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This document describes the package ’ddepn’ implementing our proposed
network reconstruction algorithm ([2, 1, 3]). Section 1 gives a quick intro-
duction on how to use the package. Section 2 shows how to format the input
arguments for the ddepn function. Section 3 gives an overview on how to
include prior knowledge on network structures and in section 4 code snip-
pets are given for the possible types of calling ddepn. Finally, in section 5
an example for inference on real data is given.

1 QuickStart: using DDEPN for network infer-
ence on simulated data sets

This section shows an exemplary workflow to reconstruct a signalling net-
work from simulated data. Details on formatting the input data matrix as
well as arguments for the function calls can be found in subsequent sections.
An analysis on real data can be performed analogously and an example is
given at the end of this document, showing a simple analysis of longitudi-
nal data measuring protein phosphorylation in HCC1954 breast cancer cells,
generated on Reverse Phase Protein Arrays.

1.1 Simulating data

In this section we show how to generate artificial networks and data. A
reference signalling network is simulated and used to sample measurements
that incorporate the network structure.

First, simulate a network with 6 nodes and 2 distinct input stimuli.
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> set.seed(12345)

> n <- 6

> signet <- signalnetwork(n=n, nstim=2, cstim=0, prop.inh=0.2)

> net <- signet$phi

> stimuli <- signet$stimuli

> weights <- signet$weights

Second get intensities for each protein that are based on the network struc-
ture generated above.

> #plotdetailed(net,weights=weights,stimuli=stimuli,fontsize=15)

> ## sample data

> dataset <- makedata(net, stimuli, mu.bg=1200, sd.bg=400, mu.signal.a=2000, sd.signal.a=1000)

> data <- dataset$datx

1.2 Running the Genetic Algorithm (GA)

Now run the genetic algorithm to reconstruct the network from the data
generated above and compare it to the originally sampled network net.

> ret <- ddepn(data, phiorig=net, inference="netga",

+ maxiterations=150, p=50, q=0.3, m=0.8,

+ usebics=TRUE)

After the reconstruction, the generated network can be viewed as follows:

> plotrepresult(ret)
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Figure 1: Result plot of the genetic algorithm example. Left: the original
graph; Middle: the inferred graph; Right: sensitivity/specificity plot for
comparing the original and inferred graphs
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The destination file of the output of the netga function can be specified by
argument outfile. Figure 7 at the end of this document shows the output for
the GA inference of figure 1.

1.3 Running Markov Chain Monte Carlo Sampling (inhibM-
CMC)

An example run for MCMC sampling follows. Here, the package multicore
is needed, since two parallel and independent MCMC runs are performed.
If multicore is not available on the machine, just set multicores=FALSE to
perform sampling for a single chain.

> # use the original network as prior probability matrix

> B <- net

> B[B==2] <- -1

> # construct a prior matrix with uniform probabilities for each edge

> if(require(multicore)) {

+ ret <- ddepn(data, phiorig=net, inference="mcmc",

+ maxiterations=15010, burnin=1000,

+ usebics=FALSE, lambda=0.01, B=B,

+ multicores=TRUE, cores=2, priortype="laplaceinhib")

+ }

After the sampling one can examine the sampling run:

> plotrepresult(ret$samplings[[1]])
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Figure 2: Result plot of MCMC sampling, analogous to figure 1.

The returned list ret contains two elements, another list with name sam-
plings (ret$samplings), which holds the different runs for the MCMC. In
case of multicores=FALSE, only one run is performed and ret$samplings
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holds only one element. Otherwise cores runs are performed independently
in parallel, and ret$samplings holds cores elements. The second element in
ret with name ltraces is a matrix and holds the score traces of all runs, where
each column corresponds to one trace. Output diagnostics can be produced
using the R-package coda. See figure 3 for some example plots.

