
How to Use geoCount

Liang Jing

January 6, 2012

Contents

1 Introduction 1

1.1 Geostatistical Data . 1

1.2 Spatial Models with Gaussian Processes 2

1.2.1 Gaussian Process Model . 4

1.2.2 Correlation Function Family . 4

1.3 Linear Gaussian Process Model . 5

1.4 Generalized Linear Spatial Models . 7

1.4.1 The Poisson Log-normal Spatial Model 8

1.4.2 The Binomial Logistic-normal Spatial Model 9

2 Data Simulation and Visualization 10

2.1 Simulate Locations . 10

2.2 Simulate Data . 12

2.3 Data Visualization . 12

2.4 Integrated Data Sets . 15

3 Estimation and Prediction 16

3.1 Posterior Sampling . 16

3.1.1 Environment Setting . 16

3.1.2 Run MCMC Algorithms . 17

3.1.3 Generate Parallel Chains . 20

3.2 Posterior Sample Handling . 21

3.2.1 Burn-in, Thinning, and Mixing 21

3.2.2 Examine Posterior Samples . 22

3.3 Prediction . 23

i

CONTENTS

4 Model Checking 25

4.1 Bayesian Model Checking . 25

4.1.1 Define Diagnostic Statistic . 25

4.1.2 Simulate Reference Data Sets . 25

4.1.3 Compare Diagnostic Statistics 27

4.2 Transformed Residual Checking . 28

4.2.1 Approximate Transformed Residuals 28

4.2.2 Plot Transformed Residuals . 29

4.2.3 Calculate Hellinger Distance . 30

4.2.4 Build Baseline Distribution . 30

4.2.5 Determine the Goodness of Fitting 31

5 Installation and Running 33

5.1 Dependent Tools and Libraries . 33

5.2 Install in Linux/Unix . 34

5.2.1 Install Dependent Tools . 34

5.2.2 Install {geoCount} . 34

5.3 Install in Windows . 35

5.3.1 The Simple Way . 35

5.3.2 The Hard Way . 35

5.4 Conflict with Optimized BLAS . 37

5.5 Running on High Performance Cluster 38

References 41

ii

Preface

Hierarchical models are increasingly used in many of the earth sciences. A class of

Generalized Linear Mixed Models was proposed by Diggle, Tawn and Moyeed (1998) for

the analysis of spatial non-Gaussian data, but model estimation, checking and selection

in this class of models remain difficult tasks due to the presence of an unobservable

latent process. Model checking methods within this class have not been considered so

far in the literature.

We considered this class of models for the analysis of geostatistical count data, and

implemented robust Markov Chain Monte Carlo algorithms with the help of advanced

techniques, such as group updating, Langevin-Hastings algorithms, and data-based

transformations, for posterior sampling and estimation.

Then we explored the application of Bayesian model checking methods based on

measures of relative predictive surprise, as those described in Bayarri and Castellanos

(2007). We also proposed an alternative model checking method to diagnose incom-

patibility between model and data based on a kind of transformed residuals.

An R package, {geoCount} was developed to implement all the methods by using

advanced computing techniques, such as R/C++ interfacing and parallel computing.

Chapter 1 introduces the type of data and models dealt with by this package.

Chapter 2, 3, and 4 introduce how to use the functions in the package to perform

the analysis and modeling. Chapter 5 introduce how to install the package and some

running issues.

The details of theories, methodologies, algorithms, and techniques that are imple-

mented in this package can be found in my dissertation.

1

Introduction

This package is designed to analyze geostatistcal count data by using generalized lin-

ear spatial models. In this chapter, we introduce the properties of the data and the

structure of the models.

1.1 Geostatistical Data

Spatial data contain information about both attributes of interest and locations, and

can be found in a number of disciplines, including ecology, epidemiology, geography,

forestry, and meteorology. Following the description in Diggle and Ribeiro (2007), one

special type of spatial data, geostatistical data, mainly has two characteristics: first,

values Yi : i = 1, ..., n are observed at a discrete set of sampling locations xi within

some spatial region A; second, each observed value Yi is either a direct measurement of,

or is statistically related to, the value of an underlying continuous spatial phenomenon,

S(xi), at the corresponding sampling location xi. Given the latent continuous process

S(x), the observed data Yi : i = 1, ..., n are usually assumed to be independent. Also,

for each location, there is usually no replication of Yi.

In most applications with geostatistical data, the scientific goals focus on two areas,

estimation and prediction:

- The estimation of coefficient parameters that describe the relationship between

response variable and explanatory variables, and the estimation for parameters

that define the covariance structure of the latent process.

1

1.2 Spatial Models with Gaussian Processes

- The prediction of the realized values of unobservable latent process at certain

locations, and the prediction for some property of the complete realization of

latent process within certain area, for example the average of the process S(B) =

1
|B|
∫
B S(x) dx, where B defines an area.

An example of geostatistical data is given below.

Rongelap data

First analyzed by Diggle, Tawn and Moyeed (1998), the data were collected from Ron-

gelap Island, the principal island of Rongelap Atoll in the South Pacific, which forms

part of the Marshall Islands. U.S. nuclear weapon testing program generated heavy

fallout over the island in the 1950’s and it has been uninhabited since 1985. Figure

1.1 shows a map of Rongelap Island with the 157 sampling locations derived from a

sampling design which consists of a primary grid covering the island at a spacing of 200

meters and four secondary 5 by 5 sub-grids at a spacing of 50 meters. For each location,

photon emission counts attributable to radioactive caesium were measured. The data

have the form (xi,mi, ti) : i = 1, ..., 157, where xi represents spatial location, mi is the

photon emission count for that location, and ti is the time (in seconds) over which ti

was accumulated. For further information of these data, see Diggle, Harper and Simon

(1997).

If we use the observed emission counts per unit time mi/ti as response variable,

then Rongelap data can be transformed into the basic format of geostatistical data,

(xi, yi) : i = 1, ..., n

where each yi = mi/ti is a realization of a random variable Yi whose distribution

depends on an underlying unobservable spatially continuous stochastic process S(x).

More examples of geostatistical data can be found in Diggle and Ribeiro (2007) and

Christensen, Roberts and Sköld (2006).

1.2 Spatial Models with Gaussian Processes

From the characteristics of geostatistical data, geostatistical models usually consists of

two elements: first, random variables S(xi) : i = 1, ..., n, which are typically a partial

2

1.2 Spatial Models with Gaussian Processes

Figure 1.1: Rongelap data: photon emission counts are measured for 157 different loca-

tions on the island

3

1.2 Spatial Models with Gaussian Processes

realization of a stochastic process S(x) : x ∈ R2 on the whole space; second, a joint

distribution for random variables Y1, ..., Yn conditional on S(x1), ..., S(xn). Sometimes

S(xi) is called the signal and Yi the response.

1.2.1 Gaussian Process Model

Considering the nature of the space, it is desirable for S(x) to be continuous and

possibly differentiable. To meet these requirements, the simplest and most popular

choice is the Gaussian process, which is a stochastic process whose realizations consist

of random variables associated with every point in the space with the property that

every finite collection of these random variables has a multivariate normal distribution.

