
Example of fitting panel data with a latent continuous time
Markov chain

We are using simulated data from a two-state reversible disease model with disease state space {A,B}. The
sojourn times in states A and B are generated, respectively, according to Weibull(shape=1.5 and scale=1)
and Weibull(shape=.75, scale=10) distributions. There are 200 independent individuals in the sample. For
each individual, there are two baseline covariates: a binary variable X (half of the sample have X=0, and
half have X=1) and a continous variable Y (generated independently from Normal(0,1)). The covariate X
affects occupancy times, such that sojourns in state A are multiplied by 1.5 and in state, B, by .75. The state
initially occupied by an individual is governed by an initial probability distribution that is related to the
covariate Y. Those with Y=0 occupy state B with probability .094. An increase in Y by one unit increases
the odds of occupying state B by 2.55. Disease states A and B are observed with measurement error. The
probability of observing B given A is .028 in those with X=0, and the odds of missification increase by a
factor of 1.306 in individuals with X=1. The probability of observing B given A is .05, and this probability
is not affected by covariates.

There are 200 independent individuals in the data set, each observed (approximately) at 0, 1, 2, . . . , 10.
Thus the data consist of panel observations with possible misclassification error. Data are stored in a list, with
an entry for every subject. The list elements include the entries “obs.data” and “obs.times” correpsponding
the observed data at each of the discrete observation times. Observations of state A are coded by 1 and B,
by 2.

> the.data[[1]]$obs.data

[1] 2 2 2 2 2 1 2 2 2 2 2

> the.data[[1]]$obs.times

[1] 0.000000 1.488500 2.112423 2.969151 3.860416 4.960169 5.622864 7.234300

[9] 8.186855 9.080619 9.672877

This data-generating model does not have an absorbing state, or any known times to absorption. However,
if the disease model had an absorbing state (such as death) and individuals had known absorption times, it
is necessary to specify this an the individual’s data entry. Suppose subject had a known time of absorption
occuring at the 10th observation time. We specify this by setting

> the.data[[1]]$exact.times.ranks=10.

The baseline covariate data is in a data frame called cov.data. Each subject is identified by an id in the
same order as the.data list.

> cov.data[1:10,]

id X Y

1 1 1 -0.5982105

2 2 1 1.5467532

3 3 1 0.7701050

4 4 1 0.2851026

5 5 1 2.2890916

6 6 1 1.6181584

7 7 1 0.3472898

8 8 1 0.2726347

9 9 1 -0.4469496

10 10 1 -1.1877430

1

1 Specifying the model

We will fit the data with latent CTMC model that has a total of 4 latent states, 2 per each disease state.
The latent state space is S = {1, 2, 3, 4} where states {1, 2} correspond to disease state A and states {3, 4} to
disease state B. The latent CTMC has transition intensity matrix Λ. The model is characterized by Coxian
phase type sojourn distributions for times spent in the disease states, and the latent structure has transitions
implied by figure 1. The Λ matrix that corresponds to this structure is given by

Λ =

−(λ12 + λ13) λ12 λ13 0

0 −λ23 λ23 0
λ31 0 −(λ31 + λ34) λ34
λ41 0 0 −λ41

 .
We incorporate covariates in the transition matrix model as follows. Since the covariate X scales multiplica-
tively the sojourn time distributions in A and B, we can assume that the covariate effect of X is the same for
λ12, λ13, λ23 and likewise for λ34, λ31, λ41. The model is specified in terms of log-rates and has parameters
{r1, . . . , r8} as follows:

log(λ12) = r1 + r7X

log(λ13) = r2 + r7X

log(λ23) = r3 + r7X

log(λ34) = r4 + r8X

log(λ31) = r5 + r8X

log(λ41) = r6 + r8X.