> mcmc1 <- mcmc(data=ret$ltraces[-c(1:burnin,mi),1])

> mcmc2 <- mcmc(data=ret$ltraces[-c(1:burnin,mi),2])

> mcmcl <- mcmc.list(mcmc1,mcmc2)

> plot(mcmcl)

> gelman.plot(mcmcl)
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Figure 3: Using package coda for some MCMC output analysis. A: Traces
for 2 MCMC runs; B: Distributionplot of the sampling; C: gelman.plot of
two MCMC samplings

To check for convergence, Gelman’s potential scale reduction can be com-
puted with the function gelman diag (a wrapper for the gelman.diag function
in the coda package). Note that multiple chains have to be run for using
this convergence statistic.

> gelman_diag(ret)

Further, the output of the MCMC sampler can be analysed using the plot edgeconfidences
function. For each possible interaction, the number of activating and in-
hibiting edges (normalised to the total number of sampled edges) is shown
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as boxplot. If the counts for activations are significantly higher than the
counts for inhibitions, an inclusion of this activation is suggested for gen-
erating a final network (and vice versa). If there is no difference in the
number of activating and inhibiting edges, it is suggested to not include
any interaction between the two nodes. Figure 4 shows the output of the
plot edgeconfidences function.

> plot_edgeconfidences(ret)

Confidences of activation/inhibition edges over  4  MCMC runs.
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Figure 4: In each of the inhibMCMC chains, activation and inhibition edges
are sampled. The boxes show the frequencies of activations (marked in red)
and inhibitions (marked in blue) to the total number of sampled edges (de-
noted as confidence, counted after the burn-in phase). Each panel represents
the destination node of an edge. For example, in the upper left panel, all
edges pointing to node X4 are shown. The box in the first column (denoted
by X1-) represents the inhibition from X1 to X4, the box in the fourth
column (denoted by X2+) the activation from X2 to X4. The higher the
difference between activation and inhibition, the more support is found in
the data for the respective edge.

This information is used in the function create signetwork, which creates
a network from all significant interactions using statistical tests (wilcoxon
rank-sum or t-test) for each interaction. Note that multiple parallel chains
have to be run for valid testing (say at least 4 chains):
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> net <- create_signetwork_cv(ret, alpha=0.05, adj.method="none", plot=FALSE, type="wilcox",

+ alternative="one.sided", paired=FALSE, ord=NULL, sel_policy="strict")

Also, the distributions of the data and the inferred active and passive state
parameters can be visualised by the function plot profiles(ret). The plot is
shown in figure 5.

> plot_profiles(ret,mfrow=c(3,4))
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Figure 5: Visualisation of the inferred model parameters for active and
passive protein state. Shown are the data (as boxplots) and a spline fit for
each protein over time (upper two rows), as well as the data and parameters
as histogram plot (lower row).

As in netga, the destination file of the output of the mcmc ddepn function
can be specified by argument outfile. Figure 8 at the end of this document
shows the output of one sampling run for the MCMC inference.
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1.4 Resuming the inference

After an inference run is finished, it might be necessary or useful to resume
the inference and continue, for example an MCMC run that did not converge.
To do so, the function resume ddepn can be used. For example, resume an
inhibMCMC run and add another 100 iterations:

> ## resuming the inference from an inhibMCMC run and add another 100 iterations

> ret4 <- ddepn(dataset$datx,phiorig=phit, inference="mcmc", maxiterations=100,

+ burnin=30, lambda=0.01, B=B, priortype="laplaceinhib", usebics=FALSE)

> ret4 <- resume_ddepn(ret4,maxiterations=100)

Or resume a GA run and add another 30 iterations:

> ## resuming the inference from an netga run and add another 30 iterations

> ret5 <- ddepn(dataset$datx,phiorig=phit, inference="netga", maxiterations=20, p=10, q=0.3, m=0.8, lambda=0.01, B=B, priortype="laplaceinhib", usebics=FALSE)

> ret5 <- resume_ddepn(ret5,maxiterations=30)

2 Notes on formatting constraints for the argu-
ments of ddepn

There is only one neccessary argument to the function call of ddepn: The
data matrix dat. Optionally, a reference network phiorig and seed networks
phi can be passed to ddepn. Each of these arguments is described briefly
below.