Thus, S(x) can be defined as

S(x) : x ∈ R2 is a Gaussian process with mean µ(x), variance σ2 for

all x, and correlation function ρ(u) = Corr[S(x), S(x′)] depending only on

u = ||x′ − x||, the Euclidean distance between x and x′.

In general, the response variables Yi are assumed to be conditionally independent

given the S(xi) and considered as a noisy version of S(xi). Specifically,

for any set of sampling locations x1, ...,xn, Y1, ..., Yn are conditionally

independent given S(x1), ..., S(xn) with mean E[Yi|S(xi)] = g−1(S(xi))

where g(·) is a link function.

1.2.2 Correlation Function Family

In order to define a legitimate model, the correlation function ρ(u) must be positive-

definite, which means for any collection of finite locations xi : i = 1, ..., n the correlation

matrix with entries ρ(||xi − xj ||) must be a positive definite matrix.

The common families of correlation function that are known to be positive-definite

are introduced in this section.

1. The Matern family

This family is named after Matern (1960) and has two parameters: κ > 0, called

the order, is a shape parameter that determines the smoothness and φ > 0 is a

scale parameter,

ρ(u) = [2κ−1Γ(κ)]−1(u/φ)κKκ(u/φ) (1.1)

4

1.3 Linear Gaussian Process Model

where Kκ(·) denotes a modified Bessel function of order κ.

2. The powered exponential family

This family also has a shape parameter 0 < κ ≤ 2 and a scale parameter φ > 0,

ρ(u) = exp{−(u/φ)κ}. (1.2)

3. The spherical family

This family is widely used in applications,

ρ(u) =

{
1− 3

2(u/φ) + 1
2(u/φ)3 : 0 ≤ u ≤ φ

0 : u > φ
(1.3)

where φ > 0 is a scale parameter.

4. One example of a non-monotone correlation function, which is rarely used in

practice, is

ρ(u) = (u/φ)−1sin(u/φ) (1.4)

where φ > 0 is a scale parameter.

For all of the above families κ is dimensionless and φ has dimensions of distance.

An example of several correlation curves is illustrated in Figure 1.2. More informa-

tion about correlation functions can be found in Schlather (1999) and Gneiting (1997).

1.3 Linear Gaussian Process Model

Recall the model formulation of Gaussian process models in section 1.2.1. When the

link function g(·) is the identity function, the model is a linear Gaussian process model

and the model specification is

Yi = µ(di) + S(xi) + Zi : i = 1, ..., n (1.5)

where µ(di) is a mean effect term depending on covariates di, S(x) is a stationary

Gaussian process with E[S(x)] = 0 and Cov[S(x′), S(x)] = σ2ρ(‖x′ − x‖), and Zi is

i.i.d. having N(0, τ2) distribution. An equivalent formulation can be written as

Yi|µ(di), S(xi) ∼ N(µ(di) + S(xi), τ
2). (1.6)

5

1.3 Linear Gaussian Process Model

Figure 1.2: Example of different correlation curves: exponential (solid line), Matern

(dashed line), and spherical (dotted line)

6

1.4 Generalized Linear Spatial Models

More practically, the mean term can be allowed to depend on location, di = d(xi),

and such location-dependent mean µ(xi) is called a spatial trend.

However, when the response data fail to follow a normal distribution, it is not

appropriate to use a linear Gaussian process model. One solution to this problem is

transformation of the data. The most widely used transformation (when the data are

positive) is the Box-Cox family of transformation, Box and Cox (1964),

Y ∗ =

{
(Y λ − 1)/λ : λ 6= 0

log Y : λ = 0
. (1.7)

Then the transformed response variable is assumed to follow a linear Gaussian process

model. De Oliveira, Kedem and Short (1997) explored the properties of transformed

Gaussian process models for Bayesian prediction.

1.4 Generalized Linear Spatial Models

When it is important to model the non-Gaussian sampling mechanism or a non-

Gaussian distribution of the response random variable of interest, a more flexible and

useful model frame should be employed – generalized linear spatial model (GLSM), first

proposed by Diggle, Tawn and Moyeed (1998). The complete model specification is

Yi|S(xi) ∼ p(yi|µi), i = 1, ..., n

µi = g−1(S(xi)) (1.8)

S = (S(x1), ..., S(xn)) ∼ MVN(Dβ,Σ)

where

- response variables Yi : i = 1, ..., n are conditionally independent given S(xi) : i =

1, ..., n and follow a specific distribution p(·) with mean µi;

- g(·) is a known link function;

- S = (S(x1), ..., S(xn)) is a stationary Gaussian process with mean structure Dβ

and covariance structure Σ;

- D′ = (d1, ...,dn) is a known p × n covariate matrix usually related to locations

and assumed of full rank while β = (β1, ..., βp)
′ is the coefficients vector (Dβ

together determines the “spatial trend” in the response variables, Diggle and

Ribeiro (2007) section 3.6);

7

1.4 Generalized Linear Spatial Models

- Σ is a variance-covariance matrix with entries σij = σ2ρ(uij) where σ2 is a un-

known constant variance and ρ(uij) belongs to one of the common correlation

function families described in section 1.2.2.

Note that this model is also known as spatial generalized linear model (SGLM),

and it is included in generalized linear mixed models (GLMM) category since the latent

variable S(xi) can be interpreted as random effects.

In the following sections, the two most widely used GLSMs are introduced.

1.4.1 The Poisson Log-normal Spatial Model

As the name implies, this model has logarithm link function and the conditional dis-

tribution of each response variable Yi is Poisson. The complete model specification

is

Yi|S(xi) ∼ Poisson(µi)

µi = exp{S(xi)} (1.9)

S = (S(x1), ..., S(xn)) ∼ MVN(Dβ,Σ)

where Yi : i = 1, ..., n are conditionally independent given S(xi) : i = 1, ..., n and

S, Dβ,Σ are defined as in (1.8).

This model is naturally a good candidate for count data. For the Rongelap data in

which the response variable is photon emission counts Yi over time-period ti at location

xi, the Poisson log-normal spatial model can be easily modified as,

µi = ti exp{S(xi)} (1.10)

with powered exponential correlation function as shown in Diggle et al. (1998).

More examples of count data that are suitable for this model include: Yang, Teng

and Haran (2009) studied infant mortality rates by county in the southern U.S. States of

Alabama, Georgia, Mississippi, North Carolina and South Carolina (Health Re-sources

and Services Administration (2003)) between 1998 and 2000; counts of weed plants on

a field were recorded in 1993, 1994 and 1995, described in Olsen (1997).

8

1.4 Generalized Linear Spatial Models

1.4.2 The Binomial Logistic-normal Spatial Model

Here the response variable Yi represents the outcome of a conditionally independent

binomial variable with the number of trials ni with probability of success pi. The full

model specification is:

Yi|S(xi) ∼ Binomial(ni, pi)

pi =
eS(xi)

1 + eS(xi)
(1.11)

S = (S(x1), ..., S(xn)) ∼ MVN(Dβ,Σ)

where Yi : i = 1, ..., n are conditionally independent given S(xi) : i = 1, ..., n and

S, Dβ,Σ are defined as in (1.8).

