
Using car Functions in Other Functions

John Fox∗& Sanford Weisberg†

March 13, 2014

Abstract

The car package (Fox and Weisberg, 2011) provides many functions
that are applied to a fitted regression model, perform additional calcula-
tions on the model or possibly compute a different model, and then return
values and graphs. In some cases, users may wish to write functions that
call functions in car for a particular purpose. Because of the scoping rules
used in R, several functions in car that work when called from the com-
mand prompt may fail when called inside another function. We discuss
how users can modify their programs to avoid this problem.

1 deltaMethod

The car package includes many functions that require an object created by a
modeling function like lm, glm or nls as input. For a simple example, the func-
tion deltaMethod uses the delta method (Fox and Weisberg, 2011, Sec.˜4.4.6) to
estimate the value and standard error of a nonlinear combination of parameter
estimates. For example

library(car)

m1 <- lm(time ~ t1 + t2, Transact)

deltaMethod(m1, "t1/(t2 + 2)")

Estimate SE

t1/(t2 + 2) 1.354 0.1333

Here deltaMethod returns the standard error of the estimate of β1/(β2 + 2),
where βj is the parameter corresponding to the regressor tj . The code

ans <- NULL

for (z in 1:4) {

ans <- rbind(ans, deltaMethod(m1, "t1/(t2 + z)",

func = gsub("z", z, "t1/(t1+z)"))) }

ans

∗Department of Sociology, McMaster University
†School of Statistics, University of Minnesota

1

Estimate SE

t1/(t1+1) 1.8000 0.1893

t1/(t1+2) 1.3538 0.1333

t1/(t1+3) 1.0849 0.1026

t1/(t1+4) 0.9051 0.0832

also works as expected. The func argument uses gsub to get the right row
labels.

Consider the function:

f1 <- function(mod) {

ans <- NULL

for (x in 1:4) {

ans <- rbind(ans, deltaMethod(mod, "t1/(t2 + x)",

func = gsub("x", x, "t1/(t1+x)")))}

ans

}

which simply puts the code used above into a function. Executing this function
fails:

f1(m1)

Error in eval(expr, envir, enclos) : object 'x' not found

Worse yet, if x is defined in the same environment as m1, this function gives the
wrong answer:

x <- 10

f1(m1)

Estimate SE

t1/(t1+1) 0.4539 0.03881

t1/(t1+2) 0.4539 0.03881

t1/(t1+3) 0.4539 0.03881

t1/(t1+4) 0.4539 0.03881

The core of the problem is the way that R does scoping. The regression
object m1 was created in the global environment, whereas the argument z in
the f1 function is created in the local environment of the function. The call to
deltaMethod is evaluated in the global environment where m1 is defined, leading
to the error message if z does not exist in the global environment, and to wrong
answers if it does exist.

For deltaMethod, there is an additional argument constants that can be
used to fix the problem:

f2 <- function(mod) {

ans <- NULL

for (x in 1:4) {

2

ans <- rbind(ans, deltaMethod(mod, "t1/(t2 + x)",

func = gsub("x", x, "t1/(t1+x)"), constants=list(x=x)))}

ans

}

f2(m1)

Estimate SE

t1/(t1+1) 1.8000 0.1893

t1/(t1+2) 1.3538 0.1333

t1/(t1+3) 1.0849 0.1026

t1/(t1+4) 0.9051 0.0832

The constants argument is a named list of quantities defined in the local func-
tion that are needed in the evaluation of deltaMethod.

2 ncvTest

The function ncvTest (Fox and Weisberg, 2011, Sec.˜6.5.2) computes tests for
non-constant variance in linear models as a function of the mean, the default, or
any other linear function of regressors, even for regressors not part of the mean
function. For example,

m2 <- lm(prestige ~ education, Prestige)

ncvTest(m2, ~ income)

Non-constant Variance Score Test

Variance formula: ~ income

Chisquare = 1.521 Df = 1 p = 0.2175

fits prestige as a linear function of education, and tests for nonconstant vari-
ance as a function of income, another regressor in the data set Prestige. Em-
bedding this in a function fails:

f3 <- function(meanmod, dta, varmod) {

m3 <- lm(meanmod, dta)

ncvTest(m3, varmod)

}

f3(prestige ~ education, Prestige, ~ income)

Error in is.data.frame(data) : object 'dta' not found

In this case the model m3 is defined in the environment of the function, and the
argument dta is defined in the global environment, and is therefore invisible
when ncvTest is called. A solution is to copy dta to the global environment.

f4 <- function(meanmod, dta, varmod) {

assign(".dta", dta, envir=.GlobalEnv)

assign(".meanmod", meanmod, envir=.GlobalEnv)

3

m1 <- lm(.meanmod, .dta)

ans <- ncvTest(m1, varmod)

remove(".dta", envir=.GlobalEnv)

remove(".meanmod", envir=.GlobalEnv)

ans

}

f4(prestige ~ education, Prestige, ~income)

Non-constant Variance Score Test

Variance formula: ~ income

Chisquare = 1.521 Df = 1 p = 0.2175

f4(prestige ~ education, Prestige, ~income)

Non-constant Variance Score Test

Variance formula: ~ income

Chisquare = 1.521 Df = 1 p = 0.2175

The assign function copies the dta and meanmod arguments to the global en-
vironment where ncvTest will be evaluated, and the remove function removes
them before exiting the function. This is an inherently problematic strategy,
because an object assigned in the global environment will replace an existing
object of the same name. Consequently we renamed the dta argument .dta,
with an initial period, but this is not a guarantee that there was no preexisting
object with this name.

