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1 Introduction

This package provides functions to preprocess and analyze genomic data. Markers refer to SNPs or copy num-
ber variations which are designed on the arrays. MPAgenomics is devoted to: (i) efficient segmentation and (ii)
genomic marker selection from multi-patient copy number and SNP data profiles.

For both types of analyses, a pre-processing step (section 4) is proposed as a wrapper of aroma.* packages
[1][4]. This enables to keep maximum information from the original signals and improve the multi-patients
analysis. In particular, this is useful to keep quantitative data for SNPs rather than usual genotype calls (AA,
AB or BB) when these states are not relevant (eg in cancer studies where the number of copies differs from
two copies). Note that the use of aroma.* packages [1] implies that the pre-processing step is only available for
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Affymetrix DNA chips. The other functionalities of the package MPAgenomics can however be used independently
and such procedures are explained in the sections which detail each step of the proposed analysis.

Efficient segmentation is proposed by refining the parameter choice of Pelt segmentation [10] originally
implemented in the changepoint package [9]. MPAgenomics offers a pipeline to perform normalization, segmen-
tation and calling at the same time.

Selection of genomic markers relies on the use of penalized regularization techniques implemented in glmnet

[7] and wrappers are offered to relate this package with the normalisation packages. For the users who would
like to go further in the use of penalized regularization techniques, we also provide some guidelines to quickly
build inputs for the HDPenReg package and interpret some outputs of this latter one.

2 Preliminaries

2.1 Citing MPAgenomics

Please always cite the following paper when using MPAgenomics:

• Q. Grimonprez, A. Celisse, M. Cheok, M. Figeac, and G. Marot. Mpagenomics : An r package for multi-
patients analysis of genomic markers, 2014. Preprint http://hal.inria.fr/hal-00933614

Moreover, MPAgenomics wraps and extends fonctionnalities of several packages. Please try to cite the ap-
propriate methodological papers when you use results from the MPAgenomics software in a publication, as such
citations are the main means by which the authors receive professional credit for their work.

If you use CRMAv2 normalization in MPAgenomics, please cite:

• H. Bengtsson, P. Wirapati, and T. P. Speed. A single-array preprocessing method for estimating full-
resolution raw copys from all affymetrix genotyping arrays including genomewidesnp 5 & 6. Bioinformatics,
25(17):2149–2156, 2009

If you use TumorBoost normalization in MPAgenomics, please cite:

• H. Bengtsson, P. Neuvial, and T. P. Speed. Tumorboost: Normalization of allele-specific tumor copy
numbers from a single pair of tumor-normal genotyping microarrays. BMC Bioinformatics, 11, 2010

If you use MPAgenomics to segment copy number or allele B fraction signals with the PELT segmentation
method, please cite:

• R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear computational
cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012

If you use MPAgenomics for calling with CGHcall, please cite:

• M. A. van de Wiel, K. I. Kim, S. J. Vosse, W. N. van Wieringen, S. M. Wilting, and B. Ylstra. CGHcall:
calling aberrations for array CGH tumor profiles. Bioinformatics, 23(7):892–894, 2007

2.2 Installation

The package can be installed either from a GUI (selecting the R-forge repository) or with the command line (to
be typed in the R console)

> install.packages("MPAgenomics", repos="http://R-Forge.R-project.org")

This vignette can be produced with the command

> vignette("MPAgenomics")

Since the package provides simple wrappers of many existing packages and all users are not interested by
the same wrappers, we did not force MPAgenomics to depend on all the packages. We however recommend the
user who would like to preprocess data to install aroma packages [1] with the following commands:
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> source("http://www.braju.com/R/hbLite.R")

> hbLite("sfit")

> source("http://bioconductor.org/biocLite.R")

> biocLite("affxparser")

> source("http://aroma-project.org/hbLite.R")

> hbInstall("aroma.affymetrix")

> hbInstall("aroma.cn")

> install.packages("aroma.core")

For users who want to perform the single analysis (segmentation and calling), we recommand to install the
packages changepoint[9] and CGHcall [13].

> #for segmentation

> install.packages("changepoint")

> #for calling

> source("http://bioconductor.org/biocLite.R")

> biocLite("CGHcall")

The installation of all these packages at the very beginning of the use of MPAgenomics is only for convenience,
not mandatory. Indeed, the user who would have forgotten to install some packages would be reminded to install
them when applying the corresponding wrapper.

3 Starting example

This introductory example aims at helping the user understand the main functions of the package. For more
details on each step, we invite the user to read the appropriate section.

3.1 Download a toy data-set

The example is based on a free data-set containing 8 .CEL files (251Mo) which can be downloaded from the
Broad Institute website, following this link: http://www.broadinstitute.org/mpg/birdsuite/downloads/

birdsuite_inputs_1.5.3.tgz If you are used to decompress .tgz files, extract this file and copy the following
command in the R console, replacing the path to the directory where the raw data (.CEL files) are stored with
the appropriate one. Note that we deliberately use ”/” and not ”\ ” in celPATH. If you copy paste paths from
Windows (e.g. looking at properties of the directory), you must change ”\ ” by ”/” or ”\\ ”.

> celPATH="/home/user/Documents/workdir/CELdata/cel"

In this example, the directory pointed by celPATH must contain the files shown in Figure 1.

Figure 1: CEL files in celPATH (variable containing the path to the downloaded CEL files).