2.1 Input data matrix dat

The data matrix contains all measurements for the nodes in the rows (e.g.
proteins or genes), and the experiments and time points in the columns.
There are some special needs on how to name the columns. We allow several
treatments to be included in the data matrix. Examples for these treatments
are stimulation by growth factors or inhibition by application of a drug. We
refer generally to each of these as ’treatment’.

Each of the treatments will be included in the final network as a node, e.g.
stimulation by the growth hormone EGF is added to the data matrix as row
with name EGF (and thus appears as node EGF in the final network). The
expression values for the stimuli nodes are set to 0 in each column of the
data matrix, but are never used in the algorithm and regarded as dummy
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EGF X

AKT MEK

ERK

Φ EGF X AKT MEK ERK

EGF 0 0 1 1 1

X 0 0 0 2 0

AKT 0 0 0 0 0

MEK 0 0 0 0 1

ERK 0 0 0 0 0

Figure 6: Example network. Left: graph representation, Right: adjacency
matrix

values. Effects originating in these nodes are estimated in the reconstruction
process.

To distinguish the different experimental conditions in the matrix, the columns
of the data matrix have to be named in the format treatment time, where
treatment also can be a combination of several treatments, e.g. stimulation
by EGF and simultaneous inhibition by a drug X. In this case, each stimu-
lus has to be separated by an ampersand (&). The time point is separated
from the stimuli via an underscore character ( ), and can be on any scale
(minutes, hours etc.). An example data matrix is shown table 2.1. In this
table, the dummy rows for the treatments are already included (rows EGF
and X). However, they are not mandatory as input to ddepn and, if missing,
will be generated automatically, only requiring the correct labeling of the
columns.

EGF 1 EGF 1 EGF 2 EGF 2 EGF&X 1 EGF&X 1 EGF&X 2 EGF&X 2
EGF 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0
AKT 1.45 1.8 0.99 1.6 1.78 1.8 1.56 1.58
ERK 1.33 1.7 1.57 1.3 0.68 0.34 0.62 0.47
MEK 0.45 0.8 0.99 0.6 0.78 0.8 0.56 0.58

Table 1: Example data matrix for 3 nodes and 2 stimuli.

2.2 Reference network phiorig

If desired, a reference network phiorig can be given, used to compare the
edges of the inferred network to it. The user must ensure that all treatments
are included as nodes, since the inference will estimate effects from these.
The format of the network is an adjacency matrix, where each entry cor-
responds to an edge from the node specified by the rowname to the node
specified by the column name. Two types of edges are allowed: 1 for ac-
tivation, 2 for inhibition. 0 means no edge between the pair of nodes. An
example network and corresponding adjacency matrix are shown in figure 6.
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2.3 Seed networks phi

Both the GA and MCMC sampler require single or multiple seed networks.
If not given, an unconnected network is used as seed for each individual in
the GA population or the start networks for each MCMC run, respectively.
However, the user can provide own seed networks using the argument phi.
This can either be an adjacency matrix or a list of adjacency matrices.
Again, the treatments must be included as nodes. If given a single adjacency
matrix, it is used as seed network for each of the individuals in the population
of networks during the genetic algorithm, or as independent seeds for parallel
MCMC samplings. If given as list, its length must equal the number of
individuals in the population in the GA (specified by the function argument
p), or the number of independent runs in the MCMC sampler (specified by
the argument cores). The format of the adjacency matrices is the same as
for phiorig.

3 Prior knowledge inclusion

Currently, two methods for using biological prior knowledge are implemented.
We refer to the first as Laplace prior ([4, 7]), and to the second as ScaleFree
prior ([5]).

