
eatRep: a package to analyze multiple imputed
data in complex survey designs

Sebastian Weirich
Humboldt University Berlin, Germany

March 4, 2014

Abstract

Estimation of simple descriptive statistics becomes cumbersome, if
the sample cannot be considered to be a (completely) random draw
from the population for which descriptives should be interpreted. This
occurs in weighted samples or clustered samples. The same is true if
the variables of interest stem from a multiple imputation process and
occur, for example, as plausible values. This tutorial describes some
basic analyses to compute descriptives in complex survey designs us-
ing the R package eatRep, which was designed mainly to supply repli-
cations methods in R. To date, only the Jackknife-2 (JK2) method
is supported. Some functions overlap with methods provided in the
computer software WesVar (Westat, 2000)—in this case the package
only allows for executing these analyses in R, which may be easier to
implement due to a syntax related interface. Some methods in WesVar
are not implemented in eatRep yet, for example methods of balanced
repeated replicates (BRR) or bootstrapping or even JK1. However,
some methods are only implemented in eatRep, for example analyses
for nested imputed data or linear logistic regression models.

eatRep heavily relies on the survey package (Lumley, 2012) which
functions has been extended by methods for multiple imputed data.
While the functional principle of survey is based on replication of con-
ventional analyses, eatRep is based on replication of survey analyses
to take multiple imputed data into account.

1

1 Introduction

In a completely random sample, the mean

x̄ = n−1

n∑
i=1

(xi) (1)

is an unbiased estimate for the corresponding mean

µ = N−1

N∑
i=1

(xi) (2)

of the underlying population the sample was drawn from. This does not hold
for dispersion measures (variance and standard deviation), as the variance in
a sample is always less than the variance in the population the sample was
drawn from. The transformation, however, is very easy made: The variance
in a sample is multiplied by n/(n− 1) to obtain population variance, where
n is the sample size. Based on

σ2 = N−1

N∑
i=1

(xi − µ)2 (3)

for the population with N elements, we apply

s2 = (n− 1)−1

n∑
i=1

(xi − x̄)2 (4)

to estimate population variance from a sample of size n. In a weighted sample,
i.e. if the population weights differ between examinees in the sample, mean
and variance may be estimated by incorporating these population weights.
(In a completely random sample, these weights equal 1 for each examinee.)

x̄w =
n∑

i=1

(wi

W
xi

)
, (5)

s2w =
n∑

i=1

wi

W − 1
(xi − x̄)2, (6)

where wi is the case weight of the ith person, and W is the sum over all case
weights, i.e. W =

∑
wi. To summary, the crucial point in the estimation

2

of population variance estimates is the factor n/(n− 1). Unfortunately, this
factor only applies when we sample (conditionally) independently from the
population, as in completely random samples or weighted random samples.
In a clustered sample, however, where schools or classes are sampling units
instead of single persons, the relationship between sample and population
variance is not so clear at all. The reason is that persons within a cluster
(for example pupils in a class) often share a common variance. The sample
variance underestimates the population variance, but more severely than in-
dicated by the factor n/(n−1). To estimate the relationship between sample
and population variance, it is necessary to estimate the variance explained
by the cluster.

Without taking the cluster structure into account, we would not only ob-
tain biased variance estimates but biased standard errors, too (Luke, 2009).
This problem occurs in the same way for estimation of frequency tables,
quantiles or estimates of (linear) regression models. To gain unbiased es-
timates, several replication methods were introduced, which based on the
same principle: To estimate the proportion by which the variance in the
sample is underestimated due to a clustered structure (Lumley, 2004). In
the Jackknife-2 (JK2) procedure which is the only procedure implemented
in eatRep to date, this is implemented by reproducing the original sample
to several replicates. In each replicate one sampling unit (e.g. one class) is
replaced by another class, which therefore occurs two times in the sample.
Each replicate is analyzed if it would have been a completely random sample.
Recognize what is to be expected then: If the variance is explained partially
by the clusters, removing one sampling unit should decrease the variance of
the sample slighty. Conversely, the point estimates of each replication sam-
ple should vary slightly. The variance in the point estimates between the
replicates is used to estimate unbiased parameters. Otherwise, if there is no
variance between clusters, removing one cluster would have no effect on the
variance estimate, and the point estimates between replicates would have no
variance. In this case replication methods will result in exactly the same vari-
ance estimates and standard errors as they would follow from conventional
analysis.

For the purpose of illustration, assume a simple population mean which
has to be estimated from a completely random sample of N = 1000. To
estimate the standard error of this mean, we may apply a rather laborious

3

method: to draw 100 samples (with replacement) from our original sample,
each of N = 1000, and compute the mean in each sample. The standard
deviation of the 100 means is the standard error of the mean estimate. Of
course, this bootstrap method is far to cumbersome, as in a random sample
the standard error can be estimated in a much more easier way. However,
in a clustered sample, an extension of this bootstrap method is appropriate
indeed. Several software (Westat, 2000) and free R packages such as survey

(Lumley, 2012) do allow for several replication methods.

The situation is becoming still more complicated when the variables in
the data to be analysed occur as (multiple) imputed data, for example as
plausible values. Where missing values may cause biased parameters, analy-
ses are conducted with imputed data. Often, the original data which includes
missing values is reproduced several times, whereas the missing entries are
filled with a set of plausible values, which results in several imputed data
sets. To gain unbiased parameter estimates, the analyses are conducted for
each data set separately and pooled afterwards according to Rubin (1987).

