: finding a spectrum in a map plot . 20
11.3 map.sel.poly: selecting spectra inside a polygon in a map plot 20
11.4 Related functions provided by base graphics and lattice 20
11.5 Interactively changing graphics . 20

latticeExtra: available

deldir : available

rgl : available

ggplot2 : available

In addition tripack , playwith, and latticist are mentioned, but not used in this vignette.

Suggested Packages

Preliminary Calculations

For some plots of the chondro dataset, the pre-processed spectra and their cluster averages ± one
standard deviation are more suitable:

> chondro.preproc <- chondro - spc.fit.poly.below (chondro)

Fitting with npts.min = 15

> chondro.preproc <- sweep (chondro.preproc, 1, mean, "/")

> chondro.preproc <- sweep (chondro.preproc, 2, apply (chondro.preproc, 2, quantile, 0.05), "-")

> cluster.cols <- c ("dark blue", "orange", "#C02020")

> cluster.meansd <- aggregate (chondro.preproc, chondro$clusters, mean_pm_sd)

> cluster.means <- aggregate (chondro.preproc, chondro$clusters, mean)

For details about the pre-processing, please refer to the example work flow in vignette ("chon-

dro"), or the help ? chondro.

1 Predefined functions

hyperSpec comes with 6 major predefined plotting functions.

plot main switchyard for most plotting tasks

levelplot hyperSpec has a method for lattice[?] function levelplot

plotspc plots spectra

plotmat plots the spectra matrix

plotc calibration plot, time series, depth profile
plotc is a lattice function

plotmap more specialized version of levelplot for map or image plots.
plotmap is a lattice function

2

plotvoronoi more specialized version of plotmap that produces Voronoi tesselations.
plotvoronoi is a lattice function

plotmap, plotvoronoi, and levelplot are lattice functions. Therefore, in loops, functions, Sweave
chunks, etc. the lattice object needs to be printed explicitly by e. g. print (plotmap (object))

(R FAQ: Why do lattice/trellis graphics not work?).

plotspc

420 440 460 480

1
2

3
4

5
6

λ nm

ro
w

0
100
200
300
400
500
600
700 plots the spectra, i. e. the intensities $spc over the wave-

lengths @wavelength.
> plotspc (flu)

plotmat

404.6 405.0 405.4 405.8

20
40

60
80

λ nm

ro
w

0

20000

40000

60000

80000 plots the spectra, i. e. the colour coded intensities $spc over
the wavelengths @wavelength and the row number.
> plotmat (flu)

plotc

c / (mg / l)

I fl
a.

u.

50

100

150

200

0.05 0.10 0.15 0.20 0.25 0.30

●

●

●

●

●

●

plots an intensity over a single other data column, e. g.

• calibration

• time series

• depth profile

> plotc (flu)

3

http://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-do-lattice_002ftrellis-graphics-not-work_003f

levelplot

x

y

0

5

10

15

−10 0 10 20

250

300

350

400

450

500
plots a false colour map, defined by a formula.
> levelplot (spc ~ x * y, chondro, aspect = "iso")

Warning: Only first wavelength is used for plot-

ting

plotmap

x

y

0

5

10

15

−10 0 10 20

400
450
500
550
600
650
700
750
800
850

plotmap is a specialized version of levelplot. It uses a single
value (e. g. average intensity or cluster membership) over
two data columns (default $x and $y)
> plotmap (chondro)

plotvoronoi

x

y

0

5

10

15

−10 0 10 20

matrix

lacuna

cell

plotmap is a specialized version of levelplot. It uses a single
value (e. g. average intensity or cluster membership) over
two data columns (default $x and $y)
> plotvoronoi (sample (chondro, 300), clusters ~ x * y)

PLEASE NOTE: The components "delsgs" and "summary" of the

object returned by deldir() are now DATA FRAMES rather than

matrices (as they were prior to release 0.0-18).

See help("deldir").

PLEASE NOTE: The process that deldir() uses for determining

duplicated points has changed from that used in version

0.0-9 of this package (and previously). See help("deldir").

2 Arguments for plot

hyperSpec’s plot method uses its second argument to determine which of the specialized plots to
produce. This allows some handy abbreviations. All further arguments are handed over to the
function actually producing the plot.