If it is not the case, e.g. if you do not know how to download and extract .tgz files (e.g. via a right click) ,
you can use the following commands in the R console:

> #set your working directory (replace with the appropriate path)
> workdir="/home/user/Documents/workdir"
> setwd(workdir)
> #download file
> download.file("http://www.broadinstitute.org/mpg/birdsuite/downloads/birdsuite_inputs_1.5.3.tgz",
+ destfile="./CELdata.tgz")
> #untar the file
> untar("./CELdata.tgz",files="cel",exdir=".")
> #indicate the path containing .cel files
> celPATH="./cel"
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Once .CEL files are extracted, you must download all the GenomeWideSNP 6 annotation files which are
needed to pre-process the data. These files have extensions .cdf, .ufl, .ugp, .acs. You can download the cdf files
(258Mo) from the Affymetrix website (an user account is required), following this link http://www.affymetrix.

com/Auth/support/downloads/library_files/genomewidesnp6_libraryfile.zip

Extract these files and replace the following path with the appropriate one pointing to the folder containing
the extracted .cdf files (only GenomeWideSNP 6.Full.cdf is needed but you can leave the other files in the same
folder):

> chipPATH="/home/user/Documents/workdir/CD_GenomeWideSNP_6_rev3/Full/GenomeWideSNP_6/LibFiles/"

If you do not know how to decompress .zip files, you can use the following commands in the R console for
convenience:

> #unzip required files
> unzip("./genomewidesnp6_libraryfile.zip",
+ files=c("CD_GenomeWideSNP_6_rev3/Full/GenomeWideSNP_6/LibFiles/GenomeWideSNP_6.Full.cdf"),exdir=".")
> #indicate the path containing .cdf files
> chipPATH="./home/user/Documents/workdir/CD_GenomeWideSNP_6_rev3/Full/GenomeWideSNP_6/LibFiles/"

The other annotation files can be downloaded from http://www.aroma-project.org/data/annotationData/

chipTypes/GenomeWideSNP_6/. For this example, we download GenomeWideSNP 6,Full,na31,hg19,HB20110328.ufl.gz
(6Mo), GenomeWideSNP 6,Full,na31,hg19,HB20110328.ugp.gz (7Mo), GenomeWideSNP 6,HB20080710.acs.gz
(37Mo). Extract these files in the folder where your cdf files are in order to have all the annotation files in the
same folder (see Figure 2).

Figure 2: Chip GenomeWideSNP 6 files in chipPATH (variable containing the path to the downloaded chip
files).

If you do not know how to download or decompress .gz files, you can use the following commands in the R
console for convenience:

> #set the directory where the .cdf files are as your working directory
> setwd(chipPATH)
> ##download the 3 files .ufl, .ugp, .acs
> download.file("http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/GenomeWideSNP_6,Full,na31,hg19,HB20110328.ufl.gz",
+ destfile="GenomeWideSNP_6,Full,na31,hg19,HB20110328.ufl.gz")
> download.file("http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/GenomeWideSNP_6,Full,na31,hg19,HB20110328.ugp.gz",
+ destfile="GenomeWideSNP_6,Full,na31,hg19,HB20110328.ugp.gz")
> download.file("http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/GenomeWideSNP_6,HB20080710.acs.gz",
+ destfile="GenomeWideSNP_6,HB20080710.acs.gz")
> #unzip the gz files
> #install R.utils package containing the gunzip function
> install.packages("R.utils")
> library("R.utils")
> gunzip("GenomeWideSNP_6,Full,na31,hg19,HB20110328.ufl.gz",
+ destname="GenomeWideSNP_6,Full,na31,hg19,HB20110328.ufl")
> gunzip("GenomeWideSNP_6,Full,na31,hg19,HB20110328.ugp.gz",
+ destname="GenomeWideSNP_6,Full,na31,hg19,HB20110328.ugp")
> gunzip("GenomeWideSNP_6,HB20080710.acs.gz",destname="GenomeWideSNP_6,HB20080710.acs")

3.2 Use of the main functions of the package

In the following example, we suggest to perform segmentation and calling before selection of markers even if
only the pre-processing step, which estimates the copy-number and the allele B fraction signal, is required for
the last one.

We assume that all the required chip files are in the chipPATH folder and that the .CEL files are in the
celPATH folder.

First, we normalize .CEL files using the CRMAv2 method [5] from aroma packages. These packages require
a specific architecture containing .CEL and annotation files. This normalization step is required before any
statistical analysis. The following command performs the creation of architecture and the normalization at the
same time :

4

http://www.affymetrix.com/Auth/support/downloads/library_files/genomewidesnp6_libraryfile.zip
http://www.affymetrix.com/Auth/support/downloads/library_files/genomewidesnp6_libraryfile.zip
http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/
http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/


> #list files to check that your path to annotation files (.cdf, .ugp, .ufl, .acs) is correctly set

> dir(chipPATH)

> # list files to check that your path to cel files (.cel) is correctly set

> dir(celPATH)

> #set your working directory (where you have rights to write)

> setwd(workdir)

> #normalize data (might take several hours)

> signalPreProcess(dataSetName="datatest1", chipType="GenomeWideSNP_6",

+ dataSetPath=celPATH,chipFilesPath=chipPATH, path=".",

+ createArchitecture=TRUE, savePlot=TRUE, tags="Full")

The first pipeline offered in MPAgenomics consists in the segmentation of every copy-number signal of the
data. Then, a calling method can be applied on all the segments to label them (e.g. ”loss”, ”normal”, ”gain”).
To perform segmentation and calling at the same time, type the following lines in your R console:

> segcall=cnSegCallingProcess("datatest1",chromosome=c(1,5))

> #summary of segmentation and calling process

> segcall

In this example, chromosomes 1 and 5 for all patients are studied. Figures can be found at ./fig-

ures/datatest1/segmentation/. To better understand the way the results have been produced, we refer
to sections 4, 5 and 6.