If we have both, a clustered sample with multiple imputed data, both
methods have to be combined. This leads to a replication of replications.
Analyses have to be repeated to account for the clustered structure, and the
results of these replications have to be repeated to account for multiple im-
puted data. In the following, we refer to ”cluster replicates” and ”imputation
replicates” to differentiate between both.

2 Estimate some population descriptives

In this example, we use some artificial data from the context of educational
research. We may think of a stratified clustered sample of German fourth-
grade primary school students whose reading and writing competencies are
measured. Proficiency estimates obtained from a Item response Theory (IRT)
marginal model are included as plausible values. Each plausible value may
be recognized as an imputation of the latent competence construct.

> str(reading_writing)

'data.frame': 4619 obs. of 25 variables:
$ idstud : chr "LandA01010401" "LandA01010402" "LandA01010403" "LandA01010404" ...
$ wgtSTUD : num 60 60 60 60 60 ...

4

$ sex : Factor w/ 2 levels "female","male": 1 2 1 1 2 2 1 1 2 2 ...
$ country : Factor w/ 3 levels "LandA","LandB",..: 1 1 1 1 1 1 1 1 1 1 ...
$ JKZone : num 40 40 40 40 40 40 40 40 40 40 ...
$ JKrep : num 0 0 0 0 0 0 0 0 0 0 ...
$ reading_score1 : num 631 614 549 663 522 ...
$ reading_score2 : num 708 588 586 618 534 ...
$ reading_score3 : num 758 613 579 613 443 ...
$ writing_score1 : num 636 618 587 682 567 ...
$ writing_score2 : num 707 579 557 568 593 ...
$ writing_score3 : num 672 612 642 493 522 ...
$ passed_reading1: num 1 1 1 1 1 1 0 0 1 1 ...
$ passed_reading2: num 1 1 1 1 0 1 1 0 1 1 ...
$ passed_reading3: num 1 1 1 1 0 1 1 0 1 1 ...
$ passed_writing1: num 1 1 1 1 1 1 0 1 1 1 ...
$ passed_writing2: num 1 1 1 1 1 1 1 0 1 1 ...
$ passed_writing3: num 1 1 1 0 0 1 1 1 1 0 ...
$ zehisei1 : num 5 3 3 3 4 3 5 1 4 3 ...
$ zehisei2 : num 5 3 3 3 4 3 5 3 4 4 ...
$ zehisei3 : num 5 3 3 3 4 3 5 3 4 3 ...
$ zehisei4 : num 5 3 3 3 4 3 5 4 4 4 ...
$ zehisei5 : num 5 3 3 3 4 3 5 2 4 3 ...
$ income1 : num 2154 1987 2109 2067 2039 ...
$ income2 : num 2136 1863 1994 2023 2147 ...

Requesting the data structure provides us with information about the
number and type of variables and the number of examinees. "idstud" is a
unique person identifier of the 4,619 examinees, "wgtSTUD" a person weight,
"country" denotes the country the person comes from. "JKZone" and "JKrep"

denote jackknifing variables which contains information about which unit has
to be replaced by which other unit in which replicate of the original data. We
may think of "reading_score1", "reading_score2" and "reading_score3"

as three plausible values for the reading competence. Please note that the
three imputations of the reading competence occur as three different variables
whereas they conceptually belong to one common competence measure. This
is quite usual if multiple imputed data is presented in a wide-format dataset.
eatRep strictly requires the wide format which becomes apparent when deal-
ing with nested multiple imputations. Please note further that the dataset
does not contain any replicates, only the information required for generating
them, captured in the "JKZone" and "JKrep" variables.

2.1 Populations means, standard deviations, variances
and mean differences

We now want to compute the means by each country, considering the clus-
tered structure as well as the multiple imputed data structure. The replicates

5

do not need to be created separately, as they will be generated in each anal-
ysis automatically. Even in large data sets this takes only a few seconds.

> means <- jk2.mean(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD", JKZone = "JKZone",
+ JKrep = "JKrep", groups = list(federalState = "country"),
+ dependent = list(reading = c("reading_score1", "reading_score2", "reading_score3")))

Create 81 replicate weights.
Found 1 grouping variable(s).
Run 1 analyses overall.
Use 3 replication(s) overall.
...
Pooling Standard errors. Assume no nested structure.

One may ask whether the groups argument has to be specified in this
laborious list format. The answer is: If the grouping variable is multiple
imputed as well, its imputations have to be specified in a character vector of
corresponding variable names as well as in the dependent argument. A state-
ment like groups = list(federalState = c("country1", "country2")) then
would refer to two imputations of the group variable.

While the function is operating, some additional information is displayed
on console. First we see that 81 replicate weights are created due to 81 dis-
tinct jackknifing zones in the JKZone variable. This information refers to
the ”cluster replicates” and implies that the subsequent analysis has to be
repeated 81 times for each imputation. In each of the 81 replication samples,
one unit (e.g. school) of a certain jackknifing zone is missing and the weights
of the other unit of the same zone are doubled. The data in all other zones
remain unchanged. Each analysis revealed slighty different results. This vari-
ation is used to estimate the sampling variance. But why it is talking about
3 replications overall? This refers to the ”imputation replicates”, because we
have defined three plausible values of the dependent variable. Whereas we
only change the weights in the ”cluster replicates” and work with identical
variables, we change the variables (e.g. the imputations) between the ”impu-
tation replicates”. To sum up, for each of the three imputations, 81 analyses
are executed, which results in 3 × 81 = 243 analyses overall. The little dots
continuously appearing on the console therefore refer to ”imputation repli-
cates” and are intended to work as a rough progress bar. Each dot represents
one replication. When the procedure finished, the results are pooled in the
case of more than one imputation.