3.1 Laplace prior

The laplace prior penalises deviations of edges in the inferred network from
prior edge confidences, which can be aquired from external network databases
(e.g. KEGG [6]). The package includes a snapshot of the KEGG database
(containing signalling and disease pathways), downloaded in October 2010.

> data(kegggraphs)

> length(kegggraphs)

[1] 78

The list kegggraphs includes 78 elements, each of which has 3 members, a
string id specifying the KEGG pathway id, a graphNEL object g and an
adjacency matrix phi.

> names(kegggraphs)[1]

[1] "MAPK signaling pathway"
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> kegggraphs[[1]]

$id

[1] "04010"

$g

A graphNEL graph with directed edges

Number of Nodes = 267

Number of Edges = 882

$phi

hsa:5923 hsa:5924 hsa:11072 hsa:11221 hsa:1843...

hsa:5923 0 0 0 0 0...

...

Each graphNEL object was converted to a detailed adjacency list phi (includ-
ing inhibitions as entries with value 2) using the ’kegggraph.to.detailed.adjacency’
function:

> kegggraph.to.detailed.adjacency(gR=kegggraphs[[1]]$g)

To obtain prior probabilites for each edge between all pairs of nodes present
in kegggraphs, one can follow the approach of [7] and count all pairs of nodes
occuring in the reference networks. Further the number, how often each pair
is connected by an edge is counted. The support for an edge is then the ratio
of the number of edges divided by the number of pairs. If the edge is an
inhibitory edge, the ratio is multiplied by −1, leaving a negative confidence
score.

This kind of prior matrix can the be used together with the laplaceinhib
prior: In the function call to ddepn, just pass the arguments B and lambda
and set usebics=FALSE and priortype=”laplaceinhib”to use the laplace prior
for the inference.

> ddepn(data, lambda=0.01, B=B, usebics=FALSE,

+ priortype="laplaceinhib")

If no information is available on the type of the edges in the reference net-
works, one should use the laplace prior type. Here, all entries in B are
positive (describing the belief in existence of an edge), and for the prior
calculation, the edge type in the inferred network is ignored, too.

> ddepn(data, lambda=0.01, B=B, usebics=FALSE,

+ priortype="laplace")
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3.2 ScaleFree prior

According to [5] we set up a prior distribution that penalises high node de-
grees in the inferred network. The assumption is that for biological networks
the degree of a node follows a power law distribution, i.e. the probability of
seeing k nodes follows

P (k) ∝ k−γ .

We set up the prior distribution as described in [5]. To use the ScaleFree
prior, just pass the arguments gam (the exponent γ), it (the number of
permutations) and factor K to the function call of ddepn, and again set
argument usebics=FALSE.

> ddepn(data, gam=2.2, it=500, K=0.8, usebics=FALSE)

4 Use cases for GA and MCMC inference

This section shows the various types of calls to ddepn with all of the different
settings (inference type, prior type).

4.1 Data generation:

> library(ddepn)

> set.seed(12345)

> n <- 6

> signet <- signalnetwork(n=n, nstim=2, cstim=0, prop.inh=0.2)

> net <- signet$phi

> stimuli <- signet$stimuli

> weights <- signet$weights

> dataset <- makedata(net, stimuli, mu.bg=1200, sd.bg=400, mu.signal.a=2000, sd.signal.a=1000)

> data <- dataset$datx

> # netga arguments

> minetga <- 15

> p <- 30

> q <- 0.3

> m <- 0.8

> # mcmc arguments

> mimcmc <- 1000

> burnin <- 100
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> lambda <- 5

> #laplace prior arguments

> lambda=0.01

> # for priortype="laplace": use original net as prior and reset inhibition

> # edges, such that their type is ignored

> Bpos <- net

> Bpos[Bpos==2] <- 1

> # for priortype="laplaceinhib": use original net as prior and reset

> # inhibition edge entries in B from 2 to -1

> B <- net

> B[B==2] <- -1

> # scale free prior arguments

> gam <- 2.2

> it <- 500

> K <- 0.8

>

4.2 GA, use BICs optimisation and no prior

> ret <- ddepn(data, phiorig=net, inference="netga",

+ maxiterations=minetga, p=p, q=q, m=m,

+ usebics=TRUE)