4

plot (x, ”spc”)

410 430 450 470 490

10
0

30
0

50
0

70
0

λ nm

I fl
a.

u.

is equivalent to plotspc (flu)
> plot (flu, "spc")

plot (x, ”spcmeansd”)

600 800 1000 1300 1600

0.
0

0.
2

0.
4

∆ν~ cm−1

I /
 a

.u
.

plots mean spectrum ± 1 standard deviation
> plot (chondro.preproc, "spcmeansd")

plot (x, ”spcprctile”)

600 800 1000 1300 1600

0.
0

0.
2

0.
4

∆ν~ cm−1

I /
 a

.u
.

plots median, 16th and 84th percentile for each wavelength.
For Gaussian distributed data, 16th, 50th and 84th percentile
are equal to mean ± standard deviation. Spectroscopic data
frequently are not Gaussian distributed. The percentiles give
a better idea of the true distribution. They are also less
sensitive to outliers.
> plot (chondro.preproc, "spcprctile")

plot (x, ”spcprctl5”)

600 800 1000 1300 1600

0.
0

0.
2

0.
4

0.
6

∆ν~ cm−1

I /
 a

.u
.

like "spcprctl" plus 5th and 95thpercentile.
> plot (chondro.preproc, "spcprctl5")

5

plot (x, ”c”)

c / (mg / l)

I fl
a.

u.

50

100

150

200

0.05 0.10 0.15 0.20 0.25 0.30

●

●

●

●

●

●

> plot (flu, "c")

is equivalent to plotc (flu)

plot (x, ”ts”)

t / s

I /
 a

.u
.

50000

55000

60000

65000

70000

75000

0 1000 2000 3000 4000 5000

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●
●●

●

●
●●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

plots a time series plot
> plot (laser [,, 405], "ts")

equivalent to plotc (laser, spc ~ t)

plot (x, ”depth”)

z µm

I /
 a

.u
.

0

5

10

15

20

5 10 15 20

●
●

● ●

●

●
●

● ●
●

●

● ●
●

●

●
● ●

● ●

plots a depth profile plot
> depth.profile <- new ("hyperSpec",

+ spc = as.matrix (rnorm (20) + 1:20),

+ data = data.frame (z = 1 : 20),

+ labels = list (spc = "I / a.u.",

+ z = expression (`/` (z, mu*m)),

+ .wavelength = expression (lambda)))

> plot (depth.profile, "depth")

the same as plotc (laser, spc ~ z)

plot (x, ”mat”)

404.6 405.0 405.4 405.8

20
40

60
80

λ nm

ro
w

0

20000

40000

60000

80000 plots the spectra matrix.
> plot (laser, "mat")

Equivalent to
> plotmat (laser)

A lattice alternative is:
> levelplot (spc ~ .wavelength * .row, laser)

6

plot (x, ”map”)

x

y

0

5

10

15

−10 0 10 20

400
450
500
550
600
650
700
750
800
850

is equivalent to plotmap (chondro)
> plot (chondro, "map")

plot (x, ”voronoi”)

x

y

0

5

10

15

−10 0 10 20

450

500

550

600

650

700

750

800
> plot (sample (chondro, 300), "voronoi")

See plotvoronoi

3 Spectra
plotspc

plotspc offers a variety of parameters for customized plots. To plot ...

particular wavelength range

700 800 900 1000 1100 1200

10
00

0
30

00
0

50
00

0

∆ν~ cm−1

I /
 a

.u
.

if only one wavelength range is needed, the extract command
(see vignette ("introduction")) is handiest:
> plotspc (paracetamol [,, 700 ~ 1200])

wavelengths. If wl.range already contains indices use
wl.index = TRUE.

more wavelength ranges

400 800 1200 1600 2800 3200

0
20

00
0

50
00

0

∆ν~ cm−1

I /
 a

.u
.

use wl.range = list (600 ~ 1800, 2800 ~ 3100). Cut
the wavelength axis appropriately with xoffset = 750
> plotspc (paracetamol,

+ wl.range = c (300 ~ 1800, 2800 ~ max),

+ xoffset = 750)

If available, the package plotrix [1] is used to produce the cut
mark.

7

with reversed abscissa

3000 2000 1000 0

0
20

00
0

50
00

0

∆ν~ cm−1

I /
 a

.u
.

use wl.reverse = TRUE
> plotspc (paracetamol, wl.reverse = TRUE)

in different colours

410 430 450 470 490

10
0

30
0

50
0

70
0

λ nm

I fl
a.

u.

use col = vector.of.colours
> plotspc (flu, col = matlab.dark.palette (6))

dots instead of lines

2800 2900 3000 3100 3200

50
0

15
00

25
00

∆ν~ cm−1

I /
 a

.u
.