> means[c(1:4,19:20),]

6

group depVar modus parameter coefficient value federalState
1 LandA reading jk2.weighted Ncases est 1.187318e+05 LandA
2 LandA reading jk2.weighted Ncases se 1.726642e+03 LandA
3 LandB reading jk2.weighted Ncases est 5.398038e+04 LandB
4 LandB reading jk2.weighted Ncases se 1.135124e+03 LandB
19 LandA reading jk2.weighted sd est 1.041336e+02 LandA
20 LandA reading jk2.weighted sd se 2.071056e+00 LandA

The output is a data frame in the long format with 30 rows. To keep
the overview, only a few selected rows are displayed here. For each subpop-
ulation denoted by the groups statement (here: LandA, LandB and LandC),
each dependent variable (here: only the reading competence), each param-
eter (we requested mean, variance, standard deviation and sample size or
population size) and each coefficient (i.e., the estimate and the corresponding
standard error) the corresponding value is given. To display the results in the
more common wide format, use the reshape2 package. A possible call would
be reshape2::dcast(means, group ~ parameter+coefficient, value.var =

"value"). Alternatively, an abbreviated display of the results is provided by
the dM function (whereas dM stands for ”display means”). You may think
of dM as a simple summary function which is not intended for saving re-
sults or further processing as the results are displayed in an abbreviated (i.e.,
rounded) manner to offer clear arrangement on console. The dM function has
an additional argument to omit displaying parameters or coefficients you are
not interested at the moment.

> dM(means, omitTerms = c("var", "Ncases","NcasesValid", "meanGroupDiff"))

depVar federalState mean_est mean_se sd_est sd_se
1 reading LandA 515.749 5.320 104.134 2.071
5 reading LandB 492.773 5.627 103.384 4.199
9 reading LandC 511.811 4.030 103.330 3.080

Is it possible to see how the results would change if we do not consider the
clustered structure? Sure is is! Simply leave out the jackknifing arguments
JKZone and JKrep. The results will be pooled only due to multiple imputed
data:

> means <- jk2.mean(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD",
+ groups = list(federalState = "country"),
+ dependent = list(reading = c("reading_score1", "reading_score2", "reading_score3")))

No jacknifing variables. Assume no cluster structure.
Found 1 grouping variable(s).
Run 1 analyses overall.
Use 3 replication(s) overall.

Pooling Standard errors. Assume no nested structure.

7

> dM(means, omitTerms = c("var", "Ncases","NcasesValid", "meanGroupDiff"))

depVar federalState mean_est mean_se sd_est sd_se
1 reading LandA 515.749 2.665 101.224 NA
5 reading LandB 492.773 3.218 101.277 NA
9 reading LandC 511.811 2.745 100.405 NA

We see that the means are completely unaffected, but the standard de-
viation now is lower. Consequently, also the standard errors for the mean
estimates are considerably lower. (Standard errors for standard deviations
and for variances are not implemented yet.) If we decide to leave out the
weights as well, we would additionally expect to receive different means now:

> means <- jk2.mean(dat = reading_writing, ID = "idstud", groups = list(federalState = "country"),
+ dependent = list(reading = c("reading_score1", "reading_score2", "reading_score3")))

No jacknifing variables. Assume no cluster structure.
No weights specified. Use weight of 1 for each case.
Found 1 grouping variable(s).
Run 1 analyses overall.
Use 3 replication(s) overall.

Pooling Standard errors. Assume no nested structure.

> dM(means, omitTerms = c("var", "Ncases","NcasesValid", "meanGroupDiff"))

depVar federalState mean_est mean_se sd_est sd_se
1 reading LandA 518.783 2.810 101.224 NA
5 reading LandB 493.894 2.940 101.277 NA
9 reading LandC 514.113 2.775 100.405 NA

Two possible interesting features should be emphasized in the following.
First assume that we do not have one, but two grouping variables, namely
federalState and gender. As we have three federal states and two gender
values, the whole population is splitted into 3 × 2 = 6 subpopulations for
which descritives can be requested. If we additionally are interested in the
descriptives of the whole population or the descriptives within each state,
but together for both gender groups, we can use the group.splits argument
to particularly specify the groups we are interested in. Let us consider for
example the two group variables federalState and gender. If group.splits

equals 2 (the default, i.e., the number of grouping variables), descriptives for
the 3× 2 = 6 subpopulations are computed. If group.splits is 1:2, descrip-
tives for each state (e.g., across gender) and each gender group (e.g. across
federal states) additionally are computed. If group.splits is 0:2, descrip-
tives also for the whole population (e.g. across gender and federal states) are
computed.

8

The second feature is about mean differences. Suppose you are inter-
ested in the gender difference within each federal state. The grouping vari-
able for which mean differences should be computed has to be specified in
the group.differences.by argument. For a grouping variable with K lev-
els, all K!/(2! ∗ (K − 2)!) comparisons are computed. It is important that
the group defined in group.differences.by also has to occur in the groups

statement, otherwise group.differences.by will be ignored. To estimate
gender differences within each federal state, gender and federal state have to
be part of the groups statement, whereas only gender has to be used in the
group.differences.by argument. Both features are illustrated in the follow-
ing example:

> means <- jk2.mean(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD", JKZone = "JKZone",
+ JKrep = "JKrep", groups = list(federalState = "country", gender = "sex"),
+ group.splits = c(0,2), group.differences.by = "gender",
+ dependent = list(reading = c("reading_score1", "reading_score2", "reading_score3")))

Create 81 replicate weights.
No group(s) specified. Analyses will be computed only for the whole sample.
Found 1 grouping variable(s).
Run 1 analyses overall.
Use 3 replication(s) overall.
...
Pooling Standard errors. Assume no nested structure.
Create 81 replicate weights.
Found 2 grouping variable(s).
Run 1 analyses overall.
Use 3 replication(s) overall.
...
Pooling Standard errors. Assume no nested structure.