This same method can be used with functions in the effects package. Sup-
pose, for example, you want to write a function that will fit a model, provide
printed summaries and also draw a effects plot. The following function will fail:

library(effects)

fc <- function(dta, formula, terms) {

print(m1 <- lm(formula, .dta))

Effect(terms, m1)

}

form <- prestige ~ income*type + education

terms <- c("income", "type")

fc(Duncan, form, terms)

As with ncvTest, dta will not be in the correct environment when Effect is
evaluated. The solution is to copy dta to the global environment:

library(effects)

fc.working <- function(dta, formula, terms) {

assign(".dta", dta, env=.GlobalEnv)

print(m1 <- lm(formula, .dta))

Effect(terms, m1)

remove(".dta", envir=.GlobalEnv)

}

fc.working(Duncan, form, terms)

4

Assigning formula to the global environment is not necessary here because it is
used by lm but not by Effect.

3 Boot

The Boot function in car provides a convenience front-end for the function
boot in the boot package (Canty and Ripley, 2013; Fox and Weisberg, 2012).
With no arguments beyond the name of a regression object and the number of
replications R, Boot creates the proper arguments for boot for case resampling
bootstraps, and returns the coefficient vector for each sample:

m1 <- lm(time ~ t1 + t2, Transact)

b1 <- Boot(m1, R=999)

summary(b1)

R original bootBias bootSE bootMed

(Intercept) 999 144.37 5.44104 190.893 158.97

t1 999 5.46 -0.00306 0.696 5.49

t2 999 2.03 -0.00200 0.154 2.03

The returned object b1 is of class "boot", as are objects created directly from
the boot function, so helper functions in the boot package and in car can be
used on these objects, e.g.,

confint(b1)

Bootstrap quantiles, type = bca

2.5 % 97.5 %

(Intercept) -266.454 485.560

t1 3.836 6.614

t2 1.784 2.403

The Boot function would have scoping problems even without the user em-
bedding it in a function because the boot function called by Boot tries to evalu-
ate the model defined in the global environment in a local environment. In car

we define an environment

.carEnv <- new.env(parent=emptyenv())

and then evaluate the model in the environment .carEnv. This environment is
not exported, so to see that it exists you would need to enter

car:::.carEnv

<environment: 0x1d28508>

We use this same trick in the Boot.default function so that .carEnv is globally
visible. Here is a copy of Boot.default to show how this works.

5

Boot.default <- function(object, f=coef, labels=names(coef(object)),

R=999, method=c("case", "residual")) {

if(!(require(boot))) stop("The 'boot' package is missing")

f0 <- f(object)

if(length(labels) != length(f0)) labels <- paste("V", seq(length(f0)), sep="")

method <- match.arg(method)

if(method=="case") {

boot.f <- function(data, indices, .fn) {

assign(".boot.indices", indices, envir=car:::.carEnv)

mod <- update(object, subset=get(".boot.indices", envir=car:::.carEnv))

if(modqrrank != objectqrrank){

out <- .fn(object)

out <- rep(NA, length(out)) } else {out <- .fn(mod)}

out

}

} else {

boot.f <- function(data, indices, .fn) {

first <- all(indices == seq(length(indices)))

res <- if(first) object$residuals else

residuals(object, type="pearson")/sqrt(1 - hatvalues(object))

res <- if(!first) (res - mean(res)) else res

val <- fitted(object) + res[indices]

if (!is.null(object$na.action)){

pad <- object$na.action

attr(pad, "class") <- "exclude"

val <- naresid(pad, val)

}

assign(".y.boot", val, envir=car:::.carEnv)

mod <- update(object, get(".y.boot", envir=car:::.carEnv) ~ .)

if(modqrrank != objectqrrank){

out <- .fn(object)

out <- rep(NA, length(out)) } else {out <- .fn(mod)}

out

}

}

b <- boot(data.frame(update(object, model=TRUE)$model), boot.f, R, .fn=f)

colnames(b$t) <- labels

if(exists(".y.boot", envir=car:::.carEnv))

remove(".y.boot", envir=car:::.carEnv)

if(exists(".boot.indices", envir=car:::.carEnv))

remove(".boot.indices", envir=car:::.carEnv)

b

}

The was also fixed in bootCase.

6

References

Angelo Canty and Brian Ripley. boot: Bootstrap R (S-Plus) functions. R pack-
age version 1.3-9, 2013.

J.˜Fox and S.˜Weisberg. An R Companion to Applied Regression. Sage, Thou-
sand Oaks CA, 2nd edition, 2011. URL http://z.umn.edu/carbook.

J.˜Fox and S.˜Weisberg. Bootstrapping regression models in R. Technical re-
port, 2012. URL http://socserv.mcmaster.ca/jfox/Books/Companion/

appendix/Appendix-Bootstrapping.pdf.

7