Specifying the rate matrix model requires that we have a list called rates.setup. The list as several elements,
which need to be set by the user before fitting the EM. We specify the number of latent states

> rates.setup$num.states

[1] 4

We specify the non-zero transitions between the latent states with a matrix

> rates.setup$transition.codes

ni nj

1 1 2

2 1 3

3 2 3

4 3 4

5 3 1

6 4 1

1 2 3 4

Figure 1: Latent continuous time model for two state disease process. Latent states {1, 2} map to disease
state A and {3, 4} to disease state 2. The transitions between latent states in each disease state have Coxian
phase type structure, in at each transition, it is only possible to go forward or exit to the other disease state.

2

We specify the design matrix for the model with the matrix

> rates.setup$design.matrix

r1 r2 r3 r4 r5 r6 r7 r8

1 1 NA NA NA NA NA X

2 NA 1 NA NA NA NA X

3 NA NA 1 NA NA NA X

4 NA NA NA 1 NA NA X

5 NA NA NA NA 1 NA X

6 NA NA NA NA NA 1 X

Each row in the design matrix corresponds to a single i → j transition in the order specified by the
rates.setup$transition.codes. Intercepts are represented by 1 entries. Named covariates are speci-
fied with the name of the covariate (here, X). The setup allows us to easily specify that parameters are
common across multiple transitions, e.g. r7 and r8.

We specify intial values for r1, . . . r8 with

> rates.setup$param.values

[1] -0.2145146 0.6586720 -0.2011180 0.4489015 0.1117152 -0.1633532 -0.5802509

[8] 0.2348132

We also need to specify for each parameter whether it is fixed or will be estimated. if it is fixed, its value is
that designated in rates.setup$param.values. If we set param.types=0, then we are going to estimate it,
if 1, it is fixed. In this example we will estimating all parameters.

> rates.setup$param.types

[1] 0 0 0 0 0 0 0 0

1.1 Other apsects of rates.setup

We have now specified the model. However, to run the EM, we need to add a few more components to
rates.setup. First, we want to generate an an array with a separate design matrix for each individual with
entries filled in with that individual’s covariate values. First we need to designate which of the entries in
rates.setup$design.matrix that vary across individuals (rather than intercepts).

> rates.setup$variable.predictors

i j

1 1 7

2 2 7

3 3 7

4 4 8

5 5 8

6 6 8

Then we need to create the covariate array.

> rates.setup$covariate.array=get.covariate.array(design.matrix,cov.data,rates.setup$variable.predictors)

[1] 1 1

[1] 2 2

[1] 3 3

[1] 4 4

[1] 5 5

[1] 6 6

3

> rates.setup$covariate.array[,,1]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 0 0 1 0 0

[5,] 0 0 0 0 1 0

[6,] 0 0 0 0 0 1

[7,] 1 1 1 0 0 0

[8,] 0 0 0 1 1 1

Next we need to create a version of the covariate array that is limited to the parameters that we are
estimating, not those that are fixed. In the case that we are estimating all parameters, the deriv.array and
the covariate.array are the same.

> rates.setup$deriv.array=get.deriv.array(rates.setup$covariate.array, rates.setup$param.types)

> rates.setup$deriv.array[,,1]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 0 0 1 0 0

[5,] 0 0 0 0 1 0

[6,] 0 0 0 0 0 1

[7,] 1 1 1 0 0 0

[8,] 0 0 0 1 1 1

1.2 Fixed rate matrix

For certain models, we may want to specify a fixed rate matrix, with no unknown entries. In this case, we
have the option to specify by setting the list item

> rates.setup$fixed.rates

NULL

to be equal to the fixed rate matrix for all individuals. This option may be most useful in the debugging
stage. Note that all of the entries in the fixed rate matrix are on the intensity, not log-intensity scale.

2 Initial distribution model

The model for the initial distribution of the latent CTMC is specified by a multinomial logit model. For our
model, the initial distribution is (π1, ..π4). According to the Coxian specification, an individual allows starts
in the first latent state of the corresponding disease state. So, for our model, an individual either starts in
latent state 1 or latent state 3. The probability of the initial state occupancy is related to the covariate Y .
With state 1 as the reference state, the model is

log
π3
π1

= b1 + b2Y.

To specify the initial distribution model, we have an init.setup list. We have an entry for the number of
states in the model.

