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Abstract

In a second�order cone program �SOCP� a linear function is minimized over the intersec�
tion of an a�ne set and the product of second�order �quadratic� cones� SOCPs are nonlinear
convex problems that include linear and �convex� quadratic programs as special cases� and
arise in many engineering problems� such as �lter design� antenna array weight design� truss
design� robust estimation� and problems involving friction �e�g�� robot grasp��

In this paper we describe the basic theory of SOCPs� a variety of engineering applica�
tions� and an e�cient primal�dual interior�point method for solving SOCPs� The algorithm
we describe shares many of the features of primal�dual interior�point methods for linear pro�
gramming �LP�	 Worst�case theoretical analysis shows that the number of iterations required
to solve a problem grows at most as the square root of the problem size� while numerical
experiments indicate that the typical number of iterations ranges between 
 and 
�� almost
independent of the problem size�
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� Introduction

��� Second�order cone programming

We consider the second�order cone problem �SOCP�

minimize fTx
subject to kAix � bik � cTi x � di i  �� � � � � L�

���

where x � Rn is the optimization variable� and the problem parameters are f � Rn� Ai �
R�ni����n� bi � Rni��� ci � Rn� and di � R� The norm appearing in the constraints is the

standard Euclidean norm� i�e�� kuk 
�
uTu

����
� The constraint

kAix� bik � cTi x� di ���

is called a second�order cone constraint of dimension ni� for the following reason� The
standard or unit second�order �convex� cone of dimension k is de�ned as

Ck 
� �

u
t

� ����� u � Rk��� t � R� kuk � t

�

�which is also called the quadratic� ice�cream� or Lorentz cone�� For k  � we de�ne the unit
second�order cone as

C�  f t j t � R� � � t g �
A second�order cone constraint is the inverse image of a second�order cone under an a�ne
mapping	

kAix� bik � cTi x� di ��
�
Ai

cTi

�
x �

�
bi
di

�
� Cni�

and hence is convex� Thus� the SOCP ��� is a convex programming problem since the
objective is a convex function and the constraints are convex�

To simplify notation� we will often use

ui  Aix � bi� ti  cTi x� di i  �� � � � � L

so that we can rewrite the problem ��� as

minimize fTx
subject to kuik � ti i  �� � � � � L

ui  Aix� bi� ti  cTi x� di i  �� � � � � L�
���

with ui � Rni�� and t � RL�
Second�order cone constraints can be used to represent several common convex con�

straints� For example� when all constraints are linear� i�e�� when ni  � for i  �� � � � � L� the
SOCP reduces to the linear program �LP�

minimize fTx
subject to � � cTi x � di i  �� � � � � L�

�



Another interesting special case arises when ci  �� and the ith second�order cone con�
straint reduces to kAix � bik � di� which is equivalent to the �convex� quadratic constraint
kAix�bik� � d�i � When all ci vanish� the SOCP reduces to a quadratically constrained linear
program �QCLP�� We will soon see that �convex� quadratic programs �QPs�� quadratically�
constrained quadratic programs �QCQPs�� and many other nonlinear convex optimization
problems can be reformulated as SOCPs as well�

We will say x � Rn is feasible if it satis�es the second�order constraints in ��� and strictly
feasible if it satis�es the constraints with strict inequality� i�e�� kAix � bik � cTi x � di for
i  �� � � � � L� The SOCP is �strictly� feasible if there exists a �strictly� feasible x� The
optimal value of ��� will be denoted as p�� with the convention that p�  �� if the problem
is infeasible�

��� The dual SOCP

The dual of the SOCP ��� is given by

maximize �
LX
i��

�
bTi zi � diwi

�
subject to

LX
i��

�
AT

i zi � ciwi

�
 f

kzik � wi� i  �� � � � � L�

���

The dual optimization variables are the vectors zi � Rni��� and w � RL� We denote a
set of zi�s� i  �� � � � � L� by z� The dual SOCP ��� is also a convex programming problem
since the objective �which is maximized� is concave� and the constraints are convex� Indeed�
by eliminating the equality constraints we can recast the dual SOCP in the same form as
the SOCP ���� We will refer to the original SOCP as the primal SOCP when we need to
distinguish it from the dual�

The vectors z and w are called dual feasible if they satisfy the constraints in ��� and
strictly dual feasible if in addition they satisfy kzik � wi� i  �� � � � � L� We say the dual
SOCP ��� is �strictly� feasible if there exist �strictly� feasible zi� w� The optimal value of
the dual problem will be denoted d� �with d�  �� if the dual problem is infeasible��

The basic facts about the dual problem are	

�� �weak duality� p� � d��

�� �strong duality� if the primal or dual problem is strictly feasible� then p�  d��

�� if the primal and dual problems are strictly feasible� then there exist primal and dual
feasible points that attain the �equal� optimal values�

We only prove the �rst of these three facts� for a proof of � and �� see� e�g�� Nesterov and
Nemirovsky �NN��� x�������

The di�erence between the primal and dual objectives is called the duality gap associated
with x� z� w� and will be denoted by ��x� z� w�� or simply �	

��x� z� w�  fTx�
LX
i��

�
bTi zi � diwi

�
� �
�

�



Weak duality corresponds to the fact that the duality gap is always nonnegative� for any
feasible x� z� w� To see this� we observe that the duality gap associated with primal and
dual feasible points x� z� w can be expressed as a sum of nonnegative terms� by writing it in
the form

��x� z� w� 
LX
i��

�
zTi �Aix� bi� � wi�c

T
i x� di�

�


LX
i��

�
zTi ui � witi

�
� ���

Each term in the right�hand sum is nonnegative	

zTi ui � witi � �kzikkuik� witi � ��

The �rst inequality follows from the Cauchy�Schwarz inequality� The second inequality
follows from the fact that ti � kuik � � and wi � kzik � �� Therefore ��x� z� w� � � for any
feasible x� z� w� and as an immediate consequence we have p� � d�� i�e�� weak duality�

We can also reformulate part � of duality result �which we do not prove here� as follows	
If the problem is strictly primal and dual feasible� then there exist primal and dual feasible
points with zero duality gap� By examining each term ���� we see that the duality gap is
zero if and only if the following conditions are satis�ed	

kuik � ti � wi  kzik  �� ���

kzik � wi � ti  kuik  �� ���

kzik  wi� kuik  ti � wiui  �tizi� ���

These three conditions generalize the complementary slackness conditions between optimal
primal and dual solutions in LP� They also yield a su�cient condition for optimality	 a
primal feasible point x is optimal if� for ui  Aix � bi and ti  cTi x � di� there exist z� w�
such that ������� hold� �The conditions are also necessary if the primal and dual problems
are strictly feasible��

��� Point and outline of the paper

The main goal of the paper is to present an overview of examples and applications of second�
order cone programming� We have already mentioned that linear programming is a special
case� in x� we describe several other general convex optimization problems that can be cast
as SOCPs� These problems include QP� QCQP� problems involving sums and maxima of
norms� and hyperbolic constraints� In x� we describe a wide variety of engineering applica�
tions� including examples in �lter design� antenna arrays� robust estimation� and structural
optimization�

A second goal of the paper is to describe an e�cient primal�dual interior�point algorithm
for solving SOCPs� In x� we describe a primal�dual potential reduction method which is
simple� robust� and e�cient� This method is certainly not the only possible choice	 most of
the interior�point methods that have been developed for linear �or semide�nite� programming
can be generalized �or specialized� to handle SOCPs as well� The concepts underlying
other primal�dual interior�point methods for SOCP� however� are very similar to the ideas

�



behind the method presented here� An implementation of the algorithm �in C� with calls to
LAPACK� and including Matlab interface� is available via WWW or FTP �LVB����

The main reference on interior�point methods for SOCP is the book by Nesterov and
Nemirovsky �NN���� The method we describe is the primal�dual algorithm of �NN��� x��
�
specialized to SOCP� Adler and Alizadeh �AA�
� and Nemirovsky and Scheinberg �NS���
also discuss extensions of interior�point LP methods to SOCP� SOCP also �ts the framework
of optimization over self�scaled cones� for which Nesterov and Todd �NT��� have developed
and analyzed a special class of primal�dual interior�point methods� Other researchers have
worked on interior�point methods for special cases of SOCP� One example is convex quadratic
programming� see� for example� Den Hertog �dH���� or Vanderbei �Van���� As another
example� Andersen has developed an interior�point method for minimizing a sum of norms�
�which is a special case of SOCP� see x����� and describes extensive numerical tests in �And����
See also Andersen and Andersen �AA��� for software for convex quadratic programs� Xue
and Ye present another treatment of the minimization of a sum of norms� with applications
to facility location and shortest network problems� in �XY��

One of the best known engineering applications of SOCP is truss design� which was
studied by Ben�Tal and Nemirovsky �BTN�
�� Zowe �BBTZ���� and others� Lebret and
Boyd have applied interior�point methods for SOCP to problems of antenna array weight
design �Leb��� LB���� Hansson� Boyd� Vandenberghe and Lobo �HBVL���� discuss control
applications involving yield objectives�

We conclude this introduction with some general comments on the place of SOCP in
convex optimization relative to other problem classes� SOCP includes several important
standard classes of convex optimization problems� such as LP� QP and QCQP� On the other
hand� it is itself less general than semide�nite programming �SDP�� i�e�� the problem of
minimizing a linear function over the intersection of an a�ne set and the cone of positive
semide�nite matrices �see� e�g�� �VB����� This can be seen as follows	 The second order cone
can be embedded in the cone of positive semide�nite matrices since

kuk � t��
�
tI u
uT t

�
� ��

i�e�� a second�order cone constraint is equivalent to a linear matrix inequality� Using this
property the SOCP ��� can be expressed as an SDP

minimize fTx

subject to

�
�cTi x � di�I Aix � bi
�Aix� bi�

T cTi x � di

�
� �� i  �� � � � � L�

����

Solving SOCPs via SDP is not a good idea in practice� however� Interior�point methods that
solve the SOCP directly have a much better worst�case complexity than an SDP method ap�
plied to ����	 the number of iterations is bounded above by O�

p
L� for the SOCP algorithm�

and by O�
pP

i ni� for the SDP algorithm �see �NN����� In addition and more importantly
in practice� each iteration is much faster	 the amount of work per iteration is O�n�P

i ni� in
the SOCP algorithm and O�n�P

i n
�
i � for the SDP� The di�erence between these numbers is

signi�cant if the dimensions ni of the second�order constraints are large� A separate study
of �and code for� SOCP is therefore warranted�

�



� Problems that can be cast as SOCPs

��� Quadratically constrained quadratic programming

We have already seen that an LP is readily expressed as an SOCP with ��dimensional cones
�i�e�� ni  ��� Let us now consider the general convex quadratically constrained quadratic
program �QCQP�

minimize xTP�x � �q
T
� x� r�

subject to xTPix � �q
T
i x � ri � � i  �� � � � � p�

����

where P�� P�� � � � � Pp � Rn�n are symmetric and positive semide�nite� We will assume for
simplicity that the matrices Pi are strictly positive de�nite� although the problem can be
reduced to an SOCP in general� This allows us to write the QCQP ���� as

minimize
���P ���

� x� P
����
� q�

���� � r� � qT� P
��
� q�

subject to
���P ���

i x� P
����
i qi

���� � ri � qTi P
��
i qi � �� i  �� � � � � p�

which can be solved via the SOCP with p� � constraints of dimension n� �

minimize t

subject to kP ���
� x� P

����
� q�k � t�

kP ���
i x� P

����
i qik �

�
qTi P

��
i qi � ri

����
� i  �� � � � � p�

����

where t � R is a new optimization variable� The optimal values of ���� and ���� are equal
up to a constant and a square root� More precisely� the optimal value of ���� is equal to
p�� � r� � qT� P

��
� q�� where p

� is the optimal value of �����
As a special case� we can solve a convex quadratic programming problem �QP�

minimize xTP�x� �q
T
� x � r�

subject to aTi x � bi� i  �� � � � � p�

�P� � �� as an SOCP with one constraint of dimension n�� and p constraints of dimension
one	

minimize t

subject to kP ���
� x � P

����
� q�k � t

aTi x � bi� i  �� � � � � p�

where the variables are x and t�

��� Sum and maximum of norms

Problems involving sums of norms are readily cast as SOCPs� Let Fi � Rni�n and gi � Rni�
i  �� � � � � p� be given� The unconstrained problem

minimize
pX

i��

kFix� gik






can be expressed as an SOCP by introducing auxiliary variables t�� � � � � tp	

minimize
pX

i��

ti

subject to kFjx � gjk � tj� j  �� � � � � p�

The variables in this problem are x � Rn and ti � R� We can easily incorporate other
second�order cone constraints in the problem� e�g�� linear inequalities on x� Specialized
methods for minimizing a sum of norms and applications of this problem are discussed
in �And��� ACO��� CO��� DO����

As an interesting special case� consider the complex ���norm approximation problem	

minimize kAx� bk�
where x � Cq� A � Cp�q� b � Cp� and the �� norm on Cp is de�ned by kvk�  Pp

i�� jvij� This
problem is a sum�of�norms problem� and can be expressed as an SOCP with p constraints
of dimension three	

minimize
pX

i��

ti

subject to

�����
� 	aTi �
aTi

aTi 	aTi

�
z �

� 	bi

bi

������ � ti� i  �� � � � � p�

in the variables z  �	xT 
xT �T � R�q� and ti�
Similarly� problems involving a maximum of norms can be expressed as SOCPs	 the

problem
minimize max

i�������p
kFix � gik

is equivalent to the SOCP

minimize t
subject to kFix � gik � t� i  �� � � � � p�

in the variables x � Rn and t � R�
As a special case� we consider the complex �� norm approximation problem	

minimize kAx� bk�
where x� A� and b are as above� and the �� norm on Cp is de�ned by kvk�  maxpi�� jvij�
This problem can be expressed as the SOCP

minimize t

subject to

�����
� 	aTi �
aTi

aTi 	aTi

�
z �

� 	bi

bi

������ � t� i  �� � � � � p�

with variables z  �	xT 
xT �T � R�q� and t � R�

�



As an extension that includes as special cases both the maximum and sum of norms�
consider the problem of minimizing the sum of the k largest norms kFix � gik� i�e�� the
problem

minimize
kX

i��

y	i


subject to kFix � gik  yi� i  �� � � � � p�

����

where y	i
 denotes the ith largest component of y� i�e�� y	�
� y	�
� � � � � y	p
 are the numbers
y�� y�� � � � yp sorted in decreasing order� It can be shown that the objective function in ����
is convex and that the problem is equivalent to the SOCP

minimize kt �
pX

i��

yi

suject to kFix � gik � t� yi� i  �� � � � � p
yi � �� i  �� � � � � p�

where the variables are x� y � Rp� and t� �See� e�g�� �VBW� or �BV��� for further discussion��

��� Problems with hyperbolic constraints

Another large class of convex problems can be cast as SOCPs using the following fact	

w� � xy� x � �� y � ���
�����
�

�w
x� y

������ � x � y� x� y � �� ����

and� more generally� when w is a vector�

wTw � xy� x � �� y � ���
�����
�

�w
x� y

������ � x � y� x� y � �� ��
�

We refer to these constraints as hyperbolic constraints� since they describe half a hyperboloid�
As a �rst application� consider the problem

minimize
pX

i��

���aTi x� bi�

subject to aTi x� bi � �� i  �� � � � � p
cTi x� di � �� i  �� � � � � q�

which is convex since ���aTi x � bi� is convex for a
T
i x � bi � �� This is the problem of

maximizing the harmonic mean of some �positive� a�ne functions of x� over a polytope�
This problem can be cast as an SOCP as follows� We �rst introduce new variables ti and
write the problem as one with hyperbolic constraints	

minimize
pX

i��

ti

subject to ti�a
T
i x � bi� � �� ti � �� i  �� � � � � p

cTi x � di � �� i  �� � � � � q�

�



By ����� this can be cast as an SOCP in x and t	

minimize
pX

i��

ti

subject to

�����
�

�
aTi x� bi � ti

������ � aTi x � bi � ti� i  �� � � � � p

aTi x� bi � �� ti � �� i  �� � � � � p
cTi x � di � �� i  �� � � � � q�

As an extension� the quadratic�linear fractional problem

minimize
pX

i��

kFix � gik�
aTi x � bi

subject aTi x � bi � �� i  �� � � � � p�

where Fi � Rqi�n� gi � Rqi� can be cast as an SOCP by �rst expressing it as

minimize
pX

i��

ti

subject to �Fix� gi�
T �Fix� gi� � ti�a

T
i x � bi�� i  �� � � � � p

aTi x� bi � �� i  �� � � � � p�

and then applying ��
��
As another example� consider the logarithmic Chebychev approximation problem�

minimize max
i
j log�aTi x�� log�bi�j� ����

where A  �a� � � �ap�T � Rp�n� b � Rp� We assume b � �� and interpret log�aTi x� as ��
when aTi x � �� The purpose of ���� is to approximately solve an overdetermined set of
equations Ax � b� measuring the error by the maximum logarithmic deviation between the
numbers aTi x and bi� To cast this problem as an SOCP� �rst note that

j log�aTi x�� log�bi�j  logmax�aTi x�bi� bi�aTi x�
�assuming aTi x � ��� The log�Chebychev problem ���� is therefore equivalent to minimizing
maximax�a

T
i x�bi� bi�a

T
i x�� or	

minimize t

subject to ��t � aTi x�bi � t� i  �� � � � � p�

This can be expressed as the SOCP

minimize t

subject to aTi x�bi � t� i  �� � � � � p�����
�

�
t� aTi x�bi

������ � t � aTi x�bi� i  �� � � � � p�

�



As a �nal illustration of the use of hyperbolic constraints� we consider the problem of
maximizing a product of nonnegative a�ne functions �from Nesterov and Nemirovsky �NN���
x������ p������	

maximize
pY

i��

�aTi x� bi�

suject to aTi x� bi � �� i  �� � � � � p�

For simplicity� we consider the special case p  �� the extension to other values of p is
straightforward� We �rst reformulate the problem by introducing new variables t�� t�� and
t�� and by adding hyperbolic constraints	

maximize t�

subject to �aT� x � b���a
T
� x � b�� � t��� �a

T
� x � b���a

T
� x� b�� � t��

aT� x � b� � �� aT� x� b� � �

t�t� � t��� t�� t� � ��

Applying ���� yields an SOCP�

��� Matrix�fractional problems

The next class of problems are matrix�fractional optimization problems of the form

minimize �Fx� g�T �P� � x�P� � � � �� xpPp�
�� �Fx� g�

subject to P� � x�P� � � � �� xpPp � �
x � ��

����

where Pi  P T
i � Rn�n� F � Rn�p and g � Rn� and the problem variable is x � Rp�

We �rst note that it is possible to solve this problem as an SDP

minimize t

subject to

�
P �x� Fx� g

�Fx� g�T t

�
� ��

where P �x�  P� � x�P� � � � � � xpPp� The equivalence is readily demonstrated by using
Schur complements� and holds even when the matrices Pi are inde�nite� In the special case
where Pi � �� we can reformulate the matrix�fractional optimization problem more e�ciently
as an SOCP� as shown by Nesterov and Nemirovsky �NN��� x������ p������ We assume for
simplicity that the matrix P� is nonsingular �see �NN��� for the general derivation��

We claim that ���� is equivalent to the following optimization problem in t�� � � � � tn � R�
y�� y�� � � � � yp � Rn� and x	

minimize t� � t� � � � �� tp

subject to P
���
� y� � P

���
� y� � � � �� P ���

p yp  Fx � g

ky�k� � t�

kyik� � tixi� i  �� � � � � p

ti� xi � � i  �� � � � � p�

����

�



which can be cast as an SOCP using ��
�	

minimize t� � t� � � � �� tp

subject to P
���
� y� �

pX
i��

P
���
i yi  Fx� g�����

�
�y�
t� � �

������ � t� � �������
�

�yi
ti � xi

������ � ti � xi� i  �� � � � � p�

The equivalence between ���� and ���� can be seen as follows� We �rst eliminate the variables
ti and reduce problem ���� to

minimize yT� y� � yT� y��x� � � � �� yTp yp�xp
subject to P ���

� y� � P ���
� y� � � � �� P ���

p yp  Fx � g
x � �

�interpreting ���  ��� Since the only constraint on yi is the equality constraint� we can
optimize over yi by introducing a Lagrange multiplier 	 � Rn for the equality constraint�
which gives us yi in terms of u and x	

�y�  �P ���
� 	 and �yi  �xiP ���

i 	� i  �� � � � � p�

Next we substitute these expressions for yi and obtain a minimization problem in 	 and x	

minimize
�

�
	T �P� � x�P� � � � �� xpPp�	

subject to �P� � x�P� � � � �� xpPp�	  ���Fx � g�
x � ��

Finally� eliminating 	 yields the matrix�fractional problem �����

��� SOC�representable functions

The above examples illustrate several techniques that can be used to determine whether a
convex optimization problem can be cast as an SOCP� In this section we formalize these
ideas with the concept of a second�order cone representation of a set or function� introduced
by Nesterov and Nemirovsky �NN��� x�������

We say a convex set C  Rn is second�order cone representable �abbreviated SOC�
representable� if it can be represented by a number of second�order cone constraints� possibly
after introducing auxiliary variables� i�e�� there exist Ai � R�ni�����n�m�� bi � Rni��� ci �
Rn�m� di� such that

x � C �� �y � Rm s�t�

�����Ai

�
x
y

�
� bi

����� � cTi

�
x
y

�
� di� i  �� � � � � L�

��



We say a function f is second�order cone representable if its epigraph f�x� t� j f�x� � tg
has a second�order cone representation� The practical consequence is that if f and C are
SOC�representable� then the convex optimization problem

minimize f�x�
subject to x � C

can be cast as an SOCP and e�ciently solved via interior�point methods�
We have already encountered several examples of SOC�representable functions and sets�

SOC�representable functions and sets can also be combined in various ways to yield new
SOC�representable functions and sets� For example� if C� an C� are SOC�representable� then
it is straightforward to show that 
C� �
 � ��� C� �C� and C��C� are SOC�representable�
If f� and f� are SOC�representable functions� then 
f� �
 � ��� f�� f�� and maxff�� f�g are
SOC�representable�

As a less obvious example� if f�� f� are concave with f��x� � �� f��x� � �� and �f� and
�f� are SOC�representable� then f�f� is concave and �f�f� is SOC�representable� In other
words the problem of maximizing the product of f� and f��

maximize f��x�f��x�
subject to f��x� � �� f��x� � ��

can be cast as an SOCP by �rst expressing it as

maximize t
subject to t�t� � t

f��x� � t�� f��x� � t�
t� � �� t� � ��

and then using the SOC�representation of �f� and �f��
SOC�representable functions are closed under composition� Suppose the convex functions

f� and f� are SOC�representable and f� is monotone nondecreasing� so the composition g
given by g�x�  f��f��x�� is also convex� Then g is SOC�representable� To see this� note
that the epigraph of g can be expressed as

f�x� t�jg�x� � tg  f�x� t�j�s � R s�t� f��s� � t� f��x� � sg

and the conditions f��s� � t� f��x� � s can both be represented via second�order constraints�

� Applications

��� Antenna array weight design

In an antenna array the outputs of several antenna elements are linearly combined to produce
a composite array output� The array output has a directional pattern that depends on the
relative weights or scale factors used in the combining process� and the goal of weight design
is to choose the weights to achieve a desired direction pattern�

��



�xi� yi�

�

Figure �� Antenna array�

We will consider the simplest model� an array of omnidirectional antenna elements in
a plane� at positions �xi� yi�� i  �� � � � � n �see �gure ��� A unit plane wave� of frequency
�� is incident from angle �� We assume the wave number is one� i�e�� the wavelength is
	  �� This incident wave induces in the ith antenna element a signal ej�xi cos ��yi sin ���t�

�where j 
p���� This signal is demodulated �i�e�� multiplied by ej�t� to yield the baseband

signal� which is the complex number ej�xi cos ��yi sin ��� This baseband signal is multiplied by
the complex factor wi � C to yield

yi���  wi e
j�xi cos ��yi sin ��

 �wre�i cos �i���� wim�i sin �i���� � j �wre�i sin �i��� � wim�i cos �i���� �

where �i���  xi cos ��yi sin �� The weights wi are often called the antenna array coe�cients
or shading coe�cients� The output of the array is the sum of the weighted outputs of the
individual array elements	

y��� 
nX
i��

yi����

For a given set of weights� this combined output is a function of the angle of arrival � of the
plane wave� its magnitude is often plotted on a polar plot to show the relative sensitivity of
the array to plane waves arriving from di�erent directions� The design problem is to select
weights wi that achieve a desirable directional pattern y����

The crucial property is that for any �� y��� is a linear function of the weight vector w� This
property is true for a very wide class of array problems� including those in � dimensions� with
non�omnidirectional elements� and in which the elements are electromagnetically coupled�
For these cases the analysis is complicated� but we still have y���  a���w� for some complex
row vector a����

As an example of a simple design problem� we might insist on the normalization y��t�  ��
where �t is called the look or target direction� We also want to make the array relatively
insensitive to plane waves arriving from other directions� say� for j� � �tj � �� where �� is
called the beamwidth of the pattern�

��



�t ��

�t

�t ��

sidelobe level  �� ����

Figure �� Radial plot of jy��i�j
� on logarithmic scale� versus angle of incidence�

The speci�cations for sidelobe level are shown in dashed line type� the corresponding
optimal design is shown in solid line type� In this example �t 	 
��� � 	 �� �i�e��
beamwidth is ����� and the sidelobe level is �� ����

To minimize the maximum array sensitivity outside the beam� we solve the problem

minimize max
j���tj��

jy���j
subject to y��t�  ��

����

The square of the optimal value of this problem is called the sidelobe level of the array or
pattern� This is illustrated in �gure�� which also shows a typical optimal design�

This problem can be approximated as an SOCP by discretizing the angle �� e�g�� at
��� � � � � �m� where m � n� We assume that the target direction is one of the angles� say�
�t  �k� We can express the array response or pattern as

�y  Aw�

where �y � Cm� A � Cm�n� where

�y 

	

�
y����
���

y��m�

�� � A 

	

�
a����
���

a��m�

��
The problem ���� can then be approximated as

minimize t
subject to jy��i�j � t� for j�i � �kj � �

y��k�  �

��
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Figure �� Optimal tradeo� curve of sidelobe level versus half�beamwidth ��

which becomes an SOCP when expressed in terms of real and imaginary parts of the variables
and data�

This basic problem formulation can be extended in many ways� For example� we can
impose a null in a direction �l by adding the equality constraint y��l�  �� We can also add
constraints on the coe�cients� e�g�� that w is real �amplitude only shading�� or that jwij � �
�attenuation only shading�� or we can limit the total noise power ��P

i jwij� in y�

Numerical example

The data for this example� i�e�� the matrix A� was obtained from �eld measurements of an
antenna array with eight elements� and angle of incidence � sampled in �� increments between
���� and ����� Thus� A � C����� the problem variables are w � C� and the response or
pattern is given by �y � C���� �For more details on the array hardware and experimental
setup� see �SSO�
���

In addition to the sidelobe level and target direction normalization� a constraint on
each weight was added� i�e�� jwij � Wmax� i  �� � � � � �� which can be expressed as � SOC
constraints of dimension �� �The value of Wmax was chosen so that some� but not all�
of the weight constraints are active at the optimum�� The target direction was �xed as
�t  ���� and the sidelobe level was minimized for various beamwidths� In fact� �gure �
above shows a typical design� As a result� we obtain the �globally� optimal tradeo� curve
between beamwidth and optimal sidelobe level for this array� This tradeo� curve is plotted
in �gure ��

��



��� FIR �lter design

We denote by h�� h�� � � � � hn�� � R the coe�cients �impulse response� of a �nite impulse
response �FIR� �lter of length n� This means the �lter output sequence or signal y 	 Z� R

is related to the input u 	 Z� R via convolution	

y�k� 
n��X
i��

hiu�k � i��

The frequency response of the �lter is the function H 	 ��� ��� C de�ned as

H��� 
n��X
k��

hke
�jk��

where j 
p�� and � is the �discrete�time� frequency variable�

Minimax complex transfer function design

We �rst consider the problem of designing a �lter that approximates a desired frequency
response as well as possible� We assume the desired frequency response is speci�ed by the
complex numbers Hdes

i � i  �� � � � � N � that are the desired values of the transfer function
at the frequencies �i� i  �� � � � � N � The design problem is to choose �lter coe�cients that
minimize the maximum absolute deviation	

minimize max
i�������N

���H��i��Hdes
i

���
over all possible coe�cients hk� This is a complex ���approximation problem�

minimize

����������

	



