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1 Overview
The Vennerable package provides routines to compute and plot Venn diagrams, includ-
ing the classic two- and three-circle diagrams but also a variety of others with different
properties and for up to seven sets. In addition it can plot diagrams in which the area of
each region is proportional to the corresponding number of set items or other weights.
This includes Euler diagrams, which can be thought of as Venn diagrams where regions
corresponding to empty intersections have been removed.

Figure 1 shows a three-circle Venn diagram of the sort commonly found. To draw
it, we use as an example the StemCell data of Boyer et al.[? ] which lists the gene
names associated with each of four transcription factors

> library(Vennerable)

> data(StemCell)

> str(StemCell)

List of 4

$ OCT4 : chr [1:623] "AASDH" "ABTB2" "ACCN4" "ACD" ...

$ SOX2 : chr [1:1279] "182-FIP" "AASDH" "ABCA5" "ABCB10" ...

$ NANOG: chr [1:1687] "13CDNA73" "AASDH" "ABCA5" "ABCB10" ...

$ E2F4 : chr [1:1273] "76P" "7h3" "AAMP" "AATF" ...

First we construct an object of class Venn:

> Vstem <- Venn(StemCell)

> Vstem

A Venn object on 4 sets named

OCT4,SOX2,NANOG,E2F4

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

0 109 305 45 644 64 354 287 821 30 78 6 118 16 138 66

Although Vennerable can cope with 4-set Venn diagrams, for now we reduce to a three-
set object

> Vstem3 <- Vstem[, c("OCT4", "SOX2", "NANOG")]

> Vstem3

A Venn object on 3 sets named

OCT4,SOX2,NANOG

000 100 010 110 001 101 011 111

821 139 383 51 762 80 492 353

Note how the weights were appropriately updated.
Now a call to plot produces the diagram in Figure 1 showing how many genes are

common to each transcription factor.
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> plot(Vstem3, doWeights = FALSE)

OCT4

SOX2NANOG

762 383492

139

80 51

353

821

Figure 1: A three-circle Venn diagram

Quite commonly, we may have sets whose intersections we only know by the num-
ber of elements. These can be created as Venn objects by supplying a named vector of
Weights:

> Vdemo2 <- Venn(SetNames = c("foo", "bar"), Weight = c(`01` = 7,

+ `11` = 8, `10` = 12))

Whichever way the Venn object is created, we can plot Venn diagrams in which the
area of each intersection is proportional to those weights as in Figure 2.
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> plot(Vdemo2, doWeights = TRUE, type = "circles")

foo
bar

712 8

Figure 2: A two-set weighted Venn diagram

For these basic plots, use of the Vennerable package may sometimes overkill, but
in more complex situations it has useful abilities. First it allows the use of a variety of
other shapes for the set boundaries, and up to nine different sets. Secondly it imple-
ments a number of published or novel algorithms for generating diagrams in which the
area of each region is proportional to, for example, the number of corresponding set
elements. Finally it adds a number of graphical control abilities, including the ability
to colour individual regions separately.

2 Computation and Annotation

2.1 Computing Venn drawings
The calls to plot are really convenience wrappers for two separate functions which
compute the geometry of the drawing first, returning an object of class VennDrawing
and then renders that object. For example

> plot(Vstem3, doWeights = TRUE)

is equivalent to
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> C3 <- compute.Venn(Vstem3, doWeights = TRUE)

> grid.newpage()

> plot(C3)

OCT4

SOX2

NANOG

762
383

492

139

80 51

353

821

Figure 3: A weighted three-circle Venn diagram

Note the use of a function from the grid graphics library package: all of the render-
ings are created using grid objects. The compute.Venn function can take a variety of
arguments such as doWeights controlling the geometry and topology of the drawing,
while the plot method has a number of arguments controlling annotation and display.

2.2 Annotation parameters
The text displayed in each face is controlled by the FaceText element of the show

parameter list to plot. Other elements of the parameter control whether, for example,
set names are displayed or faces are individually coloured
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> grid.newpage()

> plot(C3, show = list(FaceText = "signature", SetLabels = FALSE,

+ Faces = FALSE, DarkMatter = FALSE))

001
010

011

100

101 110

111

Figure 4: The same Venn diagram with different show parameters

2.3 Graphical parameters
The package makes its own decisions about how to colour lines and faces depending
on the complexity of the diagram. This can be overridden with the gpList argument
to plot. The default choices are equivalent to

> gpList <- VennThemes(C3)

> plot(C3, gpList = gpList)