An example of this model to the study of campylobacter infections in north Lan-

cashire and south Cumbria appeared in Diggle et al. (1998).

9

2

Data Simulation and

Visualization

2.1 Simulate Locations

As introduced in Chapter 1 geostatistical data have two attributes: location and re-

sponse variable associated to location. To simulate geostatistical data, we first need to

simulate coordinates of locations.

In this package several functions are provided to simulate locations:

locGrid : simulates a given number of locations distributed on a grid.

locCircle : simulates a given number of locations equally distributed on a circle.

locSquad : simulates a given number of locations equally distributed on a square.

For example,

loc <- locGrid(1, 2, 10, 5)

plot(loc, xlab="x", ylab="y")

loc2 <- rbind(locCircle(1, 60), locCircle(0.667, 40),

locCircle(0.333, 20), locCircle(0, 1))

plot(loc2, xlab="x", ylab="y")

where the result is shown in Figure 2.1 and 2.2.

Sometimes (especially when doing preliminary analysis), it is more convenient to

scale the locations to fit into a unit grid by using unifLoc function before further anal-

ysis (for example posterior sampling). Doing this could increase the speed of MCMC

simulations significantly.

10

2.1 Simulate Locations

Figure 2.1: locGrid - simulates locations on a grid.

Figure 2.2: locCircle - simulates locations on a circle.

11

2.2 Simulate Data

2.2 Simulate Data

Once locations are available, simData function can be used to simulate the response

data from Poisson log-normal spatial model or binomial logistic-normal spatial model.

dat <- simData(loc = locGrid(1, 1, 10, 10), L = 0,

X = NULL, beta = 1, cov.par = c(1, 0.1, 1),

rho.family = "rhoPowerExp", Y.family = "Poisson")

where

- loc: a n× 2 matrix which indicates the coordinates of given locations.

- L: a vector of length n; it indicates the time duration during which the Poisson

counts are accumulated, or the total number of trials for Binomial response; if 0

is found in the vector, 1 will be used to replace all the values in the vector.

- X: a n× p covariate matrix (the default value NULL indicates no covariate).

- beta: a vector of length (p+ 1) that indicates the coefficients for covariates and

intercept.

- cov.par: a vector of length 3 that indicates the value of (σ, φ, κ).

- rho.family: take the value of "rhoPowerExp" or "rhoMatern" which indicates

the powered exponential or Matern correlation function is used.

- Y.family: take the value of "Poisson" or "Binomial" which indicates Poisson

or Binomial distribution for response variables.

The output of this function is a list with two elements containing data for response and

latent variables respectively.

2.3 Data Visualization

plotData function can be used to visualize the data, shown in Figure 2.3. The size of

the “bubble” (which is the default shape and can be changed by setting pch parameter)

represents the amount of the count on the location.

loc <- locGrid(1, 1, 10, 10)

dat <- simData(loc = loc, L = 0,

X = NULL, beta = 4, cov.par = c(1, 0.2, 1),

rho.family = "rhoPowerExp", Y.family = "Poisson")

plotData(dat$data, loc, xlab="x", ylab="y")

12

2.3 Data Visualization

Figure 2.3: plotData - plots geostatistical data.

It is able to plot up to three data sets on one plot, shown in Figure 2.4.

loc <- rbind(locCircle(1, 60),

locCircle(0.667, 40),

locCircle(0.333, 20)

)

dat <- simData(loc, cov.par = c(1, 0.2, 1))

Y <- dat$data

plotData(Y[1:60], loc[1:60,], Y[61:100], loc[61:100,],

Y[101:120], loc[101:120,], pch = 16,

xlab="x", ylab="y"

)

Another function plotDataBD is an enhanced version of plotData. Besides plotting

the counts for the given locations, it is also able to plot the boundaries if the information

is given. For example, after loading the boundary information for Texas counties from

the integrated data set TexasCounty.boundary, we can use plotDataBD to plot it,

shown in Figure 2.5.

data(TexasCounty_boundary)

plotDataBD(TexasCounty.boundary, xlab = "Longitude", ylab = "Latitude")

13

2.3 Data Visualization

Figure 2.4: plotData2 - plots three geostatistical data sets.

Figure 2.5: plotDataBD - plots the boundaries for Texas counties.

14

2.4 Integrated Data Sets

2.4 Integrated Data Sets

In the package, a few data sets are integrated:

Rongelap : introduced in Chapter 1, see Figure 1.1.

Weed : collected at the Bjertorp farm in the south-west of Sweden, see Figure 2.6.

Weed counts of non-crop plants were observed at different locations, and camera

recorded images were used to estimate the counts with the help of certain image

analysis algorithm. Guillot, Loren, and Rudemo (2009).

Earthquakes : this data set contains information of the earthquakes with magnitude

1.0 or greater that happened during 05/20/2011 - 05/27/2011 worldwide (source:

United States Geological Survey).

TexasCounty.center : this data set contains the central longitude and latitude coor-

dinates for all the counties in Texas.

TexasCounty.boundary : this data set contains the boundary longitude and latitude

coordinates for all the counties in Texas.

TexasCounty.population : this data set contains the information of poverty and total

population in 2009 for all the counties in Texas (source: U.S. Census Bureau).

Figure 2.6: Weed - weed counts at the Bjertorp farm in the south-west of Sweden.

15

3

Estimation and Prediction

Robust Markov Chain Monte Carlo (MCMC) algorithms with the help of advanced

techniques, such as group updating, Langevin-Hastings algorithms, and data-based

transformations, are implemented in the package for posterior sampling and estimation.

See my dissertation for details of the algorithms and techniques.

3.1 Posterior Sampling

3.1.1 Environment Setting

MCMCinput function can be used to set up the assumed model and environmental pa-

rameters for MCMC algorithms, and the setting can be saved for future use so you

don’t need to set it up every time you run MCMC algorithms.

input <- MCMCinput(run = 10000, run.S = 10,

rho.family = "rhoPowerExp",

Y.family = "Poisson", ifkappa=0,

scales=c(0.5, 1.5, 0.9, 0.6, 0.5),

phi.bound=c(0.005, 1),

initials=list(c(-1, 2, 1), 1, 0.1, 1))

The environmental parameters include:

- run: the number of iterations.

- run.S: the number of internal iterations for latent variables.

16

3.1 Posterior Sampling

- rho.family: take the value of "rhoPowerExp" or "rhoMatern" which indicates

the powered exponential or Matern correlation function is used.

- Y.family: take the value of "Poisson" or "Binomial" which indicates Poisson

or Binomial distribution for response variables.

- ifkappa: take zero or non-zero value which indicates whether κ should be sam-

pled.

- scales: a vector which indicates the tuning parameters for (S, β, σ, φ, κ) respec-

tively.

- phi.bound: the upper and lower bound for φ.

- initials: a list which indicates the initial values for (β, σ, φ, κ) respectively.