●●●●
●●●●●●
●
●●●
●●●●
●
●●●●●●●●●●●

●●●●●
●
●●
●●●●●●●
●●●●●●●●●●

●●●●
●
●●
●●●●●●●
●
●●●●
●●●
●
●●
●
●●●●
●●●
●
●●●●●●●
●●●●●●●●

●●
●●
●●●●
●
●●●●●●
●●
●
●
●
●●
●
●●●●●●
●●●●
●
●
●
●●●●●●
●●●●●●
●●●●●●
●
●●●●
●●
●●●

●
●
●
●●
●
●●
●
●

●
●
●
●
●
●●
●●
●
●
●●

●●

●
●●

●
●
●
●●●
●●
●
●●●●●●●●●●●●●●●●●

●
●●●●●●
●
●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●

●●●●
●●●
●
●●●●●●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●
●
●
●●
●●
●●●●
●●●●●●
●
●●
●●●●
●●●
●

●
●

●
●●
●
●●●●●●●
●●●●●

●
●
●
●●
●
●
●●
●
●●●●●

●●

●
●●●●
●●●
●
●
●●
●●
●
●●

●●●●
●●●●●●●●

●●●●
●●●
●
●●●
●
●●
●●
●●
●

●●●
●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●
●
●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●
●●●●●●●●

use lines.args = list (pch = 20, type = "p")
> plotspc (paracetamol [,, 2800 ~ 3200],

+ lines.args = list (pch = 20, type = "p"))

mass spectra

30 50 70 90 110 130 150

20
00

60
00

12
00

0

m

z

u

e

I
a.

 u
.

use lines.args = list (type = "h")
> plot (barbiturates [[1]], lines.args = list (type = "h"))

8

more spectra into an existing plot

600 800 1000 1300 1600

20
0

60
0

10
00

∆ν~ cm−1

I /
 a

.u
.

use add = TRUE
> plotspc (chondro [30,,])

> plotspc (chondro [300,,], add = TRUE, col = "blue")

Summary characteristics

600 800 1000 1300 1600

0.
00

0.
10

∆ν~ cm−1

I /
 a

.u
.

func may be used to calculate summary characteristics prior
to plotting. To plot e. g. the standard deviation of the spec-
tra, use:
> plotspc (chondro.preproc, func = sd)

with different line at I = 0

0 500 1500 2500

0
20

00
0

50
00

0

∆ν~ cm−1

I /
 a

.u
.

zeroline takes a list with parameters to abline, NA sup-
presses the line.
> plotspc (paracetamol,

+ zeroline = list (col = "red"))

adding to a spectra plot

404.6 404.9 405.2 405.5 405.8

0
40

00
0

λ nm

I /
 a

.u
.

plotspc uses base graphics. After plotting the spectra, more
content may be added to the graphic by abline, lines,
points, etc.
> plot (laser, "spcmeansd")

> abline (v = c(405.0063, 405.1121, 405.2885, 405.3591),

+ col = c("black", "blue", "red", "darkgreen"))

3.1 Stacked spectra

9

stacked

600 800 1000 1300 1600

1
2

3

∆ν~ cm−1

I /
 a

.u
.

use stacked = TRUE
> plotspc (cluster.means,

+ col = cluster.cols,

+ stacked = TRUE)

Stacking groups of spectra

600 800 1000 1300 1600

m
at

rix
la

cu
na

∆ν~ cm−1

I /
 a

.u
.

The spectra to be stacked can be grouped: stacked =
factor . Alternatively, the name of the grouping extra data
column can be used:
> plot (cluster.meansd,

+ stacked = ".aggregate",

+ fill = ".aggregate",

+ col = cluster.cols)

Manually giving yoffset

600 800 1000 1300 1600

0.
0

1.
0

2.
0

∆ν~ cm−1

I /
 a

.u
.

Stacking values can also be given manually as numeric values
in yoffset :
> plotspc (cluster.meansd,

+ yoffset = rep (0:2, each = 3),

+ col = rep (cluster.cols, each = 3))

Dense stacking

600 800 1000 1300 1600

0.
0

0.
2

0.
4

0.
6

∆ν~ cm−1

I /
 a

.u
.

To obtain a denser stacking:
> yoffsets <- apply (cluster.means [[]], 2, diff)

> yoffsets <- - apply (yoffsets, 1, min)

> plot (cluster.means, yoffset = c (0, cumsum (yoffsets)),

+ col = cluster.cols)

10

Elaborate example

600 800 1000 1300 1600

0.
0

0.
4

0.
8

1.
2

∆ν~ cm−1

I /
 a

.u
.