�
� e�j�� e�j��� � � � e�j�n�����
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���

���
���
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�
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�
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�
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Hdes
N
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�

which can be cast as an SOCP using the results of x����

Minimax linear phase lowpass �lter design

As a second �lter design example� we consider the special case where the �lter coe�cients
are symmetric	 hk  hn�k��� For simplicity we assume n is even� The frequency response
simpli�es to

H��� 
n����X
k��

hk
�
e�jk� � e�j�n�k����

�

 �e�j��n�����
n����X
k��

hk cos��k � �n� ��������

�




This is called a linear phase �lter because the transfer function can be factored into a pure
delay �which has linear phase��

e�j��n�����

and real�valued term�

T ���  �
n����X
k��

hk cos��k � �n� �������� ����

which is a trigonometric polynomial with coe�cients hi� Note that jH���j  jT ���j�
It was observed already in the ����s that many interesting design problems for linear

phase FIR �lters can be cast as LPs� We illustrate this with a simple example involving
low�pass �lter design� with the following speci�cations� In the stopband� �s � � � � we
impose a minimum attenuation	 jH���j � 
� In the passband� � � � � �p� we want the
magnitude of the transfer function to be as close as possible to one� which we achieve by
minimizing the maximum deviation jjH���j��j� This leads to the following design problem	

minimize max�����p jjH���j � �j
subject to jH���j � �� �s � � � �

����

where the variables are the coe�cients hi� i  �� � � � � n��� �� and �p � �s � � and � � ��
are parameters�

In the form given� the design problem ���� is not a convex optimization problem� but it
can be simpli�ed and recast as one� First we replace jH���j by jT ���j� the trigonometric
polynomial ����� Since we can change the sign of the coe�cients hi �hence� T � without
a�ecting the problem� we can assume without loss of generality that T ��� � �� The optimal
value of the problem is always less than one �which is achieved by hi  ��� so in fact we can
assume that T ��� � � in the passband� This yields the following optimization problem	

minimize max�����p jT ���� �j
subject to jT ���j � �� �s � � � �

����

This problem is convex� but has semi�in�nite constraints� We can form an approximation
by discretizing the frequency variable �	 let �i� i  �� � � � � N� � �� be N� frequencies in the
passband� and �i� i  N�� � � � � N��� be N�N� frequencies in the stopband� The discretized
version of ���� is the LP

minimize t

subject to �� t � �
n����X
k��

hk cos��k � �n� ������i� � � � t� i  �� � � � � N� � �

�� �
n����X
k��

hk cos��k � �n� ������i� � �� i  N�� � � � � N�

����

with as variables h�� � � � � hn����� �See also the course notes �BV�����
Bounds on the deviation from speci�cations between sample points can be derived� show�

ing that the solution of the discretized problem converges to the solution of the continuous
problem as the discretization interval becomes small� See� e�g�� �Che��� and �WBV����

��



Minimax dB linear phase lowpass �lter design

We now describe a variation on the design problem just considered� in which the magnitude
deviation in the passband is measured on a logarithmic scale� which more accurately captures
actual �lter design speci�cations� This problem cannot be formulated as an LP� but can be
cast as an SOCP�

We suppose the deviation of the transfer function magnitude from one� in the passband�
is measured on a logarithmic scale� i�e�� we use the objective

max
�����p

j log jH���j � log �j  max
�����p

j log jH���jj�

This objective is� except for a constant factor� the minimax deviation of the �lter magnitude
measured in decibels �dB� �which uses �� log�� instead of log��

We can handle the resulting problem in a way similar to the minimax lowpass �lter
problem described above� The logarithmic deviation of T is handled using SOCP in a way
similar to the log�Chebychev approximation problem of x���	 we introduce a new variable t�
and modify problem ���� as

minimize t

subject to ��t � �
n����X
k��

hk cos��k � �n� ������i� � t� i  �� � � � � N� � �

�� � �
n����X
k��

hk cos��k � �n� ������i� � �� i  N�� � � � � N�

����

Note that here� the objective t represents the fractional deviation of jH���j from one� whereas
in ���� t represents the absolute deviation� The optimal value �in dB� of the minimax dB
design problem is given by �� log�� t

�� where t� is the optimal value of �����
After reformulating the hyperbolic constraints as second�order constraints� we obtain the

SOCP	

minimize t

subject to

�����
�

�
u� t

������ � u� t� u� t � �

u � �
n����X
k��

hk cos��k � �n� ������i� � t� i  �� � � � � N� � �

�� � �
n����X
k��

hk cos��k � �n� ������i� � �� i  N�� � � � � N�

��
�

For more on this subject� see �BB��� p������ �OS��� x
���� The topic of FIR �lter design
using convex optimization and interior�point algorithms is pursued in much greater detail
in �WBV����

��� Portfolio optimization with loss risk constraints

We consider a classical portfolio problem with n assets or stocks held over one period� xi
will denote the amount of asset i held at the beginning of �and throughout� the period� and

��



pi will denote the price change of asset i over the period� so the return is r  pTx� The
optimization variable is the portfolio vector x � Rn� The simplest assumptions are xi � �
�i�e�� no short positions� and x� � � � �� xn  � �i�e�� unit total budget��

We take a simple stochastic model for price changes	 p � Rn is Gaussian� with known
mean p and covariance �� Therefore with portfolio x � Rn� the return r is a �scalar� Gaussian
random variable with mean r  pTx and variance �r  xT�x� The choice of portfolio x
involves the �classical� Markowitz� tradeo� between return mean and variance�

Using SOCP� we can directly handle constraints that limit the risk of various levels of
loss� Consider a loss risk constraint of the form

Prob�r � 
� � �� ����

where 
 is a given unwanted return level �e�g�� an excessive loss� and � is a given maximum
probability� This constraint can be written as

Prob

�
r � rp
�r

� 
� rp
�r

�
� ��

which in turn can be expressed as


� rp
�r

�  ������

where

 �z� 
�p
�

Z z

��
e�t

��� dt

is the CDF of a unit Gaussian random variable� Thus the loss risk constraint ���� can be
expressed in terms of the portfolio vector x as

pTx�  �����
�������x

��� � 
� ����

Now� provided � � ��� �i�e��  ����� � ��� this loss risk constraint is a second�order cone
constraint� �If � � ���� the loss risk constraint becomes concave in x��

The problem of maximizing the expected return subject to a bound on the loss risk �with
� � ����� can therefore be cast as a simple SOCP with one second�order cone constraint	

maximize pTx

subject to pTx �  �����
�������x

��� � 


x � ��
nX
i��

xi  ��

There are many extensions on this simple problem� For example� we can impose several loss
risk constraints� i�e��

Prob�r � 
i� � �i� i  �� � � � � k�

�where �i � ����� which expresses the risks ��i� we are willing to accept for various levels of
loss �
i��

��



As another variation� we can handle uncertainty in the statistical model �!p� �� for the
price changes during the period� Suppose we have L di�erent possible scenarios� each of
which is modeled by a simple Gaussian model for the price change vector� with mean !pk and
covariance �k� We can then take a worst�case approach and maximize the minimum of the
expected returns for the L di�erent scenarios� subject to a constraint on the loss risk for
each scenario� In other words� we solve the SOCP

maximize mink p
T
k x

subject to pTk x �  
�����

�������
k x

��� � 
� k  �� � � � � L

x � ��
nX
i��

xi  ��

Note that the constraints impose the loss risk limit under all L scenarios�
As another �standard� extension� we can allow short positions� i�e�� xi � �� To do this

we introduce variables xlong and xshort� with

xlong � �� xshort � �� x  xlong � xshort�
nX
i��

xshort � �
nX
i��

xlong�

�The last constraint limits the total short position to some fraction � of the total long
position��

��� Robust linear programming

We consider a linear program�

minimize cTx
subject to aTi x � bi� i  �� � � � � m�

in which there is some uncertainty or variation in the parameters c� ai� bi� To simplify the
exposition we will assume that c and bi are �xed� and that ai are known to lie in given
ellipsoids	

ai � Ei  fai � Piu j kuk � �g �
where Pi  P T

i � �� �If Pi is singular we obtain "#at� ellipsoids� of dimension rank �Pi���
In a worst�case framework� we require that the constraints be satis�ed for all possible

values of the parameters ai� which leads us to the robust linear program

minimize cTx
subject to aTi x � bi� for all ai � Ei� i  �� � � � � m�

����

The robust linear constraint aTi x � bi for all ai � Ei can be expressed as
maxf aTi x j ai � Ei g  aTi x� kPixk � bi�

which is evidently a second�order cone constraint� Hence the robust LP ���� can be expressed
as the SOCP

minimize cTx
subject to aTi x � kPixk � bi� i  �� � � � � m�

��



Note that the additional norm terms act as "regularization terms�� discouraging large x in
directions with considerable uncertainty in the parameters ai�

The same problem can be considered in a statistical framework as well� Here we sup�
pose that the parameters ai are independent� with Gaussian distribution with mean ai and
variance �i� We require that each constraint a

T
i x � bi should hold with a probability �con��

dence� exceeding �� where � � ��
� Exactly as in the portfolio optimization problem �x�����
these constraints are equivalent to the second�order constraints

aTi x�  ����� ��k����
i xk � bi�

so the robust LP again becomes an SOCP�
We refer to Ben�Tal and Nemirovsky �BTN���� and Oustry� El Ghaoui� and Lebret �OEL���

for a further discussion of robustness in convex optimization�

��� Robust least�squares

The idea of incorporating robustness to parameter variation into a problem can be extended
to many problems� e�g�� least�squares�

Suppose we are given an overdetermined set of equations Ax � b� where A � Rm�n� b �
Rm are subject to unknown but bounded errors �A and �b with k�Ak � �� k�bk � � �where
the matrix norm is the spectral norm� or maximum singular value�� We de�ne the robust
least�squares solution as the solution bx � Rn that minimizes the largest possible residual�
i�e�� bx is the solution of

minimize maxk�Ak�	� k�bk�
 k�A� �A�x� �b� �b�k� ����

This is the robust least�squares problem introduced by El Ghaoui and Lebret �EL� and by
Chandrasekaran� Golub� Gu and Sayed �CGGS���� The objective function in problem ����
can be written in a closed form� by noting that

max
k�Ak�	� k�bk�


k�A� �A�x� �b � �b�k  max
k�Ak�	� k�bk�


max
kyk��

yT �Ax� b� � yT �Ax� yT �b

 max
kzk�	

max
kyk��

yT �Ax� b� � zTx� �

 kAx� bk� �kxk � ��

Problem ���� is therefore equivalent to minimizing a sum of Euclidean norms	

minimize kAx� bk� �kxk � ��

Although this problem can be solved as an SOCP� there is a simpler solution via the SVD
of A� The SOCP�formulation becomes useful as soon as we add additional constraints on x�
e�g�� nonnegativity constraints�

A variation on this problem is to assume that the rows ai of A are subject to independent
errors� but known to lie in a given ellipsoid	 ai � Ei� where

Ei  fai � Piu j kuk � �g �Pi  P T
i � ���

��



We obtain the robust least squares estimate x by minimizing the worst�case residual	

minimize maxai�Ei

�Pn
i��

�
aTi x� bi

������

� ����

We �rst work out the objective function in a closed form	

max
kuk��

���aTi x� bi � uTPix
���  max

kuk��
max

n
aTi x� bi � uTPix��aTi x� bi � uTPix

o
 max

n
aTi x� bi � kPixk��aTi x � bi � kPixk

o


���aTi x� bi
���� kPixk�

Hence� the robust least�squares problem ���� can be formulated as

minimize

�
nX
i��

����aTi x� bi
���� kPixk

������

which can be cast as the SOCP

minimize s
subject to ktk � s���aTi x� bi

���� kPixk � ti� i  �� � � � � n�

These two robust variations on the least squares problem can be extended to allow for
uncertainty on b� For the �rst problem� suppose the errors �A and �b are bounded as
k��A �b�k � �� Using the same analysis as above it can be shown that

max
k	�A �b
k�	

k�A� �A�x� �b � �b�  kAx� bk � �

�����
�
x
�

������ �
The robust least�squares solution can therefore be found by solving

minimize kAx� bk� �

�����
�
x
�

������ �
In the second problem� we can assume bi is bounded by bi � �bi�pi� bi�pi�� A straightforward
calculation yields

minimize

�
nX
i��

����aTi x� bi
���� kPixk� pi

������

which can be easily cast as an SOCP�

��	 Truss design

Ben�Tal and Bends$e in �BTB��� and Nemirovsky in �BTN��� consider the following problem
from structural optimization� A structure of k linear elastic bars connects a set of p nodes�

��



The task is to size the bars� i�e�� determine xi� the cross�sectional areas of the bars� that
yield the sti�est truss subject to constraints such as a total weight limit�

In the simplest version of the problem we consider one �xed set of externally applied
nodal forces fi� i  �� � � � � p� more complicated versions consider multiple loading scenarios�
The vector of small node displacements resulting from the load forces f will be denoted d�
One objective that measures sti�ness of the truss is the elastic stored energy �

�
fTd� which is

small if the structure is sti�� The applied forces f and displacements d are linearly related	
f  K�x�d� where

K�x�
�


kX
i��

xiKi

is called the sti�ness matrix of the structure� The matrices Ki are all symmetric positive
semide�nite and depend only on �xed parameters �Young�s modulus� length of the bars�
and geometry�� To maximize the sti�ness of the structure� we minimize the elastic energy�
i�e�� fTK�x���f��� Note that increasing any xi will decrease this objective� i�e�� sti�en the
structure�

We impose a constraint on the total volume �or equivalently� weight�� of the structure�
i�e��

P
i lixi � vmax� where li is the length of the ith bar� and vmax is maximum allowed

volume of the �bars of the� structure� Other typical constraints include upper and lower
bounds on each bar cross�sectional area� i�e�� xi � xi � xi� For simplicity� we assume that
xi � �� and that K�x� � � for all positive values of xi�

The optimization problem then becomes

minimize fTK�x���f

subject to
kX

i��

lixi � v

xi � xi � xi� i  �� � � � � k�

where d and x are the variables� This problem can be cast as an SOCP since the objective
has the matrix�fractional form described in x����

Several extensions can be developed� e�g�� multiple loading scenarios� See also �ABBTZ���
BBTZ���� For a survey and further references� see Ben�Tal and Nemirovski �BTN�
��

��
 Equilibrium of system with piecewise�linear springs

We consider a mechanical system that consists of N nodes at positions x�� � � � � xn � R�� with
node i connected to node i��� for i  �� � � � � N��� by a nonlinear spring� The nodes x� and
xN are �xed at given values a and b� respectively� The tension Ti in spring i is a nonlinear
function of the distance between its endpoints� i�e�� kxi � xi��k	

Ti  k�kxi � xi��k � l��� ����

where z�  maxfz� �g� Here k � � denotes the sti�ness of the springs and l� � � is its
natural �no tension� length� In this model the springs can only produce positive tension
�which would be the case if they buckled under compression�� Each node has a mass of
weight wi � � attached to it� This is shown in �gure ����

��



x�  a

x�

x�
x�

xN  b

Figure �� System of nodes �weights� connected by springs� The �rst and last node
positions� i�e�� x� and xN � are �xed�

The problem is to compute the equilibrium con�guration of the system� i�e�� values of
x�� � � � � xN such that the net force on each node is zero� This can be done by �nding the
minimum energy con�guration� i�e�� solving the optimization problem

minimize
P

iwie
T
� x

i �
P

i ��kxi � xjk�
subject to x�  a� xN  b

where e� is the second unit vector �which points up�� and ��d� is the potential energy stored
in a spring stretched to an elongation d	

��d� 
Z d

�
k�a� l���da  �k����d� l��

�
��

This objective can be shown to be convex� hence the problem is convex� If we write it as

minimize
P

i wie
T
� x

i � �k���tT t
subject to kxi � xi��k � l� � ti� i  �� � � � � N � �

� � ti� i  �� � � � � N � �
x�  a� xN  b�

we can substitute y for tT t and add the hyperbolic constraint

tT t � y ��
�����
�

�t
�� y

������ � � � y�

thereby obtaining an SOCP�
Several extensions to this problem are possible� such as considering masses in R�� springs

connecting arbitrary nodes� or limits on extension of springs� In general� if the spring tension
versus extension function is piecewise linear and increasing� the equilibrium con�guration can
be found via SOCP�
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� Primal�dual interior�point method

We brie#y describe an e�cient method for solving second�order cone problems� The method
is the primal�dual potential reduction method of Nesterov and Nemirovsky �NN��� x��
�
applied to SOCP� When specialized to LP� the algorithm reduces to a variation of Ye�s
potential reduction method �Ye����

The underlying ideas and concepts are similar for most other primal�dual interior�point
methods� so the description in this section can serve as an introduction to other primal�dual
methods for SOCP as well� For example� the algorithm we describe can use �without any
other change� the symmetric primal�dual search directions developed by Nesterov and Todd
for self�scaled cones �NN����

We �rst introduce some new notation that will simplify the formulas considerably� We
de�ne !A� !b� X� and Z as

!A 

	






�

A�

cT�
���
AL

cTL

�� �
!b 

	






�

b�
d�
���
bL
dL

�� � X 

	






�

u�
t�
���
uL
tL

�� � Z 

	






�

z�
w�
���
zL
wL

�� �

This allows us to write the primal and dual SOCPs ��� and ��� more compactly as

minimize fTx
subject to X  !Ax� !b � Cn� � Cn� � � � � � CnL�

and
maximize �!bTZ
subject to !ATZ  f

Z � Cn� � Cn� � � � � � CnL�
Note also that in this notation the duality gap associated with a pair of primal and dual
feasible points x� Z is simply

�  XTZ�

��� Barrier for second�order cone

We de�ne� for u � Rm��� t � R�

��u� t� 

�
� log

�
t� � kuk�

�
kuk � t

� otherwise�
����

The function � is a barrier function for the second�order cone Cm	 ��u� t� is �nite if and only
if �u� t� � Cm �i�e�� kuk � t�� and ��u� t� converges to � as �u� t� approaches the boundary
of Cm� It is also smooth and convex on the interior of the second�order order cone� Its �rst
and second derivatives are given by

r��u� t�  �

t� � uTu

�
u
�t

�

��



and

r���u� t� 
�

�t� � uTu��

�
�t� � uTu�I � �uuT ��tu

��tuT t� � uTu

�
�

��� Primal�dual potential function

For strictly feasible �x� Z�� we de�ne the primal�dual potential function as

��x� Z�  ��L� �
p
�L� log � �

LX
i��

�
��Aix� bi� c

T
i x� di� � ��zi� wi�

�
� �L logL ����

where � � � is an algorithm parameter� and � is the duality gap �
� associated with �x� Z��
The most important property of the potential function is the inequality

��x� Z� � exp
�
��x� Z�

�
�
p
�L

�
� ����

which holds for all strictly feasible x� Z� Therefore� if the potential function is small� the
duality gap must be small� In particular� if � � ��� then � � � and �x� Z� approaches
optimality�

The inequality ���� can be easily veri�ed by noting the fact that

��x� Z�
�
 �L log � �

LX
i��

�
��Aix� bi� c

T
i x� di� � ��zi� wi�

�
� �L logL � � ��
�

for all strictly feasible x� Z �see the appendix�� This implies ��x� Z� � �
p
�L log���x� Z���

and hence �����

��� Primal�dual potential reduction algorithm

In a primal�dual potential reduction method� we start with strictly primal and dual x� Z� and
update them in such a way that the potential function ��x� Z� is reduced at each iteration by
at least some guaranteed amount� There exist several variations of this idea� In this section
we present one such variation� the primal�dual potential reduction algorithm of Nesterov and
Nemirovsky �NN��� x��
��

At each iteration of the Nesterov and Nemirovsky method� primal and dual search direc�
tions �x� �Z are computed by solving the set of linear equations�

H�� !A
!AT �

� �
�Z
�x

�


� �H����Z � g�
�

�
����

in the variables �x� �Z� where

H 

	

�
r���u�� t�� � � � �

���
� � �

���
� � � � r���uL� tL�

�� � g 

	

�
r��u�� t��

���
r��uL� tL�

�� �

�




and � is equal to �  ��L � �
p
�L���� �And as before� ui  Aix � bi and ti  cTi x � di��

Note that

r���u� t��� 
�

�

�
�t� � uTu�I � �uuT �tu

�tuT t� � uTu

�
�

and therefore forming H��  diag �r���u�� t��
��� � � � �r���uL� tL�

��� does not require a
matrix inversion�

The outline of the algorithm is as follows�

Primal�dual potential reduction algorithm

given strictly feasible x� Z� a tolerance � � �� and a parameter � � ��

repeat

�� Find primal and dual search directions by solving �����
�� Plane search� Find p� q � R that minimize ��x� p�x� Z � q�Z��
�� Update x 	 x � p�x� Z 	 Z � q�Z�

until ��x� Z� � ��

It can be shown that at each iteration of the algorithm� the potential function decreases by
at least a �xed amount	

��x�k���� Z�k���� � ��x�k�� Z�k��� �

where � � � does not depend on any problem data at all �including the dimensions�� For
a proof of this result� see �NN��� x��
�� Combined with ���� this provides a bound on the
number of iterations required to attain a given accuracy �� From ���� we see that � � � after
at most

�
p
�L log�������� � ��x���� Z����

�

iterations� Roughly speaking and provided the initial value of � is small enough� this means
it takes no more than O�

p
L� steps to reduce the initial duality gap by a given factor�

Computationally the most demanding step in the algorithm is solving the linear sys�
tem ����� This can be done by �rst eliminating �Z from the �rst equation� solving

