
IPMpack: an R package for demographic modeling with

Integral Projection Models (v. 2.0)

Jessica Metcalf, Sean M. McMahon, Rob Salguero-Gomez,
Eelke Jongejans, Cory Merow

October 26, 2013

The goal of IPMpack is to provide a suite of demographic tools based on Integral Projection
Models (IPMs) to support biologists interested in making projections for populations where de-
mography is strongly linked to a changing continuous variable, such as size. The package includes
functions that can take data, such as size or age, as well as environmental covariates, and build
models of growth, survival and fecundity. Functions are defined that then take these statistical
models and construct IPMs. IPMpack has tools that compare different functional forms for the
underlying statistical models, plotting them and returning model scores, as well as tools for diag-
nostic tests of the IPM models themselves. There are also methods to build population models
for varying environments, estimate longevity and passage time, sensitivity and elasticity (of either
parameters or matrix elements), and much more.

The basic ideas of IPMpack are published in Methods in Ecology and Evolution (Metcalf et
al. 2013). Please cite that paper if you want to refer to IPMpack. This vignette is intended to
introduce the concepts of IPMs as well as the implementation of IPMpack to biologists with a
wide range of quantitative skills. This vignette is for IPMpack version 2.0, and so we encourage
users to contact the IPMpack team at IPMpack@gmail.com with any feedback or mistakes they
find. We also host a blog at R-forge (http://ipmpack.r-forge.r-project.org/) that contains news of
updates, new features, and announcements of papers and meetings relevant to IPMs.

1

IPMpack@gmail.com

1 Introduction to Integral Projection Models

An Integral Projection Model (IPM) is a demographic tool that can estimate the dynamics of
populations where individuals’ fates depend on state variables that are continuous (e.g., weight,
diameter at breast height, height, limb length, rosette diameter) or quasi-continuous (e.g., number
of leaves, age, number of reproductive structures) and may be a mixture of discrete and continuous
variables. IPMs track the distribution of individuals n across these state variables between census
times (e.g., year t and year t +1) by projecting from models that define the underlying vital rates
(e.g., survival, growth, and reproduction) as a function of the (quasi-)continuous state variables.
For detailed introductions to IPMs see Easterling et al. (2000), and Ellner & Rees (2006, 2007).

Briefly, an IPM is defined by a kernel K that represents probabilities of growth between discrete
or continuous stages, survival across these stages, and the production of offspring and offspring
recruitment. For example, in the simplest case, where the population is structured by a continuous
covariate, size, then

n(y, t + 1) =

U∫
L

K(y,x)n(x, t)dx (1)

where n(y, t + 1) is the distribution across size y of both established and new individuals in census
time t +1, n(x, t) the distribution across size of individuals in census time t, and L and U the lower
and upper size limits modeled in the IPM, respectively.

Multiple functional forms for both demographic processes as well as their error structures can
be accommodated with IPMpack. The F kernel (equation 4) describes per-capita contributions of
reproductive individuals to number of new individuals at the next census. Multiple size-dependent
or size-independent vital rates can be fitted within the F kernel, reflecting for example reproductive
probability, number of reproductive structures (e.g. flowers in plants, basidia in fungi), number of
propagules within reproductive structure (e.g. seeds in inflorescences), and so on. Additionally, a
range of constants (c1, c2, ...) can be included if there are no state-dependent data. All of these
will be multiplied to obtain the eventual fertility for individuals of each size. Finally, the F kernel
definition includes a probability density function describing the size of offspring recruiting into the
population, fd .

From equation 1:

n(y, t + 1) =

U∫
L

K(y,x)n(x, t)dx =

U∫
L

[P(y,)+ F(y,x)]n(x, t)dx, (2)

where

U∫
L

P(y,x)n(x, t)dx =

U∫
L

surv(x)growth(y,x)dx, (3)

and
U∫

L

F(y,x)n(x, t)dx =

U∫
L

c1c2c3... f ec1(x) f ec2(x) f ec3(x)... fd(y,x)dx (4)

After numerically solving these kernels, key ecological and evolutionary quantities such as the
population rate of increase λ , the stable population size structure, the net reproductive rate R0,
and many others can be estimated (see Caswell 2001 for more a comprehensive discussion).

Essentially, the same tools are available for IPMs as for discrete projection matrices (matrix
population models), e.g., estimation of population growth rate, sensitivities, elasticities, life table
response experiment [LTRE] analyses, passage time calculations, etc. (Caswell 2001, Cochran &
Ellner 1992, and others); as well as some additional tools based on exploring the impact of the
underlying statistical relationships. The main difference between an IPM and a matrix model
is that while in discrete projection matrices the number of classes (i.e., number of stages in the

2

life cycle of the study species) must be defined a priori, IPMs impose the discretization of the
three-dimensional surface defined by equation 1 in the last step for the purposes of numerical
integration. This produces a typically large matrix (e.g., 100 x 100 cells) that is more robust to
biases from matrix dimensionality (Zuidema et al. 2010, Salguero-Gomez & Plotkin 2010) and
sample size (Ramula et al. 2009) than classical matrix models.