First note the group.splits is set to c(0,2), which means that we re-
quest descriptives for the whole population and the 6 subpopulations. Con-
sequently, two analyses are conducted. The group.differences.by only ap-
plies for the second analysis, as the gender group is not considered relating
to the whole population analysis. Please note that you have to use the name
of the group variable, not the group variable itself: group.differences.by

= "gender" instead of group.differences.by = "sex"! To estimate gender
differences across all federal states, only gender has to be part of the group

statement, and only gender has to be used in the group.differences.by

argument. The output of the analysis is nearly the same as we would have
omitted the group.differences.by argument, but now, some additional lines
have joined. Again, we may use the dM function to display the part of the
results we are interested in—note that now we do not exclude meanGroupDiff

9

from the results to summarize:

> dM(means, omitTerms = c("var","Ncases", "NcasesValid"))

depVar group mean_est mean_se
1 reading LandA_female 534.061 6.030
5 reading LandA_male 499.532 6.799
9 reading LandB_female 500.607 6.071
13 reading LandB_male 485.300 6.820
17 reading LandC_female 521.785 4.849
21 reading LandC_male 502.114 5.623
25 reading federalState=LandA____female.vs.male NA NA
27 reading federalState=LandB____female.vs.male NA NA
29 reading federalState=LandC____female.vs.male NA NA
31 reading wholeGroup 508.857 3.675

meanGroupDiff_est meanGroupDiff_se sd_est sd_se
1 NA NA 99.255 3.744
5 NA NA 105.682 3.866
9 NA NA 98.768 4.378
13 NA NA 107.116 5.420
17 NA NA 100.097 4.166
21 NA NA 105.533 3.596
25 -34.529 7.232 NA NA
27 -15.307 6.318 NA NA
29 -19.671 6.872 NA NA
31 NA NA 104.336 1.702

The output now changed slightly: Instead of several group columns, only
one column for group membership is provided. The last line labelled whole-

Group provides results concerning the whole population. The line labelled
LandC_male contains values for the males in LandC. Moreover, three mean
differences were computed. In each federal state, the difference between males
and females is given.

2.2 Frequency tables

Computation of frequency tables works in the same manner as in the ex-
amples mentioned before. Representative for several possible analyses only
one example is given below. First of all, let’s have a look at the backmost
columns in our example data:

> reading_writing[1:5,19:23]

zehisei1 zehisei2 zehisei3 zehisei4 zehisei5
18916 5 5 5 5 5
18917 3 3 3 3 3
18918 3 3 3 3 3
18919 3 3 3 3 3
18920 4 4 4 4 4

10

The Hisei variables "zehisei1", "zehisei2", "zehisei3", "zehisei4" and
"zehisei5" indicates high versus low socio-economical status which is clus-
tered in five groups. Hence, each variable consists of five distinct values.
Categorical variables are often represented as factors in R, which is quite
straightforward. However, the "zehisei" variables are of class numeric. This
is an inconsistency which may cause annoying misinterpretations when such
variables are called in functions related to the generalized linear model like
aov(), glm() etc. For the computations of frequency tables it is not necessary
to convert the variable class to factor.

We now are interested in the relative frequencies of this groups in the
different countries and within each country for different groups of gender. As
before, we want to take the cluster structure and multiple imputations into
account.

> freqs <- jk2.table(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD",
+ JKZone = "JKZone", JKrep = "JKrep",
+ groups = list(federalState = "country", gender = "sex"),
+ dependent = list(Hisei = paste("zehisei",1:5,sep="")))

Create 81 replicate weights.
Found 2 grouping variable(s).
Run 1 analyses overall.
Use 5 replication(s) overall.
.....
Pooling Standard errors. Assume no nested structure.

> dT(freqs)

depVar federalState gender 1_est 1_se 2_est 2_se 3_est 3_se 4_est 4_se
1 Hisei LandA female 0.042 0.011 0.258 0.023 0.359 0.019 0.263 0.021
11 Hisei LandA male 0.037 0.008 0.279 0.027 0.374 0.020 0.240 0.020
21 Hisei LandB female 0.061 0.011 0.270 0.019 0.359 0.021 0.251 0.019
31 Hisei LandB male 0.047 0.012 0.290 0.022 0.365 0.023 0.224 0.021
41 Hisei LandC female 0.048 0.010 0.367 0.018 0.398 0.021 0.158 0.014
51 Hisei LandC male 0.055 0.011 0.349 0.023 0.369 0.020 0.165 0.017

5_est 5_se
1 0.077 0.011
11 0.070 0.013
21 0.058 0.011
31 0.075 0.013
41 0.028 0.007
51 0.062 0.010

The output is a single data frame in the long format. To make the output
more pleasing to the eye, a short summary function dT is just waiting to do
her job, to summarize the results. For each gender group in each country,
the relative frequency of each Hisei category is given with its standard er-
ror. The first column refers to the dependent variable for which we want to

11

compute frequencies. The next two columns refer to the groups specified in
the analysis (in our example: federalState and gender). The “labels” of the
dependent variable now are captured in the column names of the summary
table. We see that in federal state "LandA" the first Hisei category labelled
"1" has a relative frequency of about 4.2 percent in the female group and 3.7
percent in the male group.