Results of the calling can be filtered to keep only segments of a minimal size or with a specific label. For
example, if you want to only keep segments which represent losses or gains with a minimal size of 10pb and
containing at least 2 probes, run the following command:

> callfiltered=filterSeg(segcall,minLength=10,minProbes=2,keptLabel=c("gain","loss"))

> head(callfiltered)

To perform selection of markers, a response is associated with each profile and the goal is to find the most
relevant markers in the profile according to the response. You can run the following commands:

> dataResponse=data.frame(files=getListOfFiles("datatest1"),

+ response=c(2.105092,1.442868,1.952103,1.857819,2.047897,1.654766,2.385327,2.113406))

> res=markerSelection("datatest1",dataResponse,chromosome=21:22,signal="CN",

+ onlySNP=TRUE,loss="linear")

For interpretation of all the results, we refer to section 7.

3.3 To go further. . .

Use of control samples In the previous example, there was no control sample. By default, the median of all
the samples is used as a reference to estimate the copy-number profile. It is generally better to provide control
samples. When this is the case, it is necessary to provide a file or a data.frame giving the correspondence
between each control and each sample. For this example, we assume that the control is arbitrarily the first file:

> #get the file names of our data-set

> files=getListOfFiles("datatest1")

> #create the data.frame linking normal and tumor files

> normalTumorArray=data.frame(normal=rep(files[1],7),tumor=files[2:8])

Note that the extension .CEL is not provided in the normalTumorArray dataframe. In the following of the
vignette, a study which provides both control and tumoral samples will be refered as a normal-tumor study.

A new normalization can be run by taking into account information from the control sample. To sepa-
rate analyses with or without control samples, we will store results from this normal-tumor study under the
name ”datatest2”. As the architecture has already been created for ”datatest1”, it is not necessary to run
signalPreProcess with createArchitecture=TRUE. It is faster to add the CEL files in ”datatest2” while
leaving the chip definition files as they are by using the function addData and then signalPreProcess with
createArchitecture=FALSE.
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Figure 3: CSV file linking normal sample with tumoral sample.

> addData(dataSetName="datatest2",dataPath=celPATH,chipType="GenomeWideSNP_6")

> signalPreProcess(dataSetName="datatest2", chipType="GenomeWideSNP_6",

+ normalTumorArray=normalTumorArray, createArchitecture=FALSE, savePlot=TRUE, tags="Full")

Single-Patient Analysis of allele B fraction The segmentation example (3.2) was run on the copy number
signal, the allele B fraction can also be segmented after some transformation. First, we omit the homozygous
SNPs of the signal and then symmetrize around 0.5 the signal and multiply by 2 to have values between 0 and
1 (a point x become 2 ∗ |x− 0.5|)(see Figure 4).

Figure 4: Top : Allele B fraction signal on a chromosome (in red : homozygous SNPs. Bottom : symmetrized
signal without homozygous SNPs.

To perform the segmentation on the allele B fraction, run the following command

> #run the segmentation

> segfracB=segFracBSignal("datatest1",chromosome=c(1,5))

> #print summary of segmentation

> segfracB

Selecting steps to be executed to avoid a complete procedure Each step can be performed with or
without the aroma packages if arguments of functions are given in the right format (excepted the normalization
procedure described in section 4). Almost each wrapper can be used from matrices independently from the
other steps and more details are given in the following of this vignette. The paper is organized as follows : the
section 4 presents the preprocessing step and how to access normalized copy-number and allele B fraction. If
you already have these data, you can skip this section. Then, an efficient single patient analysis is introduced in
the next two sections. The segmentation process is described in section 5. In section 6, we present the calling
process of segmented data. The selection of markers is described in section 7.

4 Data Normalization

This preprocessing step consists in a correction of biological and technical biases due to the experiment.
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Raw data from Affymetrix DNA chip are provided in different .CEL files. These data need to have some
corrections and normalizations before being usable.

This normalization process can be performed via functions from aroma.* packages [1][4]. Here, we provide
some user-friendly wrappers to these functions. We assume that all the required chip files are in the chipPATH

folder and the CEL files are in the celPATH folder.

4.1 Folder architecture

All the functions from aroma packages have to be used with a particular architecture in the working directory.
In MPAgenomics, we use the same architecture and provide some functions to create it.

A function is provided to create the architecture and copy the specified files in the right directory :
createArchitecture. It also checks that the names of the chip files begin by the specified chipType argument.

createArchitecture(dataSetName,chipType,dataSetPath,chipFilesPath,path,verbose,tags)

Parameters Description
dataSetName The name of the data-set folder to create.
chipType The name of the used chip.
dataSetPath Path to the folder containing the data CEL files.
chipFilesPath Path to the folder containing the chip files.
path Path where the architecture should be created (default=”.”).
verbose Print information during the process (default=FALSE).
tags Common tag which appears in the different file names (cdf, ugp, ufl) of the chip.

For no tag, use tags=NULL (default = NULL).

For example, assume that we have the downloaded files of the download section (Fig 5 & 6).

Figure 5: Chip GenomeWideSNP 6 files in chipPATH (variable containing the path to the downloaded chip
files).

Figure 6: CEL files in celPATH (variable containing the path to the downloaded CEL files).

The celPATH and chipPATH variables contain the different paths to the files downloaded. The following
command enables to both create the architecture and add the previous dataset under the name ”datatest1”.

> createArchitecture("datatest1","GenomeWideSNP_6",celPATH,chipPATH,".",TRUE,"Full")

In your working directory, you must find the following architecture :

<current working directory>

+- annotationData/

| +- chipTypes/

| +- GenomeWideSNP_6/

| +- CDF file(s) and other annotation

|
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+- rawData/

+- datatest1/

+- GenomeWideSNP_6/

+- CEL files

You can see that files are only copied and not moved.
This architecture can also be created with the normalization function (see section 4.2).