> yoffset <- apply (chondro.preproc, 2, quantile, c(0.05, 0.95))

> yoffset <- range (yoffset)

> plot(chondro.preproc[1],

+ plot.args = list (ylim = c (0, 2) * yoffset),

+ lines.args = list(type = "n"))

> yoffset <- (0:1) * diff (yoffset)

> for (i in 1 : 3){

+ plot(chondro.preproc, "spcprctl5", yoffset = yoffset [i],

+ col = "gray", add = TRUE)

+ plot (chondro.preproc [i], yoffset = yoffset [i],

+ col = matlab.dark.palette (3) [i], add = TRUE,

+ lines.args = list (lwd = 2))

+ }

plotspc allows fine grained customization of almost all aspects of the plot. This is possible by
giving arguments to the functions that actually perform the plotting plot for setting up the plot
area, lines for the plotting of the lines, axis for the axes, etc. The arguments for these functions
should be given in lists as plot.args, lines.args, axis.args, etc.

4 Calibration Plots, (Depth) Profiles, and Time Series Plots
plotc

4.1 Calibration plots

Intensities over concentration

c / (mg / l)

I fl
a.

u.

100

200

300

400

500

600

0.05 0.10 0.15 0.20 0.25 0.30

●

●

●

●

●

●

Plotting the Intensities of one wavelength over the concen-
tration for univariate calibration:
> plotc (flu [,, 450])

The default is to use the first intensity only.

Summary Intensities over concentration

c / (mg / l)

ra
ng

e(
I fl

a.
u.

)

0

200

400

600

0.05 0.10 0.15 0.20 0.25 0.30

●
●

●
●

●
●

●

●

●

●

●

●

A function to compute a summary of the intensities before
drawing can be used:
> plotc (flu, func = range, groups = .wavelength)

If func returns more than one value, the different results are
accessible by .wavelength.

11

Conditioning: plotting more traces separately

c / (mg / l)

I fl
a.

u.

0

200

400

600

0.050.100.150.200.250.30

●

●

●

●

●

●

405

0.050.100.150.200.250.30

●

●

●

●

●

●

445
> plotc (flu [,, c (405, 445)], spc ~ c | .wavelength,

+ cex = .3, scales = list (alternating = c(1, 1)))

Grouping: plot more traces in one panel

c / (mg / l)

I fl
a.

u.

0

200

400

600

0.05 0.10 0.15 0.20 0.25 0.30

●
●

●
●

●
●

●

●

●

●

●

●

> plotc (flu [,, c (405, 445)], groups = .wavelength)

Changing Axis Labels (and other parameters)

c / (mg / l)

I 4
50

 n
m

a.
u.

100

200

300

400

500

600

0.05 0.10 0.15 0.20 0.25 0.30

Arguments for xyplot can be given to plotc:
> plotc (flu [,, 450],

+ ylab = expression (I ["450 nm"] / a.u.),

+ xlim = range (0, flu$c + .01),

+ ylim = range (0, flu$spc + 10),

+ pch = 4)

Adding things to the plot: customized panel function

c / (mg / l)

I fl
a.

u.

50

100

150

200

0.05 0.10 0.15 0.20 0.25 0.30

As plotc uses the lattice function xyplot, additions to the
plot must be made via the panel function:
> panelcalibration <- function (x, y, ..., clim = range (x), level = .95) {

+ panel.xyplot (x, y, ...)

+ lm <- lm (y ~ x)

+ panel.abline (coef (lm), ...)

+ cx <- seq (clim [1], clim [2], length.out = 50)

+ cy <- predict (lm, data.frame (x = cx),

+ interval = "confidence",

+ level = level)

+ panel.lines (cx, cy [,2], col = "gray")

+ panel.lines (cx, cy [,3], col = "gray")

+ }

> plotc (flu [,,405], panel = panelcalibration,

+ pch = 4, clim = c (0, 0.35), level = .99)

12

4.2 Time series and other Plots of the Type Intensity-over-Something

Abscissae other than c

t / s

I /
 a

.u
.