Low-level modifications can be using the gpList argument, typically by modifying
the value of a call to VennThemes. There is more detail on the VennThemes man page
about the format of gpList. More high-level modifications can be made by supplying
the ColourAlgorithm or increasingLineWidth arguments to VennThemes.
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> grid.newpage()

> gp <- VennThemes(C3, colourAlgorithm = "binary")

> plot(C3, gpList = gp, show = list(FaceText = "sets", SetLabels = FALSE,

+ Faces = TRUE))

3
2

23

1

13 12

123

Figure 5: The effect of setting ColourAlgorithm="binary" and FaceText="sets"

The position and format of the set and face annotation are controlled by the data re-
turned by VennGetSetLabels and VennGetFaceLabels, respectively, which can be
modified and then reembedded in the VennDrawing object with VennSetSetLabels

and VennSetFaceLabels.
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> grid.newpage()

> SetLabels <- VennGetSetLabels(C3)

> SetLabels[SetLabels$Label == "February", "y"] <- SetLabels[SetLabels$Label ==

+ "March", "y"]

> C3 <- VennSetSetLabels(C3, SetLabels)

> plot(C3)

OCT4

SOX2

NANOG

762
383

492

139

80 51

353

821

Figure 6: Modifying the position of annotation
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3 Unweighted Venn diagrams
For another running example, we use sets named after months, whose elements are the
letters of their names.

> setList <- strsplit(month.name, split = "")

> names(setList) <- month.name

> Vmonth3 <- VennFromSets(setList[1:3])

> Vmonth2 <- Vmonth3[, c("January", "February"), ]

3.1 Unweighted 2-set Venn diagrams
For two sets, a diagram can be drawn using either circles or squares, as controlled by
the type argument. This is shown in Figure 7.1.

plot(V,type=circles,...)

January February

FebJn uyar

plot(V,type=squares,...)

January February

FebJn uyar

Figure 7: Unweighted 2-set Venn diagrams with type=circles or type=squares

1Here and in the rest of this vignette, much of the code to plot the Figures, which is mainly devoted
to layout, is not shown. However it can always be found by inspecting the source code of the vignette
at PACKAGETREE/Vennerable/doc/Venn.Rnw where PACKAGETREE is directory where the package was
installed.
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3.2 Unweighted 3-set Venn diagrams
For three sets, the type argument can be circles, squares, ChowRuskey, trian-
gles or AWFE. We have already seen the circles plot. The AWFE plot is an imple-
mentation of the elegant ideas of [? ]. The Chow-Ruskey plot is from [? ], and is a
redrawing of the AWFE plot in such a way that there is an algorithm which will allow
all of the faces to be adjusted in area without disrupting the topology of the diagram.
The triangles plot is fairly obvious, for example to reference[? ], but I have not seen it
implemented elsewhere.

This example of the squares plot is not simple, in the sense of [? ], because the
set boundaries don’t cross transversally. Topologically, there is only one simple Venn
diagram of order 3 (in a way that [? ] makes precise).

plot(Vmonth3,type="ChowRuskey",...)

3

3

0

20

2
2

plot(Vmonth3,type="squares",...)

3

3
0

2
0

2
2

plot(Vmonth3,type="triangles",...)

3 30

2
0 22

plot(Vmonth3,type="AWFE",...)

3

3

0

2 0

22

11



3.3 Unweighted 4-set Venn diagrams
For four sets, the type argument can be ChowRuskey, AWFE,squares or ellipses.

The squares plot is said by Edwards [? ] to have been introduced by Lewis Carroll
[? ]. The ellipse plot was suggested by Venn [? ].

Note how the package makes an attempt to identify a point within each face where
the annotation can be plotted, but doesn’t make a very good choice for very non-
concave or elongated faces.
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Figure 8: Venn diagrams on four sets drawn with the type argument set to
ChowRuskey, squares, ellipses, and AWFE.

A number of variants on the squares type are implemented. Currently they can
only be accessed by passing the parameters s or likesquares to the low level creation
function compute.S4 directly, which is what is done in Figure 9.

For more details on this see the help pages for compute.S4.
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Figure 9: Four variants on the four-squares
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3.4 Unweighted Venn diagrams on more than four sets
The package implements a variant of the Edwards construction[? ], which can in prin-
ciple generate Venn diagrams on an arbitrary number of sets n. The currently imple-
mented algorithm only computes up to 8 sets for the classic construction.