During each iteration of Gibbs sampling process, the group of latent variables is

updated run.S times to improve accuracy and reduce autocorrelations. Increasing

the number of run.S usually does not increase the running time of the algorithms

dramatically.

The setting of scales is very important which is directly related to the efficiency

of the algorithms. Generally, you need to adjust the values of scales to achieve

the acceptance rate of 0.574 for (S, β) and 0.25 for (σ, φ, κ), because the former is

updated with Langevin-Hastings algorithms and the latter is updated with random-

walk algorithms. See my dissertation for details.

phi.bound needs to be set in an appropriate range. Otherwise, it damages both the

accuracy and efficiency of the algorithms. You can use plotData function to visualize

your data set and calculate the empirical variogram to choose the range.

initials is important in some cases. Generally, the algorithms is able to converge

to the correct region very fast. Try to use different initials if you have trouble in

convergence, and deriving a reasonable initials from exploratory data analysis is

always a good idea.

3.1.2 Run MCMC Algorithms

runMCMC is the function that performs robust MCMC algorithms for generalized lin-

ear spatial models and generates posterior samples for latent variables and hyper-

parameters.

runMCMC(Y, L = 0, loc, X = NULL, run = 200, run.S = 1,

17

3.1 Posterior Sampling

rho.family = "rhoPowerExp", Y.family = "Poisson", ifkappa = 0,

scales = c(0.5, 1.65^2 + 0.8, 0.8, 0.7, 0.15),

phi.bound = c(0.005, 1),

initials = list(c(1), 1.5, 0.2, 1),

MCMCinput = NULL, partial = FALSE, famT = 1)

where

- Y: a vector of length n which indicates the response variables.

- L: a vector of length n; it indicates the time duration during which the Poisson

counts are accumulated, or the total number of trials for Binomial response; if 0

is found in the vector, 1 will be used to replace all the values in the vector.

- loc: a n× 2 matrix which indicates the coordinates of the locations.

- X: a n× p covariate matrix (the default value NULL indicates no covariate).

- ... (same as in MCMCinput function)

- MCMCinput: a list of alternative settings; usually the result from MCMCinput

function.

- partial: a logical input which indicates whether partial posterior sampling

should be used; only works for Y.family = "Poisson".

- famT: take the value of 1, 2, or 3 which indicates the type of partial posterior

sampling: 1 means “mean” diagnostic statistic is used, 2 means “maximum”, and

3 means “minimum”; ignored if partial=FALSE.

If given, MCMCinput will override other environmental parameters.

For example of analyzing Weed data,

data(datWeed)

input.Weed <- MCMCinput(run=2000, run.S=1, rho.family="rhoPowerExp",

Y.family = "Poisson", ifkappa=0,

scales=c(0.2, 3.5, 0.9, 0.6, 0.5),

phi.bound=c(0.5, 300),

initials=list(c(1), 1, 0.1, 1))

res <- runMCMC(Y=Weed[,3], L=0, loc=Weed[,1:2], X=NULL,

MCMCinput=input.Weed)

Be careful that if you want to include the covariates in the model, make sure the

number of covariate variables (X) and the number of coefficients (β in initials) are

compatible. The latter is one larger than the former because of the intercept term. For

18

3.1 Posterior Sampling

example, we include location coordinates as the covariates to model the linear spatial

trends for Weed data,

input2.Weed <- MCMCinput(run=1000, run.S=1, rho.family="rhoPowerExp",

Y.family = "Poisson", ifkappa=0,

scales=c(0.5, 0.00005, 0.9, 0.9, 0.5),

phi.bound=c(0.5, 300),

initials=list(c(4, 0, 0), 1, 0.1, 1))

res2 <- runMCMC(Y=Weed[,3], L=0, loc=Weed[,1:2], X=Weed[,1:2],

MCMCinput=input2.Weed)

Sometimes the coordinates of the locations have a large range (in Weed data the

range is 0 to 565 meters) which may lead to very small values of coefficients, so it is

more convenient to scale the coordinates with unifLoc function before using them as

covariates, especially for preliminary analysis.

The output of runMCMC function is a list with elements:

- S.posterior: a n× run matrix containing the posterior samples for latent vari-

ables.

- m.posterior: a (p+1)×run matrix (in case of p covariate variables) or a vector

with length run (no covariate case), containing the posterior samples for β.

- s.posterior: a vector with length run containing the posterior samples for σ.

- a.posterior: a vector with length run containing the posterior samples for φ.

- k.posterior: a vector with length run containing the posterior samples for κ in

the case that ifkappa is set to non-zero value.

- AccRate: a vector which indicates the acceptance rates.

On the “screen” (or in your terminal), the running time of the algorithm and the

acceptance rates will be displayed, as well as the warning messages.

MCMC Starts!

MCMC Done!

MCMC Running Time:

user system elapsed

89.080 0.010 89.286

MCMC Acceptance Rate:

19

3.1 Posterior Sampling

accS1 accm accs acca

0.208 0.570 0.299 0.322

Warning message:

L contains zero!

L is set to 1 for all locations

3.1.3 Generate Parallel Chains

Alternatively, when your computer have more than one CPU available or you are using

high performance computing (HPC) cluster, runMCMC.multiChain and runMCMC.sf can

be used to perform robust MCMC algorithms and generate posterior samples in a paral-

lel way. Essentially, these two functions enable different CPUs to run runMCMC function

simultaneously with different initial values. The difference is runMCMC.multiChain

performs parallel computing with the help of {multicore} package while runMCMC.sf

uses the mechanism in {snow} and {snowfall} packages for parallel computing.

runMCMC.multiChain(Y, L = 0, loc, X = NULL, run = 200, run.S = 1,

rho.family = "rhoPowerExp", Y.family = "Poisson", ifkappa = 0,

scales = c(0.5, 1.65^2 + 0.8, 0.8, 0.7, 0.15),

phi.bound = c(0.005, 1), initials = list(c(1), 1.5, 0.2, 1),

MCMCinput = NULL, partial = FALSE, famT = 1,

n.chn = 2, n.cores = getOption("cores"))

runMCMC.sf(Y, L = 0, loc, X = NULL, run = 200, run.S = 1,

rho.family = "rhoPowerExp", Y.family = "Poisson", ifkappa = 0,

scales = c(0.5, 1.65^2 + 0.8, 0.8, 0.7, 0.15),

phi.bound = c(0.005, 1), initials = list(c(1), 1.5, 0.2, 1),

MCMCinput = NULL, partial = FALSE, famT = 1,

n.chn = 2, n.cores = getOption("cores"), cluster.type="SOCK")

where the input arguments are similar to the arguments in runMCMC except extra argu-

ments for parallel computing,

- n.chn: the number of Markov chain sets that will be generated in parallel.

- n.cores: the number of CPUs that will be used to generate parallel Markov

chains.

20

3.2 Posterior Sample Handling

- cluster.type: type of cluster to be used for parallel computing; can be "SOCK",

"MPI", "PVM", or "NWS".

In the case the number of available CPUs is less than n.chn, Markov chains will be

put in a queue.