0

20000

40000

60000

0 1000 2000 3000 4000 5000

●

●
●●

●

●●●●●●
●

●
●

●●

●

●●●●●●●●
●
●
●
●
●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●

●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●
●
●●

●●●●●●

●●
●●●

●●
●●●●●

●●●●
●
●●●●●●●●

●●
●●

●●●●
●●●●●●●●●●

●●●●
●
●
●●●●●●●●●●●●●●●●●●

●
●●●

●

●
●

●

●

●
●
●
●●●●

●

●●

●●●

●
●
●
●
●●●●●●

●

●

●
●
●●●●●●

●
●
●
●
●
●
●●

●●●●●●●●●●●●
●
●

●

●
●●●●●●●●●●●●●●●●●●

●●
●●●

●

●
●

●

●
●●

●●
●●

●

●
●
●●

●

●
●
●●

●●
●●

●●
●

●

●
●●●●●●

●
●
●
●
●●

●●
●●●

●●●●●
●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●

Other abscissae may be specified by explicitly giving the
model formula:
> plotc (laser [,, c(405.0063, 405.1121, 405.2885, 405.3591)],

+ spc ~ t,

+ groups = .wavelength,

+ type = "b",

+ col = c ("black", "blue", "red", "darkgreen"))

5 Levelplot

hyperSpec’s levelplot can use two special column names:

.wavelength for the wavelengths

.row for the row index (i. e. spectrum number) in the data

Besides that, it behaves exactly like levelplot . Particularly, the data is given as the second argument:

levelplot

x

y

0

5

10

15

−10 0 10 20

250

300

350

400

450

500 > levelplot (spc ~ x * y, chondro)

factors as z

x

y

0

5

10

15

−10 0 10 20

matrix

lacuna

cell

If the colour-coded value is a factor, the display is adjusted
to this fact:
> levelplot (clusters ~ x * y, chondro)

13

6 Spectra Matrix

It is often useful to plot the spectra against an additional coordinate, e. g. the time for time series,
the depth for depth profiles, etc.

This can be done by plot (object, "mat"). The actual plotting is done by image, but levelplot
can produce spectra matrix plots as well and these plots can be grouped or conditioned.

different palette

404.6 405.0 405.4 405.8

20
40

60
80

λ nm

ro
w

0

20000

40000

60000

80000
> plot (laser, "mat", col = heat.colors (20))

is the same as
> plotmat (laser, col = heat.colors (20))

different y axis

404.6 405.0 405.4 405.8

0
20

00
40

00

λ nm

t /
 s

0

20000

40000

60000

80000 Using a different extra data column for the y axis:
> plotmat (laser, y = "t")

alternatively, y values and axis label can be given separately.

> plotmat (laser, y = laser$t, ylab = labels (laser, "t"))

contour lines

420 440 460 480

1
2

3
4

5
6

λ nm

ro
w

0
100
200
300
400
500
600
700

 50 100 100
 150

 200
 250

 300
 350

 400
 450

 500
 550

 600
 650

Contour lines may be added:
> plotmat (flu, col = matlab.dark.palette (20))

> plotmat (flu, col = "white",

+ contour = TRUE, add = TRUE)

14

colour-coded points: levelplot with special panel function

m

z

u

e

t
m

in

4.05

4.10

4.15

4.20

4.25

4.30

4.35

50 100 150

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●

●

●
●
●
●

●

●
●
●
●
●
●
●
●

●

●
●

●

●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●

●
●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●

●

●
●

●

●

●

●
●
●
●
●

●

●●

●

●

●

●

●

●
●
●
●
●

●
●
●
●

●

●
●
●
●
●
●
●
●

●
●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●

● ●●●

●
●

●
●
●
●
●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●
●
●

●

●
●
●
●
●
●

●
●
●

●

●
●
●

●

●
●

●
●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●
●
●

●

●
●

●

●
●

●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●
●
●

●
●
●

●
●

●
●
●

●

●

●
●

●
●
●
●
●
●
●
●

●

●

●

●

●

●

●
●

●
●
●
●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●

●

●
●
●
●
●
●
●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●
●
●

●
●

●

●
●
●
●

● ●
●

●
●
●

●

●
●●

●

●
●
●

●

●

●
●
●
●

●
●●

●
●
●

●

●

●
●
●

●
●

0

5000

10000

15000

20000

25000
> require ("latticeExtra")

> barb <- do.call (collapse, barbiturates[1:50])

> barb <- orderwl (barb)

> levelplot (spc ~ .wavelength * z, barb,

+ panel = panel.levelplot.points,

+ cex = .33, col.symbol = NA,

+ col.regions = matlab.palette)

7 False-Colour Maps: plotmap

plotmap is a specialized version of levelplot. The spectral intensities may be summarized by a
function before plotting (default: mean). The same scale is used for x and y axes (aspect = ”iso”).

plotting map

x

y

0

5

10

15

−10 0 10 20

matrix

lacuna

cell
> plotmap (chondro)

plotting maps with other than x and y

y

x

−10

0

10

20

0 5 10 15

400
450
500
550
600
650
700
750
800
850

specify the colour-coded variable, abscissa and ordinate as
formula: colour.coded ~ abscissa * ordinate
> plotmap (chondro, spc ~ y * x)

colour-coded factors

x

y

0

5

10

15

−10 0 10 20

matrix

lacuna

cell
> plotmap (chondro, clusters ~ x * y)

If the colour-coded variable is a factor, each level gets its
own colour, and the legend is labeled accordingly.