!ATH !A�x  � !AT ��Z � g�  ��f � !ATg ����

for �x� and then substituting to �nd

�Z  ��Z � g �H !A�x�

Since !AT �Z  �� the updated dual point Z � q�Z satis�es the dual equality constraints� for
any q � R�

An alternative is to directly solve the larger system ���� instead of ����� This may be
preferable when !A is very large and sparse� or when the equations ���� are badly conditoned�

We refer to the second step in the algorithm as the plane search since we are minimizing
the potential function over the plane de�ned by the current points x�Z and the current

��



primal and dual search directions� This plane search can be carried out very e�ciently using
some preliminary preprocessing� The objective function for the plane search is

f�p� q�  ��x� p�x� Z � q�Z�

 ��L� �
p
�L� log

�
��x� Z� � pZT �X � q�ZTX

�
�

LX
i��

log
�
t�i � kuik� � �p�ti�ti � uTi �ui� � p���t�i � k�uik��

�

�
LX
i��

log
�
w�
i � kzik� � �q�wi�wi � zTi �zi� � q���w�

i � k�zik��
�
�

where �X  !A�x � !b� This function of two variables can be very e�ciently minimized if we
�rst compute the coe�cients of p� q� p� and q� in the arguments of the logarithms� Once
those coe�cients are available� the �rst and second derivatives of f at any given p and q can
be computed very quickly� in O�L� operations� and therefore the minimum of f is readily
obtained by a �safe�guarded� Newton method�

We conclude this section by pointing out the analogy between ���� and the systems of
equations arising in interior�point methods for LP� We consider the primal�dual pair of LPs

minimize fTx
subject to cTi x � di � �� i  �� � � � � L

and

minimize �
LX
i��

dizi

subject to
LX
i��

zici  f

zi � �� i  �� � � � � L�

and solve them as SOCPs with ni  �� i  �� � � � � L� Using the method outlined above� we
obtain

!A  �c� � � � cL�
T � !b  d�

and writing X  diag
�
cT� x � d�� � � � � c

T
Lx� dL

�
� the equation ���� reduces to

�
�
�
X� !A
!AT �

� �
�z
�x

�


� ������X�z �Xe
�

�
� ����

The factor ��� in the �rst block can be absorbed into �z since only the direction of �z is
important� not its magnitude� Also note that ���  �L � �

p
L���� We therefore see that

the equations ���� coincide with �one particular variation� of familiar expressions for LP�

��� Finding strictly feasible initial points

The algorithm of the previous section requires strictly feasible primal and dual starting
points� In this section we discuss two techniques that can be used when primal and�or dual

��



feasible points are not readily available� We �rst show that any given SOCP can be modi�ed
in such a way that it has an obvious dual strictly feasible solution� We then show how to
compute a primal feasible point for an SOCP by solving a related problem� known as the
phase�I problem�

Bounds on the primal variables

As a general guideline� it is easy to �nd strictly dual feasible points in SOCPs where the
primal constraints include explicit bounds on the feasible set� Such bounds can include� for
example� componentwise upper and lower bounds l � x � u� or a norm constraint kxk � R�
It can be veri�ed that adding explicit bounds results in SOCPs with straightforward dual
feasible points�

For example� suppose that we modify the SOCP ��� by adding a bound on the norm of x	

minimize fTx
subject to kAix� bik � cTi x� di� i  �� � � � � L

kxk � R�
����

If R is large enough� the extra constraint does not change the solution and the optimal value
of the SOCP� The dual of the SOCP ���� is

maximize �
LX
i��

�
bTi zi � diwi

�
�RwL��

subject to
LX
i��

�
AT

i zi � ciwi

�
� zL��  f

kzik � wi� i  �� � � � � L� ��

����

Strictly feasible points for ���� can be easily calculated as follows� For i  �� � � � � L� we
can take any zi and wi � kzik� The variable zL�� then follows from the equality constraint
in ����� and for wL�� we can take any number greater than kzL��k�

This idea of adding bounds on the primal variable is a variation on the big�M method
in linear programming�

Phase�I method

A primal strictly feasible point can be computed by solving the SOCP

minimize t
subject to kAix � bik � cTi x � di � t� i  �� � � � � L

����

in the variables x and t� If �x� t� is feasible in ����� and t � �� then x satis�es kAix�bik � cTi x�
i�e�� it is strictly feasible for the original SOCP ���� We can therefore �nd a strictly feasible
x by solving ����� provided the optimal value t� of the SOCP ���� is negative� If t� � �� the
original SOCP ��� is infeasible�

Note that it is easy to �nd a strictly feasible point for the SOCP ����� One possible
choice is

x  �� t � max
i
kbik � di�

��



The dual of the SOCP ���� is

maximize
LX
i��

�
bTi zi � diwi

�
subject to

LX
i��

�
AT

i zi � ciwi

�
 �

LX
i��

wi  �

kzik � wi� i  �� � � � � L�

����

If a strictly feasible �z� w� for ���� is available� one can solve the phase�I problem by applying
the primal�dual algorithm of the previous section to the pair of problems ����� and ����� If
no strictly feasible �z� w� for ���� is available� one can add an explicit bound on the primal
variable as described above�

��� Performance in practice

A C�implementation of the potential reduction method described in x��� is available via the
WWW� and numerical experiments with the algorithm are reported in the documentation of
the code �LVB���� Our experience with the method is consistent with the practical behavior
observed in many similar methods for linear or semide�nite programming	 the number of
iterations is only weakly dependent on the problem dimensions �n� ni� L�� and typically lies
between 
 and 
� for a very wide range of problem sizes�

We can therefore say that for practical purposes the cost of solving an SOCP is roughly
equal to the cost of solving a modest number �
�
�� of systems of the form ����� If no special
structure in the problem data is exploited� the cost of solving the system is O�n��� and the
cost of forming the system matrix is O�n�PL

i�� ni�� In practice� special problem structure
�e�g�� sparsity� often allows forming the equations faster� or solving the systems ���� and ����
more e�ciently�

We close this section by pointing out a few possible improvements� The most popular
interior�point methods for linear programming share many of the features of the potential
reduction method we presented here� but di�er in three respects �see �Wri����� First� they
treat the primal and dual problems more symmetrically �for example� the diagonal ma�
trix X� in ���� is replaced by XZ���� A second di�erence is that common interior�point
methods for LP are one�phase methods that allow an infeasible starting point� Finally� the
asymptotic convergence of the method is improved by the use of predictor steps� These
di�erent techniques can all be extended to SOCP� In particular� Nesterov and Todd �NT���
and Adler and Alizadeh �AA�
� have developed extensions of the symmetric primal�dual
LP methods to SOCP� and an implementation will be made available in the next version of
sdppack �AHNO����

�At http���www�isl�stanford�edu�people�boyd�SOCP�html
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� Conclusions

Second�order cone programming is a problem class that lies between linear �or quadratic�
programming and semide�nite programming� Like LP and SDP� SOCPs can be solved very
e�ciently by primal�dual interior�point methods �and in particular� far more e�ciently than
by treating the SOCP as an SDP�� Moreover� a wide variety of engineering problems can be
formulated as second�order cone problems�
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