For example, the parallel version of analyzing Weed data is

require(multicore)

res.prl <- runMCMC.multiChain(Y=Weed[,3], L=0, loc=Weed[,1:2],

X=NULL, MCMCinput=input.Weed, n.chn=4, n.cores=4)

or

require(snowfall)

res.prl <- runMCMC.sf(Y=Weed[,3], L=0, loc=Weed[,1:2],

X=NULL, MCMCinput=input.Weed, n.chn=4, n.cores=4,

cluster.type="SOCK")

The output of runMCMC.multiChain and runMCMC.sf is a list with length equal to

n.chn. Each element in this list is a list similar to the output from runMCMC function

which contains the result of one set of posterior samples.

3.2 Posterior Sample Handling

3.2.1 Burn-in, Thinning, and Mixing

Once posterior samples are generated, cutChain function can be used to modify them

for “burn-in” and “thinning”. It takes a list with elements containing the posterior

samples (usually the output from runMCMC) as input.

For the output of runMCMC()

res <- runMCMC(Y, L, loc, X=NULL, MCMCinput=input)

res.m <- cutChain(res, chain.ind=1:4, burnin=1000, thinning=10)

For the output from parallel MCMC functions (runMCMC.multiChain and runMCMC.sf),

lapply function is needed to apply cutChain on each element. Then use mixChain

function to mix the corresponding parallel chains into one.

21

3.2 Posterior Sample Handling

For the output of runMCMC.multiChain() and runMCMC.sf()

res.prl <- runMCMC.multiChain(Y, L, loc, X=NULL, MCMCinput=input,

n.chn=4, n.cores=4)

res.m.prl <- lapply(res.prl, cutChain, chain.ind=1:4, burnin=1000,

thinning=10)

res.m <- mixChain(res.m.prl)

*Caution: before mixing parallel chains

It is necessary to examine at least one of the parallel chains to make sure they are

already converged and well-mixed. See the next section for details about how to examine

the chain of posterior samples.

3.2.2 Examine Posterior Samples

{coda} package is a well-known package for output analysis and diagnostics for MCMC

simulations. It provides a variety of functions for visualizing the posterior samples and

performing convergence tests. See the documentation of {coda} package for details.

Here are a few examples,

convert to mcmc class

chn1.mcmc <- mcmc(cbind(sigma=res.m$s, phi=res.m$a))

basic information and summarized statistics

summary(chn1.mcmc)

trace and density plots

plot(chn1.mcmc, auto.layout = TRUE)

cross-correlation plot

crosscorr.plot(chn1.mcmc)

auto-correlation plot

autocorr.plot(chn1.mcmc)

effective sample size adjusted for autocorrelation

effectiveSize(chn1.mcmc)

Geweke’s convergence diagnostic

geweke.diag(chn1.mcmc, frac1=0.1, frac2=0.5)

Geweke-Brooks plot

geweke.plot(chn1.mcmc, frac1=0.1, frac2=0.5)

Heidelberger and Welch’s convergence diagnostic

22

3.3 Prediction

heidel.diag(chn1.mcmc, eps=0.1, pvalue=0.05)

Besides the functions in {coda} package, plotACF is provided specifically for plot-

ting auto-correlation curves for latent variables, shown in Figure 3.1, and findMode is

provided to estimates the mode of empirical density function for posterior samples.

plotACF(res.m$S.posterior)

phi.est <- findMode(res.m$a.posterior)

Figure 3.1: plotACF - plots auto-correlation curves for latent variables.

3.3 Prediction

Based on the posterior samples from sampled locations, preY function can generate

posterior predictive samples of latent and response variables for unsampled locations.

predY(res.m, loc, locp, X = NULL, Xp = NULL, Lp = 0, k = 1,

rho.family = "rhoPowerExp", Y.family = "Poisson",

parallel = NULL, n.cores = getOption("cores"),

cluster.type = "SOCK")

Ypred.avg <- rowMeans(Ypred$Y)

The coordinates for both sampled and unsampled locations (loc and locp) are

needed as well as the covariate matrix (X and Xp). Also, this function can perform

in parallel way with the help of {multicore} (or {snowfall}) package if letting

23

3.3 Prediction

parallel="multicore" (or "snowfall") and using n.cores to specify the number

of CPUs that will be used for parallel computing.

Continue with the example for Weed data. For 50 unsampled locations, their pre-

dictions (the average of posterior predictive samples for response variables) are shown

in Figure 3.2.

locp <- cbind(Weed[1:50,1]+30, Weed[1:50,2])

Ypred <- predY(res.m, loc=Weed[,1:2], locp, X=NULL, Xp=NULL,

Lp=rep(1, nrow(locp)), k=1,

rho.family="rhoPowerExp", Y.family="Poisson")

plotData(Weed[,3], Weed[,1:2], Ypred.avg, locp,

xlab="Eastings", ylab="Northings")

Figure 3.2: predY - Prediction for Weed data: black circles indicate sampled locations

and red circles indicate unsampled locations (the size of bubble indicates the amount of

weed counts).

24

4

Model Checking

4.1 Bayesian Model Checking

To perform Bayesian model checking procedure, we need

1. define a diagnostic statistic which summarizes the data set and represents certain

feature;

2. simulate a (large) number of reference data sets;

3. compare the diagnostic statistics derived from the observed and reference data

sets and the discrepancy will reveal the information of goodness of fitting.

4.1.1 Define Diagnostic Statistic

We need to define a function which take the vector of response variables as input and

output the diagnostic statistic, for example,

the average as diagnostic statistic

funcT <- function(Y){ mean(Y) }

the Pearson residual type of diagnostic statistic

funcT <- function(Y){ sum((Y - mean(Y))^2/var(Y)) }

4.1.2 Simulate Reference Data Sets

There are two functions in the package for simulating reference (replicated) data sets:

repYeb and repYpost. repYeb simulates replicated data sets from the model with

25

4.1 Bayesian Model Checking

known parameters which are either pre-determined or estimated from posterior samples,

while repYpost simulates them based on posterior samples of latent variables.

repYeb(N.sim, loc, L, X = NULL, rho.family = "rhoPowerExp",

Y.family="Poisson", res.m = NULL, est = "mode",

beta = NULL, sigma = NULL, phi = NULL, k = 1)

}

repYpost(res.m, L, Y.family="Poisson")

where

- N.sim: the number of replicated data sets to be simulated.

- est: take the value of "mode" which indicates the mode of posterior samples will

be used as the parameter estimate; otherwise, the mean will be used.

The output of both functions is a matrix (n × N.sim for repYeb and n × N for

repYpost where N is the length of posterior samples in res.m) containing N.sim or N

replicated data sets.

There are two ways to use repYeb: (1) input the result containing posterior samples

(res.m) and set up est to use either posterior mode or mean as the estimates of model

parameters; or (2) do not input res.m but input pre-determined model parameters

(maybe obtained from another estimating process). Be aware that the second way can

be used as an alternative way to simulate massive data sets with given parameters.