15

different palette

x

y

0

5

10

15

−10 0 10 20

matrix

lacuna

cell

To plot with a different palette, use trellis.args = list
(col.regions = palette).
> print (plotmap (chondro, clusters ~ x * y,

+ col.regions = cluster.cols))

defined wavelengths

x

y

0

5

10

15

−10 0 10 20

−0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

To plot a map of the average intensity at particular wave-
lengths use extraction:
> plotmap (chondro.preproc [, , c(728, 782, 1098,

+ 1240, 1482, 1577)],

+ col.regions = matlab.palette)

Conditioning

y

x

−10

0

10

20

0 5 10 15

FALSE

0 5 10 15

TRUE

400
450
500
550
600
650
700
750
800
850 > plotmap (chondro,

+ spc ~ y * x | x > 5,

+ col.regions = matlab.palette(20))

Conditioning on .wavelength

y

x

−10

0

10

20

0 5 10 15

1

0 5 10 15

2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

plotmap automatically applies the function in func before
plotting. This defaults to the mean. In order to suppress
this, use func = NULL. This allows conditioning on the wave-
lengths.
To plot e. g. the first two score maps of a principal compo-
nent analysis:
> pca <- prcomp (~ spc, data = chondro.preproc$.)

> scores <- decomposition (chondro, pca$x,

+ label.wavelength = "PC",

+ label.spc = "score / a.u.")

> plotmap (scores [,,1:2],

+ spc ~ y * x | as.factor(.wavelength),

+ func = NULL,

+ col.regions = matlab.palette(20))

16

Conditioning on .wavelength II

y

x

−10

0

10

20

0 5 10 15

1

0 5 10 15

2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Alternatively, use levelplot directly:
> levelplot (spc ~ y * x | as.factor(.wavelength),

+ scores [,,1:2],

+ aspect = "iso",

+ col.regions = matlab.palette(20))

Voronoi plot

x

y

0

5

10

15

−10 0 10 20

matrix

lacuna

cell
> plotvoronoi (sample (chondro, 300), clusters ~ x * y,

+ col.regions = matlab.palette(20))

Voronoi uses panel.voronoi from latticeExtra[2]. The tesse-
lation is calculated by default using deldir [3], but tripack [4]
can also be used. tripack seems to faster in general, but may
“hang” with certain data sets (particularly regular grids with
missing spectra as in this example). Furthermore, it is not
FOSS (free and open source software).

Mark missing spectra

x

y

0

5

10

15

−10 0 10 20

400
450
500
550
600
650
700
750
800
850

If the spectra come from a rectangular grid, missing positions
can be marked with this panel function:
> mark.missing <- function (x, y, z, ...){

+ panel.levelplot (x, y, z, ...)

+

+ miss <- expand.grid (x = unique (x), y = unique (y))

+ miss <- merge (miss, data.frame (x, y, TRUE),

+ all.x = TRUE)

+ miss <- miss [is.na (miss[, 3]),]

+ panel.xyplot (miss [, 1], miss [, 2], pch = 4, ...)

+ }

> plotmap (sample (chondro, 865),

+ col.regions = matlab.palette(20),

+ col = "black",

+ panel = mark.missing)

8 3 D (with rgl)

3D plots with rgl

17

}
rgl [5] offers fast 3d plotting in R. As rgl ’s axis annotations
are sometimes awkward, they may better be set manually:
> laser <- laser [,,404.8 ~ 405.6] / 10000

> laser$t <- laser$t / 3600

> cols <- rep (matlab.palette (nrow (laser)), nwl (laser))

> surface3d (y = wl (laser), x = laser$t,

+ z = laser$spc, col = cols)

> aspect3d (c (1, 1, 0.25))

> axes3d (c ('x+-', 'y--', 'z--'))
> axes3d ('y--', nticks = 25, labels= FALSE)

> mtext3d ("t / h", 'x+-', line = 2.5)

> mtext3d ("lambda / nm", 'y--', line = 2.5)

> mtext3d ("I / a.u.", edge = 'z--', line = 2.5)

9 Using ggplot2 with hyperSpec objects

hyperSpec objects do not yet directly support plotting with ggplot2 [6]. Nevertheless, ggplot2 graphics
can easily be obtained.