The minimal architecture contains 2 folders : annotationData and rawData. Some supplementary folders
will be created during the execution of some functions.

In the annotationData folder, each type of chip used for the experiment has to have his own folder containing
its definition files (.cdf) and other files (.ugp1, .acs2, .ufl3). In this folder, every file name must comply with the
following format <chipType>,<tags>.<extension>(see Fig. 5).

The rawData folder contains the different data-sets with the CEL files. Each data-set folder contains one or
more folders (one per different chip type used) containing the CEL files, these files will not be modified during
the process. Note that the chipType folder in the data-set folder must match exactly a chip type folder under
annotationData.

In case of new data-sets or new chip types, it is not useful to create a new architecture but just add new
folders in the existing architecture as follows :

<current working directory>

+- annotationData/

| +- chipTypes/

| +- <chipTypeA>/ <-- must match exactly the name of the CDF file (fullname minus tags)

| | +- CDF file(s) and other annotation (possibly subdirectories)

| |

| +- <chipTypeB>/ <-- must match exactly the name of the CDF file (fullname minus tags)

| +- CDF file(s) and other annotation (possibly subdirectories)

| ...

|

+- rawData/

| +- <dataSet1>/

| | +- <chipTypeA>/ <-- must match exactly a chip type folder under annotationData/

| | +- CEL files

| |

| +- <dataSet2>/

| | +- <chipTypeB>/ <-- must match exactly a chip type folder under annotationData/

| | +- CEL files

| |

| +- <dataSet3>/

| | +- <chipTypeA>/ <-- must match exactly a chip type folder under annotationData/

| | +- CEL files

| | +- <chipTypeB>/ <-- must match exactly a chip type folder under annotationData/

| | +- CEL files

| ...

In order to easily update your existing architecture you can use the following addData function.
It enables to add to your existing architecture a new data-set in the rawData folder.

addData(dataSetName,dataPath,chipType)

Parameters Description
dataSetName The name of the data-set folder to create.
dataPath Path of the folder containing the data CEL files.
chipType The name of the used chip.

1See http://www.aroma-project.org/node/43 for more details.
2See http://www.aroma-project.org/node/100 for more details.
3See http://www.aroma-project.org/node/47 for more details.
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The addChipType function enables to add to your existing architecture a new chip type in the annotationData
folder.

addChipType(chipType,chipPath)

Parameters Description
chipType Name of the new chip type to add.
chipPath Path to the files to add.

With the function getListOfFiles, you can obtain the list of the files contained in the specified data-set.

getListOfFiles(dataSetName,chipType)

Parameters Description
dataSetName The name of a data-set folder.
chipType The name of the used chip.

If you do not specify a chipType, it returns the files for the first chip in the alphabetic order in the
dataSetName folder.

4.2 Normalization process

The main function for the normalization of CEL files is signalPreProcess. This function executes 3 different
methods on your data:

• CRMAv2 [5]: Normalize signals to obtain the copy-number and the allele B fraction. This step consists
in the correction of biological and technical biases due to the experiment.

• Genotype calls: Assign label AA, AB or BB to each SNP.

• TumorBoost [3]: Only in a case of normal-tumor study, normalization of the allele B fraction tumor
signal using the control signal.

The function signalPreProcess executes all these steps and saves the results in different folders in the aroma
architecture (totalAndFracBData,. . . ), you can also obtain some graphics (Fig 7) in the figures/signal folder.

Figure 7: From top to bottom : the normalized copy-number signal, the allele B fraction for the normal
profile, the allele B fraction for the tumor profile, the allele B fraction for the tumor profile after Tumorboost
normalization. Graphics from http://aroma-project.org.

The signalPreProcess is defined as follows:
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signalPreProcess(dataSetName, chipType, normalTumorArray, dataSetPath, chipFilesPath, path,

createArchitecture, savePlot)

Parameters Description
dataSetName The name of the data-set.
chipType The type of the used chip (e.g. ”GenomeWideSNP 6”).
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 8).
dataSetPath Only if createArchitecture=TRUE.

Path to the folder containing the CEL files of the data-set.
chipFilesPath Only if createArchitecture=TRUE.

Path to the folder containing all the annotations files for the specified chip type.
path Only if createArchitecture=TRUE.

Path where the architecture should be created (default=”.”).
createArchitecture if TRUE, the aroma architecture will be automatically created (default=TRUE).
savePlot if TRUE, graphics of the CN signal and allele B fraction signal will be

saved in the figures/signal folder. (default=TRUE).
tags Common tag which appears in the different file names (cdf, ugp, ufl) of the chip.

For no tag, use tags=NULL (default = NULL).

Figure 8: Example of the content of a csv file for normalTumorArray parameter. The first column contains the
name of the different normal files (without the .cel extension) in the data-set folder in rawData. The second
column contains the name of the tumor files. The name of the two columns are respectively normal and tumor.
The extensions of the files (.CEL for example) should be removed.

If you have specified createArchitecture=TRUE and have given the required parameters, the function will
create the architecture and copy your files in the right folder. After the creation of the aroma architecture, it
runs the normalization process and saves in the aroma architecture all the files necessary to obtain the allele B
fraction and the copy-number signal.

In the case of a study without reference, only parameters dataSetName, chipType, createArchitecture
and savePlot have to be specified. In the case of a normal-tumor study, TumorBoost process is executed.
If you want a CEL file to be used as reference for all the tumor data, then fill the normal column of the
normalTumorArray with the filename of your reference for all files.