> init.setup$num.states

4

[1] 4

We list the reference state with the entry

> init.setup$ref

[1] 1

We then specify all of the states, other than the reference state, that can be occupied at the initial time
point. States that cannot be occupied are not listed.

> init.setup$states

[1] 3

We then specify the design matrix for the initial distribution in a way that is analogous to the rate setup.

> init.setup$design.matrix

b1 b2

1 1 Y

We specify which of the parameters are fixed versus unknown. The code is 0 for unknown, 1 for fixed.

> init.setup$param.types

[1] 0 0

We specify the initial values of the parameters, or their value if they are fixed in the model.

> init.setup$param.values

[1] -2.265745 0.937000

To run the EM we also need to get init.setupu$covariate.array and \init.setup$deriv.array for the
initial distribution. We need first to specify the entries of the design matrix that correspond to covariates.

> init.setup$variable.predictors

col_names

i j

1 1 2

Then we get the init.setup$covariate.array and init.setup$deriv.array.

> init.setup$covariate.array=get.covariate.array(init.setup$design.matrix,cov.data,variable.entries=init.setup$variable.predictors)

[1] 1 1

> init.setup$deriv.array=get.deriv.array(init.setup$covariate.array, init.setup$param.types)

Alternatively, we can specify the initial distiribution as a fixed value for everyone. For example, assume that
we knew that the individual started in latent state 1. Then we would specify

> init.setup$fixed.dist=c(1,0,0,0)

5

3 Setting up the model for the Emission distribution

The emission matrix E = {E[i, j]} has entries E[i, j] = P (O(t) = j|X(t) = i. The missclassification
probably of state B given A is related to the covariate X. The emission distributions are specified according
to mulitnomial logistic regression models. That is,

log(
E[1, 2]

E[1, 1]
) = g1 + g2X

log(
E[2, 2]

E[2, 1]
) = g1 + g2X

log(
E[3, 1]

E[3, 2]
) = g3

log(
E[4, 1]

E[4, 2]
) = g3

The rows are repated since we assume that latent states corresponding to a given disease state yield the
same misclassification probability. The emission matrix model is specified with the emission.setup. First we
specify the entries of the matrix with non-zero emission probability.

> emission.setup$emission.states

i j

1 1 2

2 2 2

3 3 1

4 4 1

Then we specify the reference emisssion probabilities that for the multinomial logit models.

> emission.setup$ref.states

i j

1 1 1

2 2 1

3 3 2

4 4 2

The design.matrix encodes the parameterization of the model. The rows correspond to rows of emis-
sion.states.

> emission.setup$design.matrix

g1 g2 g3

1 1 X NA

2 1 X NA

3 NA 1

4 NA 1

We set set the initial values of the parameters, or the values of the parameters if they are fixed.

> emission.setup$param.values

[1] -3.547151 1.306000 -2.944439

We specify which of the parameters will be estimated (0) and which are fixed (1).

> emission.setup$fixed.params

6

NULL

We get the covariate.array and the deriv.array.

> emission.setup$covariate.array=get.covariate.array(emission.setup$design.matrix,cov.data=cov.data,emission.setup$variable.predictors)

[1] 1 1

[1] 2 1

[1] 3 3

[1] 4 3

> emission.setup$deriv.array=get.deriv.array(emission.setup$covariate.array, emission.setup$param.types)

We also have the option of specifying entries in the emission matrix that are observed without error. For
example, if E[1, 1] = 1 we set

> emission.setup$exact.states=matrix(c(1,1),nrow=1,dimnames=list(1,c("i","j")))

> emission.setup$exact.states

i j

1 1 1

Finally, we can alternatively specify if a known emission matrix that is the same for all individuals, we can
specify this by setting

> emission.setup$fixed.dist

NULL

as a matrix equal to the emission distribution. This option is useful if there is no misclassification error, as
entries of the emission matrix are either 0 or 1.