In general, as.long.df transforms a hyperSpec object into a long-form data.frame that is suitable
for qplot, ggplot, etc:

plot spectra with as.long.df

0

200

400

600

425 450 475
λ nm

I fl
a.

u.

0.05

0.10

0.15

0.20

0.25

0.30
c > df <- as.long.df (flu, rownames = TRUE)

> ggplot (df, aes (x = .wavelength, y = spc,

+ colour = c, group = .rownames)) +

+ geom_line () +

+ xlab (labels (flu)$.wavelength) +

+ ylab (labels (flu)$spc)

The two special columns .wavelength and .rownames con-
tain the wavelength axis and allow to distinguish the spectra.

Note however, that long data.frames can be very memory consuming as they are of size nrow ·
nwl × (ncol + 2) with respect to the dimensions of the hyperSpec object. Thus, e. g. the chondro

data set (2 MB) as hyperSpec object) needs 24 MB as long-format data.frame. It is therefore highly
recommended to calculate the particular data to be plotted beforehand. Moreover, depending on
the particular plot as.data.frame or as.t.df may be more suitable than as.long.df:

18

Map with ggplot2

−5

0

5

10

15

−10 0 10 20
x

y

500

600

700

800

spc > df <- as.long.df (apply (chondro, 1, mean))

> ggplot (df,aes (x = x, y = y, fill = spc)) +

+ geom_tile() +

+ scale_fill_gradientn ("spc", colours = matlab.palette ()) +

+ scale_x_continuous (expand = c (0, 0)) +

+ scale_y_continuous (expand = c (0, 0)) +

+ coord_equal ()

Mean ± standard deviation with ggplot2

500

1000

600 900 1200 1500 1800

∆ν~ cm−1

I /
 a

.u
.

> df <- as.t.df (apply (chondro, 2, mean_pm_sd))

> ggplot (df, aes (x = .wavelength)) +

+ geom_ribbon (aes (ymin = mean.minus.sd,

+ ymax = mean.plus.sd),

+ alpha = 0.25) +

+ geom_line (aes (y = mean)) +

+ xlab (labels (chondro)$.wavelength) +

+ ylab (labels (chondro)$spc)

Cut spectra with ggplot2

0

1

2

3

4

5

400 800 1200 1600 2800 3200
.wavelength

sp
c

Cut axes can be simulated by faceting. A factor is needed
that indicates the respective ranges:
> df <- paracetamol [,, c(min ~ 1800, 2800 ~ max)] / 1e4

> df <- as.long.df (df)

> df$range <- factor (df$.wavelength > 2000)

> ggplot (df, aes (x = .wavelength, y = spc)) +

+ geom_line () +

+ facet_grid (. ~ range, labeller = function (...) "",

+ scales = "free", space = "free") +

+ scale_x_continuous (breaks = seq (0, 3200, 400)) +

+ opts (strip.background = theme_blank ())

10 Troubleshooting

10.1 No output is produced

plotmap, plotvoronoi, levelplot, and plotc use lattice functions. Therefore, in loops, functions,
Sweave chunks, etc. the lattice object needs to be printed explicitly by print (plotmap (object))

(R FAQ: Why do lattice/trellis graphics not work?). The same holds for ggplot2 graphics.

For suggestions how the lattice functions can be redefined so that the result is printed without
external print command, see the file vignettes.defs.

11 Interactive Graphics

hyperSpec offers basic interaction, spc.identify for spectra plots, and map.identify and map.sel.poly

19

http://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-do-lattice_002ftrellis-graphics-not-work_003f

for maps. The first two identify points in spectra plots and map plots, respectively. map.sel.poly

selects the part of a hyperSpec object that lies inside the user defined polygon.

11.1 spc.identify: finding out wavelength, intensity and spectrum

spc.identify allows to measure points in graphics produced by plotspc. It works correctly with
reversed and cut wavelength axes.

> spc.identify (plotspc (paracetamol, wl.range = c (600 ~ 1800, 2800 ~ 3200), xoffset = 800))

The result is a data.frame with the indices of the spectra, the wavelength, and its intensity.

11.2 map.identify: finding a spectrum in a map plot

map.identify returns the spectra indices of the clicked points.