4.3 Accessing the copy-number, allele B fraction and genotype

After running the signalPreProcess function, you can not directly access the copy-number and the allele B
fraction signals with the files in the architecture, a treatment is required to read them. Note that the copy-
number signal saved is the raw signal, it needs a reference to normalize it. With the getCopyNumberSignal and
getFracBSignal functions, you can access the copy-number and the allele B fraction profiles.

The getCopyNumberSignal allows you to extract the copy-number signal a chromosome at a time. In the
case of a study without reference, the median of all the signals of the data-set is used to normalize every profile.
In the normal-tumor study, the normal signal is used to normalize the tumor signal.

The getter for the copy-number profile is defined as follows:

getCopyNumberSignal(dataSetName,chromosome,normalTumorArray,onlySNP,listOfFiles,verbose)
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Parameters Description
dataSetName The name of the data-set folder.
chromosome A vector containing the chromosomes for which the signal will be extracted.
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 8).
onlySNP If TRUE, only the copy-number for SNPs positions will be returned (default=FALSE).
listOfFiles A vector containing the names of the files in dataSetName folder for which

the copy-number profiles will be extracted (default is all the files).
verbose If TRUE print some information (default=TRUE).

This function returns a list of size length(chromosome) (each element is named chrX with X the number of
the chromosome) containing a data.frame with columns:

• chromosome Chromosome of the signal.

• position Positions associated with the copy-number.

• copynumber Copy number profiles of selected files; the name of each column is the name of the associated
data file name.

• featureNames Names of the probes.

If you want the allele B fraction, you can use the getFracBSignal function. In a normal-tumor study, allele
B fraction for both normal and tumoral samples is returned. For the tumoral sample, it is the allele B fraction
after the TumorBoost normalization.

getFracBSignal(dataSetName,chromosome,normalTumorArray,listOfFiles,verbose)

Parameters Description
dataSetName The name of the data-set folder.
chromosome A vector containing the chromosomes for which the allele B fraction signal must be extract.
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 8).
listOfFiles A vector containing the names of the files in dataSetName folder for which

the allele B fraction profiles will be extracted (default is all the files).
verbose If TRUE print some information (default=TRUE).

This function returns a list of size length(chromosome) (each element is named chrX with X the number of
the chromosome) containing a data.frame with columns:

• chromosome Chromosome of the signal.

• position Positions associated with the allele B fraction.

• fracB Allele B fraction profiles of selected files; the name of each column is the name of the associated
data file name.

• featureNames Names of the probes.

If you want the genotype call, you can use the getGenotypeCalls function.

getGenotypeCalls(dataSetName,chromosome,listOfFiles=NULL,verbose=TRUE)

Parameters Description
dataSetName The name of the data-set folder.
chromosome A vector containing the chromosomes for which the genotype call will be extracted.
listOfFiles A vector containing the names of the files in dataSetName folder for which

the genotype signal will be extracted (default is all the files).
verbose If TRUE print some information (default=TRUE).
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This function returns a list of size length(chromosome) (each element is named chrX with X the number of
the chromosome) containing a data.frame with columns:

• chromosome Chromosome of the signal.

• position Positions associated with the genotype.

• genotype Genotype calls corresponding to selected files; the name of each column is the name of the
associated data file name.

• featureNames Names of the probes.

The next getter, getSymFracBSignal, returns the symmetrized allele B fraction only for heterozygous positions.
To symmetrize the allele B fraction the transformation x 7→ 2 ∗ |x − 0.5| is applied. It centers the data in 0.5
corresponding to heterozygous allele B fraction then symmetrize and multiply by 2 to have a signal between 0
and 1

getSymFracBSignal(dataSetName,chromosome,normalTumorArray,file,verbose=TRUE)

Parameters Description
dataSetName The name of the data-set folder.
chromosome A vector with the chromosomes for which the symetrized signal will be extracted .
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 8).
file The name of the file in dataSetName folder for which

the symetrized signal will be extracted .
verbose If TRUE print some information (default=TRUE).

This function returns a list of size length(chromosome) (each element is named chrX with X the number of
the chromosome) containing a data.frame with columns:

• chromosome Chromosome of the signal.

• position Positions associated with the genotype.

• fracB One column named by the data file name. It contains the symmetrized allele B fraction signal for
the specified profile.

• featureNames Names of the probes.

4.4 Usage

We refer to sections 3.2 and 3.3 to normalize input data without or with control samples in the study, respectively.

Get a signal
The following commands enable to extract the copy-number or the allele B fraction profiles of all the files for
the chromosome 5:

> #normal-tumor study

> CNdata2=getCopyNumberSignal("datatest2",5,normalTumorArray=normalTumorArray,TRUE)

> fracBdata2=getFracBSignal("datatest2",5,normalTumorArray=normalTumorArray)

> symFracB2=getSymFracBSignal("datatest2",5,

+ file="GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_A01_31218",

+ normalTumorArray=normalTumorArray)

> #study without reference

> CNdata1=getCopyNumberSignal("datatest1",5,onlySNP=TRUE)

> fracBdata1=getFracBSignal("datatest1",5)

> symFracB1=getSymFracBSignal("datatest1",5,

+ file="GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_A01_31218")
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To access the copy-number or allele B fraction profiles, run:

> CNdata2$chr5

> fracBdata2$chr5$tumor

> fracBdata2$chr5$normal

> fracBdata1$chr5$tumor

> symFracB1$chr5

> symFracB2$chr5

5 Segmentation

In the package MPAgenomics, we provide a segmentation method, which uses the PELT method of the cpt.mean
function from changepoint package [9].