4 Running the EM

Now we run the EM algorithm to get parameter estimates. Arguments to the EM include the setup objects
for the rate matrix, initial distribution, and emission distribution. We also need to specify the the number
of sujbects, the number of latent states, number of observed states, the tolerance for convergence, and the
maximum number of EM iterations. If one of the states in the latent model corresponds to an absorbing
state, we specify that here. If there is no absorbing state, we set the value to “null”. The object returned
by the EM algorithm is a list that contains the parameter estimates, the LL at each interation, the runtime,
and other information.

fit.4state=EM(rates.setup=rates.setup,

init.setup=init.setup,

emission.setup=emission.setup,

the.data=the.data,

num.subjects=length(the.data),

num.states=4,

num.obs.states=2,

tol=1e-7,

absorb.state=NULL,

maxiter=500)

> fit.4state$LL

[1] -927.942

7

> fit.4state$param

r r r r r r r

0.7646372 -1.6795936 0.8461781 -2.6481639 -1.6541670 -3.8273887 -0.3550389

r e e e i i

-0.2508152 -4.2244855 1.8024719 -3.1790706 -2.3668581 0.7376466

> fit.4state$time

user system elapsed

225.753 8.273 234.345

Note that the rate parameters are listed first, followed by emission parameters, followed by initial distribution
parameters. Next we need to get the information/variance of the parameter estimates.

5 Variance of parameter estimates

var4state=get_variance(the.data=the.data,

num.subjects=length(the.data),

num.states=4,

num.obs.states=2,

rate.param.values=fit.4state$params[1:8],

emission.param.values=fit.4state$params[9:11],

init.param.values=fit.4state$params[12:13],

absorb.state=NULL,

rates.setup=rates.setup,

emission.setup=emission.setup,

init.setup=init.setup)

The function actually provides the information of the estimates; to get the variance, we need to take the
inverse. Diagonal entries of the variance matrix corresond to rate, emission, and initial distribution parame-
ters according to the order they were specified in the repsective design matrices. Any parameter that was set
to be fixed will lack an entry in the information matrix. The variance of the parameter estiamtes enables us
to get 95% confidence intervals of the parmaeter esitmates based on normal approximation of their sampling
distribution. Sometimes the information matrix will not be of full rank. This usually happens as a result of
over-parameterization in the model, or lack of identifiability of model parameters. Those concerned should
consider simplifying the model or setting certain elements to be fixed. Even in the absence of a non-invertible
information matrix, it is usually still possible to get estimates for point-wise standard errors of disease process
functionals based on the peudo-inverse of the information matrix and the delta method formulae.

6 Estimating hazard and survival functions

The disease process can be described in terms of the distriution of sojourn times in states A and B, as well as
the hazard rates for leaving these states. We will esitmate these quantities for X=0 and X=1. We can obtain
delta-method based standard errors using the covariance matrix for the parameters. First we obtain the
covariance matrix that corresponds to the rate parameters with a pseudo inverse function from the package
“corpcor.”

> #Get functional estimates for covariates

> library(corpcor)

> out=fit.4state

> covar=pseudoinverse(var4state$information$out)[1:8,1:8]

> covar

8

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.703099216 -3.51160182 -0.13885808 0.07436775 0.01895133 0.10640330

[2,] -3.511601821 28.79437915 -0.65876131 -0.25605253 0.08971177 -0.79970037

[3,] -0.138858079 -0.65876131 0.24657047 0.04533291 0.02520268 0.02645218

[4,] 0.074367751 -0.25605253 0.04533291 2.07592928 0.24853752 5.27140466

[5,] 0.018951331 0.08971177 0.02520268 0.24853752 0.13836661 0.16898495

[6,] 0.106403295 -0.79970037 0.02645218 5.27140466 0.16898495 20.86490291

[7,] -0.006104228 -0.07402601 -0.01212376 -0.02100850 -0.02196070 0.04369474

[8,] -0.017924074 -0.05485319 -0.02121112 -0.10065230 -0.08958420 0.17906204

[,7] [,8]

[1,] -0.006104228 -0.01792407

[2,] -0.074026014 -0.05485319

[3,] -0.012123757 -0.02121112

[4,] -0.021008496 -0.10065230

[5,] -0.021960703 -0.08958420

[6,] 0.043694738 0.17906204

[7,] 0.026513584 0.03779318

[8,] 0.037793180 0.14185119

Then we point estimates for the rate matrix for all of the individuals in the dataset. The first and last entry
correspond to individuals with X=1 and X=0.