> map.identify (chondro)

11.3 map.sel.poly: selecting spectra inside a polygon in a map plot

map.sel.poly returns a logical indicating which spectra are inside the polygon drawn by the user:

> map.sel.poly (chondro)

11.4 Related functions provided by base graphics and lattice

For base graphics (as produced by plotspc), locator may be useful as well. It returns the clicked
coordinates. Note that these are not transformed according to xoffset & Co.

For lattice graphics, grid.locator may be used instead. If it is not called in the panel function, a
preceding call to trellis.focus is needed:

> plot (laser, "mat")

> trellis.focus ()

> grid.locator ()

identify (or panel.identify for lattice graphics) allows to identify points of the plot directly.
Note that the returned indices correspond to the plotted object.

11.5 Interactively changing graphics

hyperSpec’s lattice functions work with playwith[7] and latticist [8]. These packages allow easy
customization of the plots and also identification of points.

References

[1] Lemon J. Plotrix: a package in the red light district of r. R-News, 6(4):8–12, 2006.

[2] Deepayan Sarkar and Felix Andrews. latticeExtra: Extra Graphical Utilities Based on Lattice,
2013. URL http://CRAN.R-project.org/package=latticeExtra. R package version 0.6-26.

[3] Rolf Turner. deldir: Delaunay Triangulation and Dirichlet (Voronoi) Tessellation., 2014. URL
http://CRAN.R-project.org/package=deldir. R package version 0.1-5.

20

http://CRAN.R-project.org/package=latticeExtra
http://CRAN.R-project.org/package=deldir

[4] Fortran code by R. J. Renka. R functions by Albrecht Gebhardt. With contributions from Stephen
Eglen <stephen@anc.ed.ac.uk>, Sergei Zuyev, and Denis White. tripack: Triangulation of ir-
regularly spaced data, 2013. URL http://CRAN.R-project.org/package=tripack. R package
version 1.3-6.

[5] Daniel Adler, Duncan Murdoch, and others. rgl: 3D visualization device system (OpenGL), 2014.
URL http://CRAN.R-project.org/package=rgl. R package version 0.93.996.

[6] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009. ISBN
978-0-387-98140-6. URL http://had.co.nz/ggplot2/book.

[7] Felix Andrews. playwith: A GUI for interactive plots using GTK+, 2012. URL http://CRAN.

R-project.org/package=playwith. R package version 0.9-54.

[8] Felix Andrews. latticist: A Graphical User Interface for Exploratory Visualisation, 2012. URL
http://latticist.googlecode.com/. R package version 0.9-44.

Session Info

[,1]

sysname "Linux"

release "3.2.0-2-amd64"

version "#1 SMP Sun Mar 4 22:48:17 UTC 2012"

nodename "debian-amd64-cli-R"

machine "x86_64"

login "unknown"

user "rforge"

effective_user "rforge"

R version 3.0.2 Patched (2014-02-18 r65029)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] tools grid stats graphics grDevices utils datasets methods base

other attached packages:

[1] deldir_0.1-5 latticeExtra_0.6-26 RColorBrewer_1.0-5 rgl_0.93.996

[5] ggplot2_0.9.3.1 baseline_1.1-2 plotrix_3.5-3 MASS_7.3-29

[9] hyperSpec_0.98-20140219 mvtnorm_0.9-9997 lattice_0.20-24

loaded via a namespace (and not attached):

[1] SparseM_1.03 colorspace_1.2-4 dichromat_2.0-0 digest_0.6.4 gtable_0.1.2

[6] labeling_0.2 munsell_0.4.2 plyr_1.8 proto_0.3-10 reshape2_1.2.2

[11] scales_0.2.3 stringr_0.6.2

21

http://CRAN.R-project.org/package=tripack
http://CRAN.R-project.org/package=rgl
http://had.co.nz/ggplot2/book
http://CRAN.R-project.org/package=playwith
http://CRAN.R-project.org/package=playwith
http://latticist.googlecode.com/

	Predefined functions
	Arguments for plot
	Spectra
	Stacked spectra

	Calibration Plots, (Depth) Profiles, and Time Series Plots
	Calibration plots
	Time series and other Plots of the Type Intensity-over-Something

	Levelplot
	Spectra Matrix
	False-Colour Maps: plotmap
	3 D (with rgl)
	Using ggplot2 with hyperSpec objects
	Troubleshooting
	No output is produced

	Interactive Graphics
	[]spc.identify: finding out wavelength, intensity and spectrum
	map.identify: finding a spectrum in a map plot
	map.sel.poly: selecting spectra inside a polygon in a map plot
	Related functions provided by base graphics and lattice
	Interactively changing graphics