As in the examples mentioned before, these analyses may be conducted
without considering clustered structure. See whether the standard errors will
change. Technically, this function even works when the results are theoret-
ically questionable. First, let’s imagine we have no ”5” – values in the first
and second imputation of the Hisei:

> reading_writing2 <- reading_writing
> reading_writing2[which(reading_writing2[,"zehisei1"] == 5),"zehisei1"] <- 4
> reading_writing2[which(reading_writing2[,"zehisei2"] == 5),"zehisei2"] <- 4

Here, we replaced the ”5” values by ”4” values. Moreover, we assume
missings on the Hisei imputations 2, 3 and 4. Missings on an imputed vari-
able? Yes, for example, when we want to estimate the proportion of missing-
ness. (Conceptually, however, it makes more sense to define the categories
by certain categories, for example c("hisei_group1", "hisei_group2", "hi-

sei_group3", "hisei_group4", "hisei_group5", "no_anwer").)

> cols <- paste("zehisei", 2:4, sep = "")
> for (i in cols) {
+ casesToNA <- sample(x = c(1:nrow(reading_writing2)), size = 12, replace = FALSE)
+ reading_writing2[casesToNA ,i] <- NA
+ }

For each of the Hisei imputations 2, 3 and 4, we choose 12 random cases
to insert a missing value. Will the function have to surrender when the data
structure is of this kind?

> freqs2 <- jk2.table(dat = reading_writing2, ID = "idstud", wgt = "wgtSTUD",
+ separate.missing.indikator = TRUE, JKZone = "JKZone", JKrep = "JKrep",
+ groups = list(federalState = "country", gender = "sex"),
+ dependent = list(Hisei = paste("zehisei",1:5,sep="")))

Create 81 replicate weights.
Found 2 grouping variable(s).
Run 1 analyses overall.
Use 5 replication(s) overall.
.....
Pooling Standard errors. Assume no nested structure.

12

> dT(freqs2)

depVar federalState gender 1_est 1_se 2_est 2_se 3_est 3_se 4_est 4_se
1 Hisei LandA female 0.042 0.011 0.258 0.023 0.359 0.019 0.292 0.051
13 Hisei LandA male 0.037 0.008 0.279 0.027 0.373 0.020 0.267 0.051
25 Hisei LandB female 0.061 0.011 0.270 0.019 0.359 0.021 0.274 0.041
37 Hisei LandB male 0.047 0.012 0.289 0.021 0.364 0.022 0.252 0.048
49 Hisei LandC female 0.048 0.010 0.367 0.018 0.398 0.021 0.169 0.026
61 Hisei LandC male 0.055 0.011 0.349 0.023 0.368 0.020 0.190 0.040

5_est 5_se missing_est missing_se
1 0.047 0.047 0.003 0.004
13 0.042 0.044 0.002 0.002
25 0.035 0.036 0.001 0.001
37 0.046 0.047 0.001 0.002
49 0.017 0.018 0.002 0.003
61 0.037 0.038 0.001 0.002

Without bothering you unduly with the output, I only want to mention
two details: First a new category has joined to the output, which is labelled
"missing". Secondly, remember what we have done with our data distur-
bance. We replaced the ”5” values from the first and second imputation.
Now, as group ”5” no longer appears in both imputations, the distribution of
the categories now vary more widely between imputations. In the concept of
multiple imputation this reflects the uncertainty due to missing data. Con-
sequently, the standard errors especially for group ”5” now have grown up,
compared to the preceding analysis.

2.3 Quantiles

Estimation of quantiles for numerical variables is possible using the function
jk2.quantile. All related analyses mentioned up to this point apply in the
same way. Note that these analyses apply for numerical dependent variables.
See the examples in the help file of jk2.quantile().

3 Generalized linear models

Considering multiple imputations and clustered structure in the estimation
of generalized linear models is based on the same principes mentioned be-
fore. However, some additional comments due to specific characteristics of
regression models have to be made. First we now have another type of

13

variable—independent variables, which may occur as multiple imputed vari-
ables, too. Second, we (optionally) have to specify the regression expression,
what about we may are confused, as one variable occurs in different labels
in multiple imputed data sets. Third, we will have to specify the kind of
regression we propose to estimate, for example linear or logistic regression.
We start with a simple example using the same data as before.

> mod1 <- jk2.glm(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD", JKZone = "JKZone",
+ JKrep = "JKrep", groups = list(country = "country"),
+ dependent = list(reading = paste("reading_score", 1:3, sep = ""),
+ writing = paste("writing_score", 1:3, sep = "")),
+ independent = list(gender = "sex", INCOME = c("income1", "income2")),
+ complete.permutation = "no", glm.family = gaussian(link="identity"))

Create 81 replicate weights.
Found 1 grouping variable(s).
Run 2 analyses overall.
Use 3 replications overall.
...
Pooling Standard errors. Assume no nested structure.
Use 3 replications overall.
...
Pooling Standard errors. Assume no nested structure.