> rates.list=get.rate.matrix.list(out$params[1:8],rates.setup)

> rates.list[[1]]

[,1] [,2] [,3] [,4]

[1,] -1.63694108 1.506213 0.1307285 0.00000000

[2,] 0.00000000 -1.634177 1.6341768 0.00000000

[3,] 0.14882529 0.000000 -0.2039047 0.05507942

[4,] 0.01693786 0.000000 0.0000000 -0.01693786

> rates.list[[200]]

[,1] [,2] [,3] [,4]

[1,] -2.33466456 2.148215 0.1864497 0.00000000

[2,] 0.00000000 -2.330722 2.3307221 0.00000000

[3,] 0.19125130 0.000000 -0.2620324 0.07078106

[4,] 0.02176638 0.000000 0.0000000 -0.02176638

The hazard and CDF functions have other arguments, which we set here.

> num.transitions=dim(rates.setup$transition.codes)[1]

> num.params=8

> transitions=rates.setup$transition.codes

> num.states=4

In general get the hazard and CDFs of sojourn times, we can’t just use the rate matrices as is. Consider the
first passage time to state B starting in state A. We treat B as an absorbing state. This process is governed
by a rate matrix that has rows set to zero for latent states in B.

> ###

> #A to B CDF

> #coviarate X=1

> rate.firstpassage.AB=rates.list[[1]]

> rate.firstpassage.AB[3:4,]=0

> rate.firstpassage.AB

9

[,1] [,2] [,3] [,4]

[1,] -1.636941 1.506213 0.1307285 0

[2,] 0.000000 -1.634177 1.6341768 0

[3,] 0.000000 0.000000 0.0000000 0

[4,] 0.000000 0.000000 0.0000000 0

First we will get the CDF of sojourn time in state A/first passage time to state B. The alpha argument
specifies the initial distribution (we assume we are starting in latent state 1). the “states” argument indicates
the latent end state of interest. We will start the calculatin at time=.01 and end at time=10.

> cdfA.B=sub_dist_times(start=.01,end=10,states=3,alpha=c(1,0,0,0),rate.firstpassage.AB)

Next we get the standard errors for the cdf and 95% pointwise CIs.

> param.deriv=rates.setup$deriv.array[,,1]

> se=se.dist.times(start=.01,end=10,covar[1:8,1:8],rate.firstpassage.AB,states=3,

+ alpha=c(1,0,0,0), param.deriv,num.transitions,num.params,transitions,

+ num.states,length.out=1000)

> ci_high1=1.96*se+cdfA.B$dist

> ci_low1=-1.96*se+cdfA.B$dist

We will get the same CDF and confidence intervals for individuals with X=1 and plot the CDF along with
the confidence intervals. Finally, we plot the the CDF along with the confidence intervals.

> plot(cdfA.B$times,cdfA.B$dist,type="l",col="blue",lty=1,lwd=2,ylim=c(0,1),xlim=c(0,2))

> lines(cdfA.B$times,ci_low1,type="l",lwd=2,col="blue",lty=2)

> lines(cdfA.B$times,ci_high1,type="l",lwd=2,col="blue",lty=2)

> #covariate X=0

> param.deriv=rates.setup$deriv.array[,,200]

> rate.firstpassage.AB=rates.list[[200]]

> rate.firstpassage.AB[3:4,]=0

> cdfA.B=sub_dist_times(start=.01,end=10,states=3,alpha=c(1,0,0,0),rate.firstpassage.AB)

> se2=se.dist.times(start=.01,end=10,covar[1:8,1:8],rate.firstpassage.AB,states=3,

+ alpha=c(1,0,0,0), param.deriv,num.transitions,num.params,

+ transitions,num.states,length.out=1000)