Figure 10: Edwards constructions for five to eight sets

A variant on the Edwards construction I developed as both quicker to compute
with, because it is based on straight lines, and slightly easier to visualise high-order
intersections in, is shown in Figure 11. It can be drawn by using type="battle" for
up to 9 sets.
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> plot(Venn(n = 9), type = "battle", show = list(SetLabels = FALSE,

+ FaceText = ""))

Figure 11: The battlement variant of the Edwards construction on 9 sets with the
type=battle argument
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4 Weighted Venn diagrams
There are repeated requests to generate Venn diagrams in which the areas of the faces
themselves are meant to carry information, mainly by being proportional to the in-
tersection weights. Even when these diagrams can be drawn, they are not often a
success in their information-bearing mission. But we can try anyway, through use of
the argument doWeights=TRUE. First of all we consider the case when all the visible
intersection weights are nonzero.

4.1 Weighted 2-set Venn diagrams for 2 Sets
4.1.1 Circles

It is always possible to get an exactly area-weighted solution for two circles as shown
in Figure 12.

> V3.big <- Venn(SetNames = LETTERS[1:3], Weight = 2^(1:8))

> Vmonth2.big <- V3.big[, c(1:2)]

> plot(Vmonth2.big)

A
B

13668 272

34

Figure 12: Weighted 2d Venn

4.1.2 Squares

As for circles, square weight-proportional diagrams can be simply constructed.
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> plot(Vmonth2.big, type = "squares")

A
B136

68 272

34

Figure 13: Weighted 2d Venn squares
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4.2 Weighted 3-set Venn diagrams
4.2.1 Circles

There is no general way of creating area-proportional 3-circle diagrams. While these
attempts at these diagrams are quite commonly seen, they must almost always be inex-
act.

The Vennerable package makes an attempt at produce approximate ones. Fig-
ure 14 shows a dataset taken from Chow and Ruskey [? ]

> Vcombo <- Venn(SetNames = c("Female", "Visible Minority", "CS Major"),

+ Weight = c(0, 4148, 409, 604, 543, 67, 183, 146))

> plot(Vcombo)

Female

Visible Minority
CS Major

543
409183

4148

67
604

146

Figure 14: 3D Venn diagram

The algorithm used is to compute the individual circles to have the exact area neces-
sary for proportionality, and then compute each of the three pairwise distances between
centres necessary for the correct pairwise areas. If these distances do not satisfy the
triangle inequality the largest is reduced until they do. Then the circles are arranged
with their centres separated by these (possibly modified) distances.
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4.2.2 Squares

There is are a number of possible algorithms to generate exact Venn diagrams based on
polygons. With type=squares the package uses an algorithm almost identical to that
suggested by ? ], which tries to generate rectangles as the set boundaries if possible

OCT4

SOX2
NANOG

762

383

492

139
80

51

353

821

Figure 15: Weighted 3-set Venn diagram based on the algorithm of [? ]
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> V3a <- Venn(SetNames = month.name[1:3], Weight = 1:8)

> plot(V3a, type = "squares", show = list(FaceText = "weight",

+ SetLabels = FALSE))

5

3 7

2

6

4

8

1

Figure 16: Weighted 3-set Venn diagram based on the algorithm of [? ]. This time the
algorithm fails to find rectangles.
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4.2.3 Triangles

The triangular Venn diagram on 3-sets lends itself nicely to an area-proportional draw-
ing under some contraints on the weights (detailed elsewhere).

> grid.newpage()

> C3t <- compute.Venn(V3a, type = "triangles")

> plot(C3t, show = list(SetLabels = FALSE, DarkMatter = FALSE))

5

3

7

2

6

4

8

Figure 17: Weighted Triangular Venn diagram
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4.3 Chow-Ruskey diagrams for 3 or more sets
The general Chow-Ruskey algorithm [? ] for area-proportional faces can be imple-
mented in principle for an arbitrary number of sets provided the weight of the common
intersection is nonzero. In practice the package is limited (to n = 9) by the size of the
largest AWFE diagram it can compute.

> plot(V3a, type = "ChowRuskey", show = list(SetLabels = FALSE,

+ DarkMatter = FALSE))

5

3

7
2

6

4

8

Figure 18: Chow-Ruskey weighted 3-set diagram
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> V4a <- Venn(SetNames = LETTERS[1:4], Weight = 16:1)

> plot(V4a, type = "ChowRuskey", show = list(SetLabels = FALSE,

+ DarkMatter = FALSE))

8

12

4

14

6

10

2

15

7

11

3

13

5

9

1

Figure 19: Chow-Ruskey weighted 4-set diagram
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OCT4

SOX2

NANOG

E2F4

821

644

118

305

78

354

138

109
30

64

16

45

6

287

66

Figure 20: Chow-Ruskey weighted 4-set diagram for the stem cell data
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5 Euler diagrams
A Euler diagram is one in which regions of zero-weight are not displayed at all (but
those which are displayed are not necessarily area-proportional). This can be achieved,
for some geometries, by use of the doEuler=TRUE argument.