As we might have expected, the outcome is a single data frame in the long
format. And long really means long! For our purpose, it may be sufficient
to content ourself with the summary provided by dG. But beforehand let us
consider how many regression analyses are conducted and how many results
we expect to find. The message on the console speaks of about ”2 analy-
ses overall” according to two dependent variables, reading and writing. But
strictly speaking, we have estimated six regression analyses, as the model is
fitted in each group separately. As we specified one group variable dividing
the data into three distinct groups, for which we instruct jk2.glm() to fit the
regression model separately, we find results of the three models for each of the
two dependent variables in the results. More specifically, for each country,
an intercept and two regression coefficients according to gender and INCOME

are estimated. The dG function allows us to have a look only at a specific
result out of the 6 analyses. analyses = 1:2 advises the function to display
the results of the first and second analysis. First we should consider that
each single analyses is characterized by two variables, the group for which
the model is fitted, and the dependent variable. In the heading we find infor-
mation about both. The actual regression results are displayed underneath.

> dG(mod1, analyses = 1:2)

14

groups: country = LandA
dependent Variable: reading

parameter est se t.value p.value
1 (Intercept) -82.461 52.569 -1.569 0.117
2 INCOME 0.306 0.025 12.033 0.000
3 gendermale -31.851 7.025 -4.534 0.000

R-squared: 0.148; SE(R-squared): 0
Nagelkerkes R-squared: 0.597; SE(Nagelkerkes R-squared): 0.002
1659 observations and 1656 degrees of freedom.
--

groups: country = LandB
dependent Variable: reading

parameter est se t.value p.value
1 (Intercept) -72.903 77.878 -0.936 0.349
2 INCOME 0.286 0.038 7.567 0.000
3 gendermale -15.644 5.976 -2.618 0.009

R-squared: 0.107; SE(R-squared): 0
Nagelkerkes R-squared: 0.501; SE(Nagelkerkes R-squared): 0.001
1573 observations and 1570 degrees of freedom.

Remember what was said about factors in the chapter about frequency
tables: The gender variable now has to be defined explicitly to be of class
factor! Otherwise, albeit gender variable may be coded as 0/1, it would be
treated to be a continuous numeric variable. With only two levels—male
and female—this may have no effect on the results, but consider a factor
variable with three levels, which may be coded 0, 1 and 2. We are interested
in two coefficients which correspond to the effect of level 1 vs. level 0 and
the effect of level 2 vs. level 0. If we miss to define the variable to be of class
factor, only one coefficient is computed, and the variable is assumed to be
continuous. What we see additionally is that R implicitly defined the female
group to be the reference—the regression parameter was labelled gendermale.

Now we try something different. First we define gender to be our de-
pendent variable. Secondly, we use country as a predictor. This is to test
whether the proportions of gender vary between countries. To simplify dis-
playing the results, we use the same workaround as in the example before.

> mod1 <- jk2.glm(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD", JKZone = "JKZone",
+ JKrep = "JKrep", dependent = list(gender = "sex"),
+ independent = list(federalState = "country") ,
+ complete.permutation = "no", glm.family = binomial(link="logit"))

Create 81 replicate weights.
No group(s) specified. Analyses will be computed only for the whole sample.

15

Found 1 grouping variable(s).
Run 1 analyses overall.
Use 1 replications overall.
.
> dG(mod1)

groups:
dependent Variable: gender

parameter est se t.value p.value
1 (Intercept) 0.121 0.049 2.458 0.014
2 federalStateLandB -0.074 0.077 -0.964 0.335
3 federalStateLandC -0.093 0.068 -1.377 0.168

R-squared: 0; SE(R-squared): NA
Nagelkerkes R-squared: 0; SE(Nagelkerkes R-squared): NA
4619 observations and 4616 degrees of freedom.

As we have no imputed variables, only one replication is run. No pooling
has taken place. Although we have only defined one independent variable,
we obtain two regression coefficients for the two categories of the country
variable. Again, R choosed its favorite reference group by itself. The effects
are expressed in relation to LandA. To interpretate the effects, the coefficients
may be transformed to odds ratios:

> exp(mod1[3:5,"value"])
[1] 1.1291068 0.9285035 0.9109296

In LandB the odds ratio to be male is 0.93 times the corresponding odds
ratio in LandA. The following subsections address three little questions one
might ask oneself.

3.1 How to change reference group at costumer’s op-
tion

As we saw in the preceding section, R choosed the reference group of factor
variables by itself. Persuading R to meet our needs is easier said than done.
The essentially easiest way is a rather dummy method: recode the variable
so that your favourite reference group occurs at first when ordered alphabet-
ically. We will demonstrate this procedure about the gender variable in our
fictitious data set. Remember the first example in section 3—R choosed the
females to be the reference. Why? Simply because female comes before male
in the alphabet. Let’s use the recode() function from the car package to
define a new variable sexRecoded:

16

> library(car)
> reading_writing[,"sexRecoded"] <- car::recode(reading_writing[,"sex"], "'male' = '_male'")

The simple trick of adding a "_" sign to the "male" label provokes R to
sort "_male" before "female" alphabetically. Consequently, "male" is used as
reference group when repeating the first example analysis of section 3.

> mod1 <- jk2.glm(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD", JKZone = "JKZone",
+ JKrep = "JKrep", groups = list(country = "country"),
+ dependent = list(reading = paste("reading_score", 1:3, sep = "")),
+ independent = list(gender = "sexRecoded", INCOME = c("income1", "income2")),
+ complete.permutation = "no", glm.family = gaussian(link="identity"))

Create 81 replicate weights.
Found 1 grouping variable(s).
Run 1 analyses overall.
Use 3 replications overall.
...
Pooling Standard errors. Assume no nested structure.