Estimate parameters from posterior samples

Yrep <- repYeb(N.sim=2000, loc, L, res.m = res.m, est = "mode")

Pre-determined parameters

Yrep <- repYeb(N.sim=2000, loc, L, beta = 5, sigma = 1,

phi = 0.1, k = 1)

The use of repYpost is fairly easy since you only need to input the result containing

posterior samples for latent variables (res.m) and specify the distribution for response

variable. Notice that the posterior samples for parameters in res.m are not used in

this function.

26

4.1 Bayesian Model Checking

4.1.3 Compare Diagnostic Statistics

pRPS calculates the p-value and relative predictive surprise (RPS) by comparing diag-

nostic statistics from the observed and reference data sets and plot pRPS provides the

visualization. For example, if we use 2 as the diagnostic statistic from the observed

data set and use some normal random samples as the diagnostic statistics from the

reference data set, the result is shown in Figure 4.1.

pRPS(T.obs = 2, T.rep = rnorm(1000))

plot_pRPS(2, rnorm(1000), nm="t")

Figure 4.1: plot pRPS - compare diagnostic statistics from the observed and reference

data sets.

Overall, BMCT function conducts Bayesian model checking by comparing observed

and reference data sets with respect to defined diagnostic statistic and produces the

result of “p-value” and “RPS” (as well as the plot if ifplot = TRUE).

BMCT(Y.obs, Y.rep, funcT, ifplot = FALSE)

27

4.2 Transformed Residual Checking

4.2 Transformed Residual Checking

To perform transformed residual checking procedure, we need

1. simulate a (large) number of reference data sets from the fitted model to approx-

imate the transformed residuals for observed data;

2. examine the distribution of transformed residuals and compare it with standard

normal distribution by using graphical tools;

3. calculate the Hellinger distance for transformed residuals with standard normal

distribution served as reference distribution;

4. build the “baseline distribution” for standard normal distribution;

5. compare the Hellinger distance calculated from observed data with the baseline

distribution and calculate the p-value;

6. determine the goodness of model fitting based on the information of graphs and

p-value.

4.2.1 Approximate Transformed Residuals

Since the reference data sets come from the fitted model, we can easily use repYeb

function to simulate them.

Caution: reference data sets simulated by repYpost function are not ap-

propriate for transformed residual checking.

With the reference data sets, tranR function can approximate transformed residuals

for the observed data by using reference data.

Y.rep <- repYeb(N.sim = 5000, loc, L, res.m = res.m)

etran <- tranR(Y.obs, Y.rep, discrete = FALSE)

where discrete indicates if the distribution of response variable is discrete (the ap-

proximating method is different for discrete and continuous distribution). However,

we notice that in practice setting discrete = FALSE helps increase the accuracy of

approximation even the distribution of response variable is actually discrete (unless the

number of reference data sets is large enough).

28

4.2 Transformed Residual Checking

4.2.2 Plot Transformed Residuals

plot etran function can plot transformed residuals in different types of plot: scatter

plot, QQ-plot, density plot, and relative density plot (with standard normal distribution

served as the base). Inside of this function, reldist function in {reldist} package is

used to compute the relative density, so it is required.

require(reldist)

plot_etran(etran, fig = 1:4)

where fig indicates which types will be plotted. An example of the plots is shown in

Figure 4.2.

Figure 4.2: plot etran - plots transformed residuals.

29

4.2 Transformed Residual Checking

4.2.3 Calculate Hellinger Distance

To compare the distribution of transformed residuals with standard normal distribution,

e2dist function can be used to calculate the distance between them. Inside of this

function, HellingerDist and KolmogorovDist functions in {distrEx} package are

used to compute two types of Hellinger distance (“Discrete Hellinger” and “Smooth

Hellinger”) and Kolmogorov distance. The difference between the two types of Hellinger

distance is that

• for “Discrete Hellinger”, a discretization of standard normal distribution is con-

ducted, and the distance is computed between empirical distribution of trans-

formed residuals and the discretized distribution;

• for “Smooth Hellinger”, the transformed residuals are convoluted with the normal

distribution Norm(mean = 0, sd = h.smooth) which leads to an absolutely con-

tinuous distribution, and afterwards the distance between the smoothed empirical

distribution and standard normal is computed.

d.obs <- e2dist(etran)

The output is a vector with length 3, for example

> d.obs

Hellinger.discre Hellinger.smooth Kolmogorov

0.3442068 0.2200154 0.096800

4.2.4 Build Baseline Distribution

baseline.dist function generates the samples of distances to build the baseline dis-

tribution for standard normal distribution.

d.base <- baseline.dist(n, iter)

where n is the number of transformed residuals which should be equal to the number of

locations in the observed data and iter is the number of distance samples to generate.

Alternatively, baseline.parallel function is a parallel version of baseline.dist.

It generates samples in parallel way.

baseline.parallel(n, iter, n.cores = getOption("cores"))

30

4.2 Transformed Residual Checking

Be aware that the samples for baseline distribution are only needed to be generated

once and then can be saved for future use for any other observed data with the same

size. A integrated data set Dbase n100N5000 contains the baseline samples for 100

residuals with 5000 iterations.

data(Dbase_n100N5000)

str(d.base)

The output of baseline.dist and baseline.parallel is a iter×3 matrix for three

types of distance: “Discrete Hellinger” and “Smooth Hellinger”, and “Kolmogorov”.

With these samples, plot baseline can be used to visualize the baseline distribu-

tion of distance. For example, the baseline distribution of “Discrete Hellinger” for 100

residuals is shown in Figure 4.3.

plot_baseline(d.samples = d.base[,1], dist.name = colnames(d.base)[1])

Figure 4.3: plot baseline - the baseline distribution of “Discrete Hellinger” for 100

residuals.

4.2.5 Determine the Goodness of Fitting

By comparing the distance calculated from the observed data and the corresponding

baseline distribution of distance, we can calculates one-side p-value with pOne function,

31

4.2 Transformed Residual Checking

pOne(d.obs, d.base)

where d.obs is a value (or a vector) containing the distance for observed data and

d.base is a vector (or a matrix) containing the samples for the baseline. The output is

a p-value (or a vector of p-values). If p-value is small, it suggests that the transformed

residuals unlikely follow standard normal distribution which means our assumptions

about the fitted model is wrong. These assumptions include

1. the assumed model is the true model;

2. the estimation of model parameters is accurate.

See my dissertation for details.

32

5

Installation and Running

5.1 Dependent Tools and Libraries

The dependent tools and libraries (packages) that are required for installing {geoCount}
include,

• R (>= 2.12.0)

• C++ compiler: for example GNU Compiler Collection (GCC)

• GNU Scientific Library (GSL): a numerical library for C and C++

• LAPACK and BLAS (or ATLAS): libraries for numerical linear algebra operations

• Standard development tools such as make etc.

• R packages

– {Rcpp} (>= 0.9.4): provides a C++ API as an extension to the R system

– {RcppArmadillo} (>= 0.2.19): integration for “Armadillo” which is a tem-

plated C++ linear algebra library

*Notice: it may occur compatibility problem when the newer versions of

{Rcpp} and {RcppArmadillo} are installed in your R. If that happens, please

remove them and reinstall {Rcpp} 0.9.4 and {RcppArmadillo} 0.2.19. (The

compatibility problem with newer versions of {Rcpp} and {RcppArmadillo}
will be fixed soon.)