4.3 GA, use laplaceinhib prior

> ret <- ddepn(data, phiorig=net, inference="netga",

+ maxiterations=minetga, p=p, q=q, m=m,

+ usebics=FALSE, lambda=lambda, B=B, priortype="laplaceinhib")

4.4 GA, use laplace prior

> ret <- ddepn(data, phiorig=net, inference="netga",

+ maxiterations=minetga, p=p, q=q, m=m,

+ usebics=FALSE, lambda=lambda, B=Bpos, priortype="laplace")

4.5 GA, use scalefree prior

> ret <- ddepn(data, phiorig=net, inference="netga",

+ maxiterations=minetga, p=p, q=q, m=m,

+ usebics=FALSE, gam=gam, it=it, K=K, priortype="scalefree")
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4.6 MCMC, use laplaceinhib prior

> ret <- ddepn(data, phiorig=net, inference="mcmc",

+ maxiterations=mimcmc, burnin=burnin,

+ usebics=FALSE, lambda=lambda, B=B, priortype="laplaceinhib")

4.7 MCMC, use laplace prior

> ret <- ddepn(data, phiorig=net, inference="mcmc",

+ maxiterations=mimcmc, burnin=burnin,

+ usebics=FALSE, lambda=lambda, B=Bpos, priortype="laplace")

4.8 MCMC, use scalefree prior

> ret <- ddepn(data,phiorig=net, inference="mcmc",

+ maxiterations=mimcmc, burnin=burnin,

+ usebics=FALSE, gam=gam, it=it, K=K, priortype="scalefree")

5 Application to example data set from HCC1954
cell line

We show how we apply DDEPN to a data set from HCC1954 breast can-
cer cell line. Phosphorylation of 16 proteins was measured on Reverse
Phase Protein Arrays. We performed time courses over 10 time points
(0,4,8,12,16,20,30,40,50,60 minutes). Each measurement was replicated five
times independently and for each of these five biological replicates, spotting
was done in triplicate for each time point, leaving 15 replicates per time
point and protein. Cells were stimulated with the EGFR ligand Epidermal
Growth Factor (EGF) and the ERBB3 ligand Heregulin (HRG), both as
single treatments as well as combined treatment (EGF&HRG). The data is
included in the dataset:

> data(hcc1954)

First, change the column names. These contain, which of the replicates
belong to the same biological replicate, which is not used in the inference in
DDEPN.

> dat <- format_ddepn(hcc1954)
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Now start a genetic algorithm to infer a signalling network between the 16
phosphoproteins (takes a while):

> mi=1000

> p=500

> q=0.3

> m=0.8

> ret <- ddepn(dat, phiorig=NULL, inference="netga",

+ maxiterations=mi, p=p, q=q, m=m,

+ usebics=TRUE)
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Figure 7: Output plot of netga. The left column shows the posterior, likeli-
hood and prior traces (each point in the trace corresponds to the quantile of
the respective score that was specified by argument quantBIC ). The right
column shows the traces of the posterior, likelihood and prior differences
between iteration i and i+ 1.
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Figure 8: Output plot of mcmc ddepn. The left column shows the posterior,
likelihood and prior traces. The middle column shows the traces of the
posterior, likelihood and prior ratios between iteration i and i+1. The right
column shows the original and inferred networks, as well as a ROC curve for
the comparison of both networks (only if a reference network is provided).
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Session Information

The version number of R and packages loaded for generating the vignette
were:

� R version 3.0.1 (2013-05-16), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, stats,
utils

� Loaded via a namespace (and not attached): tools˜3.0.1
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