> ci_high2=1.96*se2+cdfA.B$dist

> ci_low2=-1.96*se2+cdfA.B$dist

> lines(cdfA.B$times,cdfA.B$dist,type="l",col="maroon",lty=1,lwd=2,ylim=c(0,1),xlim=c(0,2))

> lines(cdfA.B$times,ci_low2,type="l",lwd=2,col="red",lty=2)

> lines(cdfA.B$times,ci_high2,type="l",lwd=2,col="red",lty=2)

10

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cdfA.B$times

cd
fA

.B
$d

is
t

We note that the red
lines are shifted left relative to the blue lines. This makes sense given that the sojourn times in state A were
scaled up by 1.5 for individuals with X=1 (red).

Next we obtain the CDF for sojourn times in state B, using a similar approach. Here we notice that the
the CDF for indviduals with X=1 (red) is shifted right relative to that corresponding to X=0 (blue). This
makes sense given that the sojourn times in state B were scaled by a factor of .75 for individuals with X=1.
The confidence intervals are broadly overlapping, however.

> ##

> #B to A CDF

> ###

> #covariate X=1

> param.deriv=rates.setup$deriv.array[,,1]

> rate.firstpassage.BA=rates.list[[1]]

> rate.firstpassage.BA[1:2,]=0

> cdfB.A=sub_dist_times(start=.01,end=10,1,alpha=c(0,0,1,0),rate.firstpassage.BA)

> se3=se.dist.times(start=.01,end=10,covar,rate.firstpassage.BA,states=1,

+ alpha=c(0,0,1,0), param.deriv,num.transitions,num.params,

+ transitions,num.states,length.out=1000)

> ci_high3=1.96*se3+cdfB.A$dist

> ci_low3=-1.96*se3+cdfB.A$dist

> plot(cdfB.A$times,cdfB.A$dist,type="l",col="blue",lty=1,lwd=2,ylim=c(0,1))

> lines(cdfB.A$times,ci_low3,type="l",lwd=2,col="blue",lty=2)

> lines(cdfB.A$times,ci_high3,type="l",lwd=2,col="blue",lty=2)

11

> #covariate X=0

> param.deriv=rates.setup$deriv.array[,,200]

> rate.firstpassage.BA=rates.list[[200]]

> rate.firstpassage.BA[1:2,]=0

> cdfB.A=sub_dist_times(start=.01,end=10,1,alpha=c(0,0,1,0),rate.firstpassage.BA)

> se4=se.dist.times(start=.01,end=10,covar,rate.firstpassage.BA,states=1,

+ alpha=c(0,0,1,0), param.deriv,num.transitions,

+ num.params,transitions,num.states,length.out=1000)

> ci_high4=1.96*se4+cdfB.A$dist

> ci_low4=-1.96*se4+cdfB.A$dist

> lines(cdfB.A$times,cdfB.A$dist,type="l",col="maroon",lty=1,lwd=2,ylim=c(0,1))

> lines(cdfB.A$times,ci_low4,type="l",lwd=2,col="red",lty=2)

> lines(cdfB.A$times,ci_high4,type="l",lwd=2,col="red",lty=2)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cdfB.A$times

cd
fB

.A
$d

is
t

Hazard rates are cal-
culated with a similar approach.

> ##

> #AB hazard rates

> #covariate X=1

> param.deriv=rates.setup$deriv.array[,,1]

> rate.firstpassage.AB=rates.list[[1]]

> rate.firstpassage.AB[3:4,]=0

> AB_rate=hazard_times(start=.01,end=10,state_of_interest=3,at_risk_states=c(1,2),

+ alpha=c(1,0,0,0),rate=rate.firstpassage.AB)

12

> se5=se.haz.times(start=.01,end=10,covar,rate.firstpassage.AB,at_risk_states=c(1,2),

+ state_of_interest=3,alpha=c(1,0,0,0), param.deriv,num.transitions,

+ num.params,transitions,num.states,length.out=1000)

> ci_high5=1.96*se5+AB_rate$hazard

> ci_low5=-1.96*se5+AB_rate$hazard

> plot(AB_rate$times,AB_rate$hazard,type="l",lwd=2,col="blue",ylim=c(0,4))