– {coda}: for Markov chain diagnostics

33

5.2 Install in Linux/Unix

– {distrEx}: for calculating Hellinger and Kolmogorov distances between two

distributions

– {reldist}: for calculating the relative density

– {multicore, snow, snowfall}: for parallel computing

Caution: {Rcpp} and {RcppArmadillo} are required to install

{geoCount}. Other R packages are only required when you use

the corresponding functions in the package.

5.2 Install in Linux/Unix

5.2.1 Install Dependent Tools

Usually, the compliers, libraries, and standard development tools are already installed

in your system since they have very common use for many other packages and software.

If that is not the case, to install them in Ubuntu, the most convenient way is

open “Synaptic Package Manager” and search the keywords (“gcc”, “gsl”, “blas”,

“lapack”, etc.). From the searching result, choose the packages to install. Or, you can

directly install them in terminal by using the command,

sudo apt-get install thepackage

In Unix system, you may need to contact the system administrator for installing.

The dependent R packages can be installed in R from the GUI menu or by using

the command,

install.packages("packagename")

5.2.2 Install {geoCount}

Once the dependent tools and packages are installed, in R you can install {geoCount}
from the source code by using the command,

install.packages("geoCount_1.1.tar.gz")

or in terminal by using the command,

R CMD INSTALL geoCount_1.1.tar.gz

See here1 for details if you have trouble.

1http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages

34

http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages

5.3 Install in Windows

5.3 Install in Windows

5.3.1 The Simple Way

I already compiled {geoCount} in Windows for 32-bit R-2.14.1. So from the compiled

binary “zip” file, the installation of {geoCount} can be easily done in R from the GUI

menu (choose “install from local zip file”) or by using the command,

install.packages("geoCount_1.1.zip")

However, you still need to install GSL (unless you already did before) to be able to

load {geoCount} in R; Otherwise, you will get error message when loading,

require(geoCount)

"System Error: The program can’t start because libgsl-0.dll is missing

from your computer. Try reinstalling the program to fix this problem."

To install GSL, find a binary installer here1 or use gnuwin32-gsl2. After installation

of GSL (for example if you install it in C:\GSL), make sure this path, C:\GSL\bin, is

added into environment PATH variable by selecting

Control Panel -> System -> Advanced -> Environment Variables

-> PATH (edit it!)

Attach C:\GSL\bin to the end of current PATH. So eventually you will have the value

of PATH like this

C:\...;......;C:\GSL\bin

Done!

5.3.2 The Hard Way

• First, install GSL (either build it from source code or use the binary installer

shown in last section).

• Second, add LIB GSL variable into your environment by selecting

Control Panel -> System -> Advanced -> Environment Variables

-> Add

1http://ascend4.org/Binary installer for GSL-1.13 on MinGW
2http://gnuwin32.sourceforge.net/packages/gsl.htm

35

http://ascend4.org/Binary_installer_for_GSL-1.13_on_MinGW
http://gnuwin32.sourceforge.net/packages/gsl.htm

5.3 Install in Windows

Add a variable with name LIB GSL and the variable value will be the path to GSL

(where you installed it).

Caution: if you installed GSL at C:\GSL for example, the value you

need to input for LIB GSL variable is C:/GSL, NOT C:\GSL! You need

to use “/” to replace “\”!

If you don’t want to change your environment or have trouble to add LIB GSL

variable, you can do the following instead.

Alternatively, you can unzip the source code from {geoCount 1.1.tar.gz} and

find Makevars.win under the directory of

/PathTo/geoCount/src/

Open it with an editor and you will see

This assumes that the LIB_GSL variable points to

PKG_CPPFLAGS=-I$(LIB_GSL)/include -I../inst/include

This assume that we can call Rscript to ask Rcpp about

Use the R_HOME indirection to support installations of

PKG_LIBS=-L$(LIB_GSL)/lib -lgsl -lgslcblas $(shell $(R_HOME)/.......

You can replace $(LIB GSL) (there are two) with the correct path of GSL (for

example C:/GSL, NOT C:\GSL!).

• Third, install the Windows toolset for R (essential:“Rtools”; optional: MikTeX)

from here1.

Caution: remember to select the option to add the paths of “Rtools”

into environment PATH variable.

• Four, check PATH variable to make sure the paths for “Rtools”, R, and GSL are

already added. Go to

1http://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset

36

http://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset

5.4 Conflict with Optimized BLAS

Control Panel -> System -> Advanced -> Environment Variables

-> PATH (edit it!)

The following paths should be added,

C:\Rtools\bin;C:\Rtools\MinGW\bin;

C:\Program files\R\R-2.14.1\bin\i386;

C:\GSL\bin

• Five, open “Dos Command” window and go to the the directory containing the

source package. Install {geoCount} by the command,

R CMD INSTALL geoCount_1.1.tar.gz

or in the case you have unzipped the file and modified the Makevars.win file, use

the command,

R CMD INSTALL geoCount

Done!

5.4 Conflict with Optimized BLAS

Basic Linear Algebra Subprograms (BLAS1) is a de facto application programming

interface standard for publishing libraries to perform basic linear algebra operations

such as vector and matrix multiplication. Most linear algebra operations done in R

are actually passed to BLAS to finish. R, by default, uses an implementation of BLAS

which is not optimized. By using an optimized BLAS which is able to enhance multi-

threaded execution of BLAS routines, you can make your linear algebra operations in

R run faster. Besides vendor-provided optimized BLAS libraries, GotoBLAS2 is a very

good free version available for a given set of machines, and J. P. Olmsted3 provides a

tutorial on how to use an optimized BLAS with R.

1http://www.netlib.org/blas/
2http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
3http://www.rochester.edu/college/gradstudents/jolmsted/files/computing/BLAS.pdf

37

http://www.netlib.org/blas/
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
http://www.rochester.edu/college/gradstudents/jolmsted/files/computing/BLAS.pdf

5.5 Running on High Performance Cluster

Simply speaking, without optimized BLAS R performs the linear algebra operations

with single thread (CPU), and with optimized BLAS R is able to performs the linear

algebra operations with multiple threads (CPUs).

However, multi-threaded execution of linear algebra operations with optimized

BLAS libraries is conflicted with the mechanisms of parallel computing provided in

{multicore}, {snow}, and {snowfall} packages, because they are both trying to per-

form multi-threaded computing and “fighting” against each other. So when using

parallel functions in {geoCount} (or other parallel functions in {multicore}, {snow},
and {snowfall} packages), the optimized BLAS libraries should not be used which will

reduce the performance (or even terminate the program).

5.5 Running on High Performance Cluster

A typical HPC cluster usually consists of hundreds or thousands of processors, for

example “cheetah.cbi.utsa.edu” cluster at UTSA has 392 processing cores with 2 GB

RAM per core. Considering it serves for many individual clients to perform different

computing jobs, a job management system (also called job scheduler) is installed on

the cluster to handle the job requests from all the clients, schedule and assign available

processors to perform the jobs. To run R codes in parallel way on cluster, we need

to write a job script that describes our request of computing resource (how many

processors we need? for how long?) and computing environment.