In the initial PELT method, the penalty is log(n) with n the length of the signal. Here we will run the PELT
method with a penalty λ× log(n) for a range of λ. Then, we plot the evolution of the number of segments with
regards to the λ parameter (Fig 9).

Figure 9: Variation of the number of segment with regards to lambda.

We want to adjust the λ parameter to have a reasonable number of segments. So, we look for the greatest
stabilization of the number of segments. Indeed, our intuition is that we can be confident in the found breakpoints
because the penalty has to increase significantly to remove some breakpoints.

5.1 From data normalized by aroma

The procedure described above can be run by the PELTaroma function if the working directory respects the
aroma architecture.

PELTaroma(dataSetName,normalTumorArray,chromosome,Lambda,listOfFiles,onlySNP=TRUE,savePlot=TRUE)
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Parameters Description
dataSetName The name of the data-set folder.
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 8).
chromosome A vector with the chromosomes to be segmented.
Lambda A vector containing all the penalization values to test for the segmentation.

If no values are provided, default values will be used.
onlySNP If TRUE, only the copy-number for SNPs positions will be returned (default=TRUE).
listOfFiles A vector containing the names of the files in dataSetName folder for which

the copy number profiles will be segmented (default is all the files).
savePlot if TRUE, graphics of the segmented CN signal will be

saved in the figures/dataSetName/segmentation/CN folder. (default=TRUE).

If savePlot=TRUE, some graphics will be plotted (see Fig 10).

Figure 10: Top left: variation of the number of segment with regards to λ. Top right: the frequency of occurrence
of breakpoints in all segmentation. Bottom: Segmentation with the optimal λ found.

The graphics of the segmented signal are saved in the figures/dataSetName/segmentation folder. A sum-
mary of the segmented profile is saved in a text file (Fig. 11) in the segmentation/dataSetName/ folder, it
contains 5 columns : chrom, chromStart, chromEnd, probes and means containing the number of the chromo-
some, the starting position of the segment, the ending position of the segment, the number of probes in the
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segment and the mean of the segment.

Figure 11: Summary of a segmentation for a profile.

The output of the function is a list where every element of the list contains the segmentation results for a
different signal formatted in a list containing:

• copynumber A vector containing the copy-number signal.

• segmented A vector of the same size as copynumber containing the segmented values.

• startPos The position of every probe.

• chromosome A vector of the same size as copynumber containing the chromosome number.

• featureNames Names of the probes.

• sampleNames The name of the signal.

• segment A data.frame that sums up the results of the segmentation. Each row is a different segment
with the chromosome, start position, end position, number of probes in the segment and the value of the
segment.

The output for a profile is formatted to be used in input of the callingProcess function (see section 6.2) but
if you use the aroma architecture and want to label your segments, you can use directly the cnSegCallingProcess
function (see section 6.1). This function runs the segmentation and the calling processing.

For example, run the segmentation processing on one file of the downloaded data.

> file="GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_A02_31234"

> seg1=PELTaroma("datatest1",chromosome=21:22,onlySNP=TRUE,plot=TRUE,

+ listOfFiles=file)

You will obtain the results shown in figures 10 & 11 for one profile.

You can also segment the symmetrized allele B fraction with the function segFracBSignal:

segFracBSignal(dataSetName,normalTumorArray,chromosome=1:22,Lambda=NULL,listOfFiles=NULL,

savePlot=TRUE,verbose=TRUE)

Parameters Description
dataSetName The name of the data-set folder.
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 8).
chromosome A vector with the chromosomes to be segmented.
Lambda A vector containing all the penalization values to test for the segmentation.

If no values are provided, default values will be used.
listOfFiles A vector containing the names of the files in dataSetName folder for which

the allele B profile is segmented (default is all the files).
savePlot if TRUE, graphics of the segmented allele B profile will be

saved in the figures/dataSetName/segmentation/fracB folder. (default=TRUE).
verbose If TRUE, print some information (default=TRUE).
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The output of the function is a data.frame containing the segmentation results, each row corresponding to
a different segment and with columns:

• sampleName Name of the file the segment belongs to.

• chromosome Chromosome the segment belongs to.

• chromStart Starting position of the segment.

• chromEnd Ending position of the segment.

• probes Number of probes in the segment.

• means Mean of the segment.

You can run the following code to test the function

> #run the segmentation

> segfracB=segFracBSignal("datatest1",chromosome=c(1,5))

> #print summary of segmentation

> segfracB

5.2 For any data provided in matrix

If you have your own normalized data stored in a matrix, you can use the PELT function to perform the PELT
segmentation with the parameter choice proposed in MPAgenomics.

PELT(signal,Lambda,position=NULL,plot=TRUE,verbose=TRUE)

Parameters Description
signal A vector containing the signal.
Lambda A vector containing all the penalization values to test for the segmentation.

If no values are provided, default values will be used.
position A vector containing the position of all elements of the signal (not necessary).
plot If TRUE, plot some graphics (default=TRUE ).
verbose If TRUE, print some information (default=TRUE).

If plot=TRUE, some graphics will be plotted (see Fig 10).
The output of the function is a list containing:

• signal A vector containing the signal.

• segmented A vector of the same size as the signal containing the segmented values.

• startPos The position of each probe.

• segment A data.frame that sums up the results of the segmentation. Each row is a different segment
with the start position, end position, number of points in the segment and the value of the segment.

For example, assume you already have done the preprocessing of your data (see section 4.2). You want to
do the segmentation of the copy-number signal of one chromosome for one patient.