> lines(seq(.01,10,length.out=1000),ci_low5,type="l",lwd=2,col="blue",lty=2)

> lines(seq(.01,10,length.out=1000),ci_high5,type="l",lwd=2,col="blue",lty=2)

> #covariate X=0

> param.deriv=rates.setup$deriv.array[,,200]

> rate.firstpassage.AB=rates.list[[200]]

> rate.firstpassage.AB[3:4,]=0

> AB_rate=hazard_times(start=.01,end=10,state_of_interest=3,at_risk_states=c(1,2),

+ alpha=c(1,0,0,0),rate=rate.firstpassage.AB)

> se6=se.haz.times(start=.01,end=10,covar,rate.firstpassage.AB,at_risk_states=c(1,2),

+ state_of_interest=3,

+ alpha=c(1,0,0,0), param.deriv,num.transitions,

+ num.params,transitions,num.states,length.out=1000)

> ci_high6=1.96*se6+AB_rate$hazard

> ci_low6=-1.96*se6+AB_rate$hazard

> lines(AB_rate$times,AB_rate$hazard,type="l",lwd=2,col="maroon",ylim=c(0,4))

> lines(seq(.01,10,length.out=1000),ci_low6,type="l",lwd=2,col="red",lty=2)

> lines(seq(.01,10,length.out=1000),ci_high6,type="l",lwd=2,col="red",lty=2)

13

0 2 4 6 8 10

0
1

2
3

4

AB_rate$times

A
B

_r
at

e$
ha

za
rd

> ##

> #BA hazard rates

> #covariate X=1

> param.deriv=rates.setup$deriv.array[,,1]

> rate.firstpassage.BA=rates.list[[1]]

> rate.firstpassage.BA[1:2,]=0

> BA_rate=hazard_times(start=.01,end=10,state_of_interest=1,at_risk_states=c(3,4),

+ alpha=c(0,0,1,0),rate=rate.firstpassage.BA)

> se7=se.haz.times(start=.01,end=10,covar,rate.firstpassage.BA,at_risk_states=c(3,4),

+ state_of_interest=1,

+ alpha=c(0,0,1,0), param.deriv,num.transitions,num.params,

+ transitions,num.states,length.out=1000)

> ci_high7=1.96*se7+BA_rate$hazard

> ci_low7=-1.96*se7+BA_rate$hazard

> plot(BA_rate$times,BA_rate$hazard,type="l",lwd=2,col="blue",ylim=c(0,.4))

> lines(seq(.01,10,length.out=1000),ci_low7,type="l",lwd=2,col="blue",lty=2)

> lines(seq(.01,10,length.out=1000),ci_high7,type="l",lwd=2,col="blue",lty=2)

> #covariate X=0

> param.deriv=rates.setup$deriv.array[,,200]

> rate.firstpassage.BA=rates.list[[200]]

> rate.firstpassage.BA[1:2,]=0

> BA_rate=hazard_times(start=.01,end=10,state_of_interest=1,at_risk_states=c(3,4),

14

+ alpha=c(0,0,1,0),rate=rate.firstpassage.BA)

> se8=se.haz.times(start=.01,end=10,covar,rate.firstpassage.BA,at_risk_states=c(3,4),

+ state_of_interest=1,

+ alpha=c(0,0,1,0), param.deriv,num.transitions,num.params,

+ transitions,num.states,length.out=1000)

> ci_high8=1.96*se8+BA_rate$hazard

> ci_low8=-1.96*se8+BA_rate$hazard

> lines(BA_rate$times,BA_rate$hazard,type="l",lwd=2,col="maroon",ylim=c(0,.4))

> lines(seq(.01,10,length.out=1000),ci_low8,type="l",lwd=2,col="red",lty=2)

> lines(seq(.01,10,length.out=1000),ci_high8,type="l",lwd=2,col="red",lty=2)

> ##

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

BA_rate$times

B
A

_r
at

e$
ha

za
rd

15