> dG(mod1, analyses = 1)

groups: country = LandA
dependent Variable: reading

parameter est se t.value p.value
1 (Intercept) -114.313 51.188 -2.233 0.026
2 INCOME 0.306 0.025 12.033 0.000
3 genderfemale 31.851 7.025 4.534 0.000

R-squared: 0.148; SE(R-squared): 0
Nagelkerkes R-squared: 0.597; SE(Nagelkerkes R-squared): 0.002
1659 observations and 1656 degrees of freedom.

3.2 How to modify the regression statement

When we call glm(), we are advised to specify the formula statement of the
regression model. In jk2.glm(), however, the regression statement is created
automatically by the independent variables connected by a "+" symbol. As
jk2.glm() is advised to accomplish multiple imputations, the names of one
and the same variable change between imputations. Consequently, the regres-
sion statement is adapted between replications. However, regression models
which go beyond simple addition of predictors, have to be specified manually.
The right side of the regression formula has to defined via the reg.statement

argument as a string, whereas the names of the independent variables oc-
curring in the independent argument have to be used. We illustrate this
procedure by seizing on the preceding example. We have two independent
variables, gender and INCOME. Without specifying any reg.statement argu-
ment, jk2.glm() implicitly uses gender + INCOME. Modelling an additional

17

interaction of both variables needs to be defined explicitly:

> mod1 <- jk2.glm(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD", JKZone = "JKZone",
+ JKrep = "JKrep", groups = list(country = "country"),
+ dependent = list(reading = paste("reading_score", 1:3, sep = "")),
+ independent = list(gender = "sexRecoded", INCOME = c("income1", "income2")),
+ reg.statement = "gender * INCOME",
+ complete.permutation = "no", glm.family = gaussian(link="identity"))

Create 81 replicate weights.
Found 1 grouping variable(s).
Run 1 analyses overall.
Use 3 replications overall.
...
Pooling Standard errors. Assume no nested structure.

Please not that the regression statement—if specified—must contain all
variables defined in the independent argument. Note further that the names
of the variables occurring in the independent argument are used instead of
single imputation variable names. Don’t try your luck with reg.statement

= "sexRecoded * income1"! This logic implies that the list of variables in
the independent argument has to be named. Consequently, independent =

list("sexRecoded", c("income1", "income2")) will only work as long as no
reg.statement argument is specified. Let’s have a look at the output of the
first analysis:

> dG(mod1, analyses = 1)

groups: country = LandA
dependent Variable: reading

parameter est se t.value p.value
1 (Intercept) -167.849 79.191 -2.120 0.034
2 INCOME 0.333 0.039 8.494 0.000
3 genderfemale 146.080 107.127 1.364 0.173
4 genderfemale:INCOME -0.057 0.052 -1.086 0.278

R-squared: 0.149; SE(R-squared): 0
Nagelkerkes R-squared: 0.6; SE(Nagelkerkes R-squared): 0.003
1659 observations and 1655 degrees of freedom.

3.3 Which of both determination coefficients should I
pay attention?

The output of each jk2.glm() analysis also contains the pooled determination
coefficient, R2, most frequently the conventional R2 and Nagelkerke’s R2.
However, in linear regression models, i.e. if the identity link is used, assuming

18

normally distributed errors, the conventional R2 should be used to interpret
explained variance. In log-linear regression models, i.e. if the binomial link
function is used, Nagelkerke’s R2 should be used. The reason for reporting
both coefficients is the programming disability of the package developer.

4 Nested imputations

The next to last chapter of this little tutorial is reserved to the problem of
nested imputation. The general concept is described in Rubin (2003). At
this point, only some specific aspects which are relevant in large scale as-
sessments, are mentioned. Suppose you want to estimate IRT proficiencies
(often denoted θ) in a specific domain. Applying an extensive marginal model
which comprehends of items responses and background information as well,
the posterior distribution of each examinees’ θ is specified. Without any
certain proficiency value of a specific examinee, plausible values are drawn
from the posterior of each examinee. Conceptually, plausible values are mul-
tiple imputations of the inherently missing variable θ and may analyzed in
standard statistic procedures according to the generalized linear model. To
obtain valid estimates and standard errors, the results have to be pooled ac-
cording to Rubin (1987).

Suppose you have missing data in the background variables as well, which
have to be imputed in the first step, which may result in M = 5 data sets. For
each data set a marginal IRT model is specified and N = 20 plausible values
are drawn. Overall 5 × 20 = 100 plausible values in a dependency structure
will result from the analysis. Formally, we now have nested imputed data.
To pool the results, the formulas in Rubin (1987) cannot be applied, as the
plausible values do not stem from a common “nest”. The interdependence
has to be taken into account. Whereas the conventional pooling formulas
split the overall variance in the variance within imputation and the variance
between imputation, where the latter one is used to estimate the uncertainty
due to imputation, the formulas for nested imputation extend the old ones
by splitting the variance between imputation in the within-nest variance and
the variance between nests. See Rubin (2003) for further details. These var-
ied formulas are also implemented in eatRep.

If the data analysed with eatRep stem from a nested multiple imputation

19

structure, this structure has to be specified. More specifically, eatRep has
to know the number of nests and the number of imputations in each nest.
Moreover, it has to be specified which variable belongs to which imputation
in which nest. The above procedure sounds more complicated than it hope-
fully is.