First, get the signal :

> file="GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_A07_31314"

> CNdata1=getCopyNumberSignal("datatest1",20,onlySNP=TRUE,listOfFiles=file)

> copyNumber=CNdata1$chr20$GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_A07_31314

> position=CNdata$chr20$position

Now, run the segmentation process :
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> seg=PELT(copyNumber,position=position,plot=TRUE,verbose=TRUE)

You obtain the plots seen previously (Fig 10) and the results in the right format for the calling function (see
section 6.2).

You can access to the list of found segments with :

> seg$segment

6 Calling aberrations in copy-number profiles

Once you have a segmentation of your copy-number profile, you may want to assign a label (loss, normal or
gain) to each segment. This can be done with the CGHcall method [14]. A wrapper of the CGHcall calling
process is available in MPAgenomics.

Starting with your signal and the associated segmented signal, the method assumes that the segmented
values follow a mixture of normals. The variables of the model are estimated with an EM algorithm with a
specific initialization. Then, every segment is called by the most likely label according to the model.

6.1 From data normalized by aroma

The cnSegCallingProcess function executes the segmentation (see section 5) and the calling process. The
specified data will be automatically imported by the function.

cnSegCallingProcess(dataSetName,normalTumorArray,chromosome,Lambda,listOfFile,onlySNP,savePlot,

nclass,cellularity,...)

Parameters Details
dataSetName name of the data-set folder in the rawData folder containing the signals to use.
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 8).
chromosome A vector containing the chromosome to segment.
Lambda A vector containing all the penalization values to test for the segmentation.

If no values are provided, default values will be used.
listOfFiles A vector containing the file names from the dataSetName to use.
onlySNP If TRUE, only the SNP probes will be used.
savePlot If TRUE, print some graphics (default=TRUE).
nclass The number of levels to be used for calling. Either 3 (loss, normal, gain),

4 (including amplifications), 5 (including double deletions) (default=3).
cellularity Percentage of tumor cells in the sample (default=1).
... Others parameters for CGHcall function [13].

This function will save every segment in a text file in the segmentation folder in the working directory and
return a data.frame with columns:

• sampleNames Name of the file.

• chrom The chromosome of the segment.

• chromStart The starting position (in bp) of the segment. This position is not included in the segment.

• chromEnd The ending position (in bp) of the segment. This position is included in the segment.

• probes Number of probes in the segment.
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• means Mean of the segment.

• calls The calling of the segment (”double loss”, ”loss”, ”normal”, ”gain” or ”amplification”).

The graphic of the segmented signal is saved in the figures folder of the architecture.

> seg2=cnSegCallingProcess("datatest1",chromosome=21:22)

The output of the function is shown in the figure 12.

Figure 12: Top: graphics saved in the figures folder. Bottom: output of the function (saved in a text file too).

6.2 For any data provided in matrix

The function callingProcess executes all the calling process and can be used without the aroma architecture.
You can use this function with the segmentation method provided in the package or any other methods as long
as you give the results of the segmentation in the right format (see segmentData argument).

callingProcess(segmentData,nclass=5,cellularity=1,...)

Parameters Description
segmentData A list (see details below).
nclass Number of labels. 3 corresponds to ”loss”, ”normal” and ”gain”,

4 adds ”amplification” and 5 adds ”double loss”.
cellularity Percentage of tumor cells in the sample (default=1).
verbose If TRUE, print some information.
... Others parameters for CGHcall function [13].

segmentData is a list containing :

• copynumber A matrix. Every column represents a copy-number signal for a different sample.

• segmented A matrix of the same size as copynumber containing the segmented values of the copy-number
signal.

• chromosome A vector, of length the number of rows of copynumber matrix, containing the number of
the chromosome for each position.
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• startPos A vector, of length the number of rows of copynumber matrix, containing the genomic position
of each probe.

• featureNames A vector, of length the number of rows of copynumber matrix, containing the name of
each probe.

• sampleNames A vector, of length the number of columns of copynumber matrix, containing the name
of each file.

Figure 13: Left : example of copynumber matrix for 2 samples. Right : example of the associated segmented

matrix.

This function returns a list with the same elements as segmentData and some supplementary elements :

• calls A matrix, of the same size as copynumber matrix, containing the label of each point.

• segment A data.frame that sums up all the segments found.

• probdloss (if you ran callingProcess with nclass=5) A matrix of the same size as copynumber matrix.
It contains the probability for each segmented copy-number to be a double loss.

• probloss A matrix of the same size as copynumber matrix. It contains the probability for each segmented
copy-number to be a loss.

• probdnorm A matrix of the same size as copynumber matrix. It contains the probability for each
segmented copy-number to be normal.

• probdgain A matrix of the same size as copynumber matrix. It contains the probability for each seg-
mented copy-number to be a gain.

• probdamp (if you have run callingProcess with nclass=4 or 5) A matrix of the same size as copynumber
matrix. It contains the probability for each segmented copy-number to be an amplification.

A wrapper is provided for creating the segmentData argument :

callingObject(copynumber, segmented, chromosome, position, featureNames, sampleNames)

The parameters featureNames and sampleNames can be omitted.
The following lines continue the example of the section 5. They create the segmentData list and run the

calling process:

> #create the segmentData object

> callobj= callingObject(copynumber=seg$signal, segmented=seg$segmented,

+ chromosome=rep(20,length(seg$signal)), position=seg$startPos,

+ sampleNames="sample1")

> #run the calling

> call=callingProcess(callobj,nclass=3,cellularity=1,verbose=TRUE)

> call$segment
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The result of the calling can be seen in figure 14.

Figure 14: The summation of all the segments after running the function callingProcess.

A wrapper CNAobjectToCGHcallObject to convert CNA object from DNAcopy package [11] (CBS segmentation)
to the desired format (see segmentData) is also provided.