As we have seen, for some geometries it is not possible to enforce exact area-
proportionality when requested by the doWeight=TRUE argument, and an attempt is
made to produce an approximately area-proportional diagram. In particular, regions
whose weight is zero may appear with nonzero areas. These two flags can interact in
weird and uncomfortable ways depending on exactly which intersection weights are
zero.

5.1 2-set Euler diagrams
5.1.1 Circles

Unweighted Venn

02 4

Weighted Venn

02 4

Unweighted Euler

2 4

Weighted Euler

2 4

Figure 21: Effect of the doEuler and doWeights flags for a Venn object with
Weights(V)["01"]=0

25



Unweighted Venn

32 0

Weighted Venn

32 0

Unweighted Euler

32

Weighted Euler

32

Figure 22: As before for when the intersection set has zero weight

5.1.2 Squares

As for circles, the idea of a weighted Venn diagram when some of the weights are zero
doesn’t make much sense in theory but might be useful for making visual points.
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Unweighted Venn

02 4

Weighted Venn

0

2

4

Unweighted Euler

2

4

Weighted Euler

2

4

Unweighted Venn

32 0

Weighted Venn

32 0

Unweighted Euler

32

Weighted Euler

32
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5.2 3-set Euler diagrams
5.2.1 Circles

There is currently no effect of setting doEuler=TRUE for three circles, but the doWeights=TRUE
flag does an approximate job. There are about 40 distinct ways in which intersection
regions can have zeroes can occur, but here are some examples.
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Ju
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Apri

l
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MayNovember

Novemb May

Apil
r

April

MayJune

June May
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May
June

Jun
May

Sptmbr

e

Figure 23: Weighted 3d Venn empty intersections.
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January

February
March

Mch
Feb

Jn

uy

ar

Figure 24: Approximate weighted 3d Venn showing element set membership
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5.2.2 Triangles

The doEuler flag has no effect for triangles; all the weighted diagrams produced are
Euler diagrams.

Unweighted Euler

2 21

4
1 00

Weighted Euler

2 2
1

4

1

Figure 25: 3d Venn triangular with two zero weights plotted with the doWeights flag
FALSE and TRUE
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Unweighted Euler

6 30

4
1 00

Weighted Euler

6 3

4

1

Figure 26: 3d Venn triangular with three zero weights plotted with the doWeights flag
FALSE and TRUE
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5.3 4-set Euler diagrams
5.3.1 Chow-Ruskey diagrams

The doEuler flag has no effect for Chow-Ruskey because all the weighted diagrams
produced are already Euler diagrams.

Apil

Mch

Feb

Jn

uy
a

r

Figure 27: Chow-Ruskey diagram with some zero weights
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6 Some loose definitions
Figure 1 illustrates membership of three sets, in order OCT4, SOX2 , NANOG. Genes
which are members of the SOX2 set but not the OCT4 or NANOG sets are members
of an intersection subset with indicator string or signature 010.

Given n sets of elements drawn from a universe, there are 2n intersection subsets.
Each of these is a subset of the universe and there is one corresponding to each of the
binary strings of length n. If one of these indicator strings has a 1 in the i-th position,
all of members of the corresponding intersection subset must be members of the i-th
set. Depending on the application, the universe of elements from which members of
the sets are drawn may be important. Elements in intersection set 00..., which are in
the universe but not in any known set, are called (by me) dark matter, and we tend to
display these differently.

A diagram which produces a visualisation of each of the sets as a connected curve
in the plane whose regions of intersection are connected and correspond to each of the
2n intersection subsets is an unweighted Venn diagram. Weights can be assigned to
each of the intersections, most naturally being proportional to the number of elements
each one contains. Weighted Venn diagrams have the same topology as unweighted
ones, but (attempt to) make the area of each region proportional to the weights. This
may not be possible, if any of the weights are zero for example, or because of the
geometric constraints of the diagram. Venn diagrams based on 3 circles are unable in
general to represent even nonzero weights exactly, and cannot be constructed at all for
n > 3.

Diagrams in which only those intersections with non-zero weight appear are Euler
diagrams, and diagrams which go further and make the area of every intersection pro-
portional to its weight are weighted Euler diagrams. For more details and rather more
rigour see first the online review of Ruskey and Weston [? ] and then the references it
contains.
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