4.1 Example: Compute descriptives from a nested im-
putation structure

The reading_writing data set ist not very proper for instructional purposes
concerning nested imputations, but we will do our best. First consider the
variables "income1" and "income2". Suppose that these are only two imputa-
tions of an INCOME variable which originally contains missing values. There-
fore, we have M = 2 nests. Now we assume that we have measured only
one domain in our IRT analysis, which we call “ability”. Suppose we draw
three plausible values in each nest, therefore N = 3. The corresponding vari-
ables are "reading_score1", "reading_score2" and "reading_score3" for the
first nest, and "writing_score1", "writing_score2" and "writing_score3"

for the second nest. (I am aware that the variable labelling is not disarm-
ingly intuitive that way.) Overall, we have 3 × 2 = 6 plausible values in a
dependency structure. We want to estimate descriptives for groups of high
vs. low income, and for each country separately. First we create an indicator
of high vs. low income, where we set the threshold arbitrarily at 2000.

> reading_writing[,"income_ind1"] <- factor(ifelse(reading_writing[,"income1"]>2000,"high","low"))
> reading_writing[,"income_ind2"] <- factor(ifelse(reading_writing[,"income2"]>2000,"high","low"))

We than will have to specify two groups for which we want to compute
descriptives. Remember that one group appears as a nested imputed variable:

> means <- jk2.mean(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD",
+ JKZone = "JKZone", JKrep = "JKrep",
+ groups = list(country = "country", INCOME = c("income_ind1","income_ind2")),
+ dependent = list(ability = list(nest1 = paste("reading_score",1:3,sep=""),
+ nest2 = paste("writing_score",1:3,sep=""))),
+ complete.permutation = "no")
Create 81 replicate weights.
Found 2 grouping variable(s).
Run 1 analyses overall.
Use 6 replication(s) overall.
......
Pooling Standard errors. Underlying nested structure is assumed.

20

The nested structure has to be specified in the dependent and group ar-
gument. The dependent argument now is no longer a list of character vectors
but a list of lists. As dependent is a list of length 1, only one analysis is
conducted. As the first and only element of dependent is a list instead of a
character vector, a nested imputation structure is implied. As the length of
the first element of dependent is 2, M = 2 nests are assumed. Therefore, the
function expects to find group variables either without any imputations or
with exactly M = 2 imputations. Moreover, the plausible values of the first
nest (labelled "reading_score1", "reading_score2" and "reading_score3")
are assumed to belong to the first imputation of INCOME, labelled "income1".
Correspondingly, the plausible values of the second nest (labelled "writ-

ing_score1", "writing_score2" and "writing_score3") are assumed to be-
long to the second imputation of INCOME, labelled "income2".

Conceptually, the complete.permutation argument should be set to "noth-

ing" if a nested imputation structure is assumed. The output reveals rather
high standard errors, as in our fictitious example the between-nest variance
is rather high.

> dM(means, omitTerms = c("var", "Ncases", "NcasesValid", "meanGroupDiff"))

depVar country INCOME mean_est mean_se sd_est sd_se
1 ability LandA high 542.281 6.213 94.346 5.042
5 ability LandA low 484.866 6.186 102.186 2.922
9 ability LandB high 521.928 5.310 93.385 4.272
13 ability LandB low 464.114 7.357 107.599 6.171
17 ability LandC high 523.521 13.633 97.717 5.415
21 ability LandC low 483.562 12.777 108.226 4.475

4.2 Example: Fit a linear regression model in a nested
imputation structure

The principles of considering the nested structure are quite the same as in
the preceding example. For each country and the both income groups we
want to predict “ability” by gender and INCOME. Using income as group vari-
able likewise allows for investigating whether a potential effect of INCOME on
“ability” differs in groups of high vs. low income. Additionally, we model a
possible interaction between gender and INCOME.

> mod1 <- jk2.glm(dat = reading_writing, ID = "idstud", wgt = "wgtSTUD",
+ JKZone = "JKZone", JKrep = "JKrep",
+ groups = list(country = "country", INCOME.group = c("income_ind1","income_ind2")),

21

+ dependent = list(ability = list(nest1 = paste("reading_score",1:3,sep=""),
+ nest2 = paste("writing_score",1:3,sep=""))),
+ independent = list (gender = "sex", INCOME = c("income1", "income2")),
+ reg.statement = c("gender * INCOME"), glm.family = gaussian(link = "identity"),
+ complete.permutation = "no")

Create 81 replicate weights.
Found 2 grouping variable(s).
Run 1 analyses overall.
Use 6 replications overall.
......
Pooling Standard errors. Underlying nested structure is assumed.

> dG(mod1, analyses = 1)

groups: country = LandA; INCOME.group = high
dependent Variable: ability

parameter est se t.value p.value
1 (Intercept) -22.362 142.139 -0.157 0.875
2 INCOME 0.272 0.065 4.209 0.000
3 gendermale 78.689 221.332 0.356 0.722
4 gendermale:INCOME -0.042 0.102 -0.414 0.679

R-squared: 0.049; SE(R-squared): 0
Nagelkerkes R-squared: 0.387; SE(Nagelkerkes R-squared): 0.004
843.5 observations and 839.5 degrees of freedom.

References

Douglas˜A. Luke. Multilevel modeling. Sage, Thousand Oaks, CA, 2009.

Thomas Lumley. Analysis of complex survey samples. Journal of Statistical
Software, 9(1):1–19, 2004.

Thomas Lumley. Survey: analysis of complex survey samples. R package
version 3.28-2, 2012.

Donald˜B. Rubin. Multiple imputation for no nonresponse in surveys. Wiley,
New York, 1987.

Donald˜B. Rubin. Nested multiple imputation of nmes via partially incom-
patible mcmc. Statistica Neerlandica, 51(1):3–18, 2003.

Westat. WesVar. Westat, Rockville, MD, 2000.

22