CNAobjectToCGHcallObject(CNAobject)

Parameters Description
CNAobject Output of the segment function from DNAcopy package.

6.3 filterSeg function

At the end of the calling process, if you have a lot of segments, you might want to filter some uninteresting
segments. The filterSeg function allows to filter segments from 3 criteria : the length in bp, the size in probes
and the calling.

filterSeg(segmentList,minLength=1,minProbes=1,normalFilter=TRUE)

Arguments Description
segmentList A data.frame containing a description of segments, it must have at least columns :

”chromStart”, ”chromEnd”, ”probes” and ”calls” (see the output of
cnSegLabelProcess and callingProcess functions).

minLength The minimum length (in bp) for a segment. All the shorter segments are removed.
minProbes The minimum number of probes for a segment.

All the segments with less probes are removed.
keptLabel Vector of label to keep.

Only segment with one of the specified label will be kept.

It returns a data.frame of the same format as segmentList without the filtered segments.

We assume to have a data.frame called call$segment containing the columns plot in Fig. 15

Figure 15: call$segment before filtering.

The following command executes the code to keep only segments presenting a gain.

> segmentfilter=filterSeg(call$segment,keptLabel="gain")

> segmentfilter

Obtained results are shown in Fig. 16
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Figure 16: Result of the filtering.

7 Selection of genomic markers

In this section, the goal is to select some relevant markers according to a response.

It consists in minimizing β ∈ RP 7→ g(β), where

gρ(β) =

I∑
i=1

(yi − (Xβ)i)
2 + ρ

P∑
p=1

|βp| ,

with (Xβ)i =
∑
p xi,pβp and ρ > 0 controlling the number of non-zero coordinates of β. After minimization,

non-zero coefficients βp correspond to influential positions to predict the response.

To solve this problem, we use the LARS algorithm [6] that solves the lasso problem for all the values of
t. In order to choose the best solution, we use a cross validation to select the best values of t and return the
associated solution.

7.1 From data normalized by aroma

The function markerSelection will extract the data from the aroma architecture and run the LARS algorithm
and the cross-validation for each chromosome separately.

markerSelection(dataSetName,dataResponse,chromosome,signal,normalTumorArray,onlySNP,nbFolds,

loss,plot,...)

Parameters Description
dataSetName The name of the data-set folder.
dataResponse A csv files or a data.frame with 2 columns : ”files” and ”response”.

The column ”files” contains the filename to extract and
the second column the response associated with the file.

chromosome A vector containing the number of the chromosomes for the SNPs selection.
signal ”CN” or ”fracB”, corresponding to which signal will be analyzed (default=”CN”).
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 8).
onlySNP Only if signal="CN". If TRUE, only the SNPs probes are used (default=FALSE).
nbFolds Number of folds for the cross-validation (default=10).
loss either ”logistic” (binary response) or ”linear” (quantitative response), default is ”logistic”.
plot If TRUE, cross-validation mean squared error is plotted (default=TRUE).
... supplementary arguments for cv.glmnet function [7] in case of

logistic loss or for HDlars function for linear loss.

For signal="fracB", the selection of markers is done for the tumor allele B fraction.
The function returns a list containing as many elements as the number of chromosomes specified in param-

eters. The name chrX, where X is the number of a chromosome. Each element of this list is a list containing:

• chr The chromosome corresponding to the signal.

• markers.index A vector containing the index of all selected markers.

• markers.position A vector containing the position of all selected markers.

• markers.names A vector containing the name of all selected markers.
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• coefficient A vector containing the coefficients (β̂) of all selected markers.

• intercept Intercept of the model.

For the following example, we assume that the architecture is already created and the data-set is prepro-
cessed as in the previous examples (see section 4.1 and 4.2). The response is stored in a data.frame named
dataResponse (see Fig. 17).

Figure 17: Example of dataResponse parameters for the markerSelection function.

The relevant markers can be selected by executing the following code:

> dataResponse=data.frame(files=getListOfFiles("datatest1"),

+ response=c(2.105092,1.442868,1.952103,1.857819,2.047897,1.654766,2.385327,2.113406))

> res=markerSelection(dataSetName="datatest1",dataResponse,chromosome=21:22,signal="CN",

+ onlySNP=TRUE,loss="linear")

Figure 18 shows the output of the function.

Figure 18: Left : cross-validation mean squared error. Right: results for chromosome 22.

In this example, two markers are selected : the 1065th and 10046th markers of the signal (markers.index)
at positions 20192586 pb and 47227321 pb on the chromosome 22. The coefficient associated to each selected
marker are given in coefficient vector.

7.2 For any data provided in matrix

A version of the selection of markers without the aroma architecture is available:

variableSelection(dataMatrix,dataResponse,nbFolds,plot)
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Parameters Description
dataMatrix A matrix containing the data, each row is a different signal.
dataResponse A vector containing the response associated with each signal.
nbFolds Number of folds for the cross-validation (default=10).
loss either ”logistic” (binary response) or ”linear” (quantitative response), default is ”logistic”.
plot If TRUE plot cross-validation mean squared error (default=TRUE).
... supplementary arguments for cv.glmnet function [7] in case of

logistic loss or for HDlars function for linear loss.

The output of the functions is:

• variable A vector containing the index of all selected markers.

• coefficient A vector containing the coefficients (β̂) of all selected variables.

• intercept Intercept of the model.

For example, simulate a data-set and the associated response

> dataMatrix=matrix(rnorm(5000,0,0.5),nrow=50)

> dataResponse=drop(dataMatrix%*%sample(c(rep(0,90),rep(1,10))))

> res=variableSelection(dataMatrix,dataResponse,nbFolds=5,loss="linear",plot=TRUE)
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