For Sun Grid Engine system installed on “cheetah.cbi.utsa.edu”, a sample job script

is shown below.

#!/bin/bash

The name of the job

#$ -N R-parallel

Giving the name of the output log file

#$ -o R_parallel.log

Combining output/error messages into one file

#$ -j y

One needs to tell the queue system

to use the current directory as the working directory

Or else the script may fail as it will execute

in your top level home directory /home/username

38

5.5 Running on High Performance Cluster

#$ -cwd

Here we tell the queue that we want the orte parallel

enivironment and request 5 slots

This option take the following form: -pe nameOfEnv min-Max

#$ -pe orte 5-10

Now come the commands to be executed

setenv PATH ${PATH}:/share/apps/gsl/bin

setenv LD_LIBRARY_PATH /share/apps/gsl/lib:${LD_LIBRARY_PATH}

/opt/openmpi/bin/mpirun -n $NSLOTS R --vanilla

< test_snow_bootstrap.R > test_snow_bootstrap.log

exit 0

Caution: after the job parameters are set up, the path to the libraries

required for the computation needs to be added into environment and then

the R code can be executed in batch mode.

Another way to utilize many processors on HPC cluster is submitting a job array

(containing many similar job requests). A sample job script is shown below.

#!/bin/bash

#$ -N R-array

#$ -o R_jobarray.log

#$ -j y

#$ -cwd

#$ -t 1-10

-M liang.jing@utsa.edu

-m e

setenv PATH ${PATH}:/share/apps/gsl/bin

setenv LD_LIBRARY_PATH /share/apps/gsl/lib:${LD_LIBRARY_PATH}

R --vanilla --args $SGE_TASK_ID < test_jobarray.R

39

5.5 Running on High Performance Cluster

where -t 1-10 describes how many times the program will be repeated with the

task ID 1-10 assigned to each job. By taking the parameter $SGE TASK ID as an input

argument into R, the R program will be able to perform different codes for each running

job. The corresponding R code should be in the following form.

test_jobarray.R

myarg <- commandArgs()

id <- as.numeric(myarg[length(myarg)])

if(id == 1) {

use method 1

...

}

if(id == 2) {

use method 2

...

}

...

or something like

test_jobarray.R

myarg <- commandArgs()

id <- as.numeric(myarg[length(myarg)])

data <- dataSets[[id]]

analyze the data

...

More details about how to write job scripts can be found on Oxford e-Research

Center1.

1http://www.oerc.ox.ac.uk/computing-resources/osc/support/documentation-help/

job-schedulers/

40

http://www.oerc.ox.ac.uk/computing-resources/osc/support/documentation-help/job-schedulers/
http://www.oerc.ox.ac.uk/computing-resources/osc/support/documentation-help/job-schedulers/

References

[1] M. J. Bayarri and M. E. Castellanos. Bayesian checking of the second levels of

hierarchical models. Statistical Science, 22:322, 2007.

[2] G. E. P. Box and D. R. Cox. An analysis of transformations (with discussion).

Journal of the Royal Statistical Society, Series B, 26:211, 1964.

[3] O. F. Christensen, G. O. Roberts, and M. Sköld. Robust markov chain monte carlo

methods for spatial generalized linear mixed models. Journal of Computational

and Graphical Statistics, 15:1, 2006.

[4] V. De Oliveira, B. Kedem, and D.A. Short. Bayesian prediction of transformed

gaussian random fields. Journal of the American Statistical Association, 92:1422,

1997.

[5] P. J. Diggle, L. Harper, and S. L. Simon. Statistics for the environment 3: pollution

assesment and control, chapter Geostatistical analysis of residual contamination

from nuclea testing, page 89. Wiley, 1997.

[6] P. J. Diggle and P. J. Ribeiro. Model-based Geostatistics. Springer Series in Statis-

tics, 2007.

[7] P. J. Diggle, J. A. Tawn, and R. A. Moyeed. Model based geostatistics (with

discussion). Applied Statistics, 47:299, 1998.

[8] T. Gneiting. Symmetric Positive Definite Functions with Applications in Spatial

Statistics. PhD thesis, University of Bayreuth, 1997.

[9] L. Jing. Bayesian Model Checking for Generalized Linear Spatial Models for Count

Data. PhD thesis, University of Texas at San Antonio, 2011.

41

REFERENCES

[10] B. Matern. Spatial variation. Technical report, Statens Skogsforsningsinstitut,

Stockholm, 1960.

[11] S. E. Olsen. Positionsbestemt dyrkning (forsknings-projekt vedr. gradueret plant-

edyrkning 1992-1996). Technical report, Danmarks JordbrugsForskning, 1997.

[12] Health Resources and Services Administration. Health professions, area resource

file (arf) system. Technical report, Quality Resource Systems, Inc., Fairfax, VA,

2003.

[13] M. Schlather. Introduction to positive definite functions and to unconditional

simulation of random fields. Technical report, Dept. Maths and Stats, Lancaster

University, Lancaster, UK, 1999.

42

	1 Introduction
	1.1 Geostatistical Data
	1.2 Spatial Models with Gaussian Processes
	1.2.1 Gaussian Process Model
	1.2.2 Correlation Function Family

	1.3 Linear Gaussian Process Model
	1.4 Generalized Linear Spatial Models
	1.4.1 The Poisson Log-normal Spatial Model
	1.4.2 The Binomial Logistic-normal Spatial Model

	2 Data Simulation and Visualization
	2.1 Simulate Locations
	2.2 Simulate Data
	2.3 Data Visualization
	2.4 Integrated Data Sets

	3 Estimation and Prediction
	3.1 Posterior Sampling
	3.1.1 Environment Setting
	3.1.2 Run MCMC Algorithms
	3.1.3 Generate Parallel Chains

	3.2 Posterior Sample Handling
	3.2.1 Burn-in, Thinning, and Mixing
	3.2.2 Examine Posterior Samples

	3.3 Prediction

	4 Model Checking
	4.1 Bayesian Model Checking
	4.1.1 Define Diagnostic Statistic
	4.1.2 Simulate Reference Data Sets
	4.1.3 Compare Diagnostic Statistics

	4.2 Transformed Residual Checking
	4.2.1 Approximate Transformed Residuals
	4.2.2 Plot Transformed Residuals
	4.2.3 Calculate Hellinger Distance
	4.2.4 Build Baseline Distribution
	4.2.5 Determine the Goodness of Fitting

	5 Installation and Running
	5.1 Dependent Tools and Libraries
	5.2 Install in Linux/Unix
	5.2.1 Install Dependent Tools
	5.2.2 Install {geoCount}

	5.3 Install in Windows
	5.3.1 The Simple Way
	5.3.2 The Hard Way

	5.4 Conflict with Optimized BLAS
	5.5 Running on High Performance Cluster

	References