The goal of IPMpack is to provide a centralized set of quantitative techniques based on IPMs
to help ecologists and evolutionary biologists model populations. IPMpack can accommodate
multiple vital rates from complex life cycles all grouped into two main sub-kernels: P and F
(equation 2) 1.

This vignette walks through the steps of a basic IPM analysis. We first describe the kind of data
necessary to build an IPM. If users begin ‘from scratch’, they must input data in a specific format
(described below). However it is possible to jump past this step and use IPMpack capabilities on
IPMs that were developed outside of IPMpack. That is, if a user wants quick figures, summary
statistics, other analyses on an IPM matrix already built, IPMpack can readily accommodate that.
However there are some features that, because of the object-oriented coding, require some specific
structures (and other features that do not). Please refer to the manual files, and the rest of this
vignette for this information. The vignette will begin with data input. We will then walk through
how to build and analyse a basic IPM model. More complex models will be introduced later, as
well as comparative model testing.

2 Getting started: setting up the data for IPMpack

For users who prefer to define IPM matrices using their own statistical tools, there is no requirement
for the data to be in any particular format, and most of the functions in IPMpack will operate
on the matrices directly (e.g., life expectancy, sensitivity of matrix elements, etc.). However, to
use IPMpack’s full capacities, the individual-level demographic data must be organized in a data

frame (a class of object in R [see help file for ‘data.frame’ in base]), where each row represents
one observation of an organism in the population at one census time t with the following potential
column names:

• size: size of individuals in census time t ∗

• sizeNext: size of individuals in census time t + 1 ∗

• surv: survival of individuals from census time t to t + 1 (contains: 0 for death or 1 for
survival) ∗

• fec1, ...: as many columns as desired relating size to sexual reproduction. For example,
this might be:

– fec1: probability of reproduction (output: 0 for no reproductive or 1 for reproductive)

– fec2: number of reproductive structures (output: 1, 2, 3, ...) when individual is repro-
ductive, that is, when fec1 = 1

– fec3: number of propagules (output: 1, 2, 3, ...) per reproductive structure (e.g. seeds
per flower in reproductive plant individual)

– ...

• stage: stage of individuals in census time t, used to distinguish discrete and continuous
stages, etc. For rows in the data frame where size is not an NA, then this must be the word
“continuous”. Where size is NA, any variety of named discrete stages may be defined (e.g.
“seed bank”). If this column is missing, many procedures in IPMpack are designed to simply
fill in this column assuming that only “continuous” state variables describe the life cycle of

1Note that we follow the terminology of the seminal paper by Easterling et al. (2000). The P kernel (equation
3) describes growth between demographic censuses conditional on individuals’ survival (surv).

3

the species, i.e. there are no discrete stages. For running makeFecObj, the column must be
a factor. If not supplied, the function will generate this column assuming all individuals are
”continuous”.

• stageNext: stage of individuals in census time t + 1, in the simples case, “continuous” or
“dead” (which is redundant with “0” in the surv column. As above, this column is not
essential for many procedures in IPMpack. For running makeFecObj, the column must be a
factor. If not supplied, the function will generate this column assuming all individuals that
are alive are “continuous”.

• number: number of individuals corresponding to each row in the data frame. For all rows
corresponding to movement between continuous stages, this value will be 1, but for movement
between discrete stages (e.g., from “dormant seeds” to “seeds ready to germinate”) then this
number may be > 1, potentially directly reflecting observed individuals in the data. This
information avoids having a data frame with a row for every individual in a discrete stage
(e.g. seeds). As above, many procedures in IPMpack will simply assume that this value is
always 1.

• covariate: value of a discrete covariate in census time t, such as light environment at time
t, age at t, patch at t, etc.

• covariateNext: value of a discrete covariate in census time t + 1.

• ...any other covariates of interest, named as desired by the user are possible too (e.g., pre-
cipitation, habitat, temperature, etc).

• offspringNext: if the size contained in sizeNext corresponds to the size of an offspring,
this column will contain either the value “sexual” or “clonal” (depending on whether sexual
or clonal reproduction is being considered). If this column exists, rows that take these two
values will be excluded from the growth analyses (functions makeGrowthObj and variants
thereof, see below).

The ∗ symbol above indicates the minimum columns in the data frame required to obtain pas-
sage time and life expectancy calculations. These values form the P kernel. If sufficient additional
columns are available, a full life-cycle model, containing the F kernel, can be produced and fur-
ther analyses are possible. Although size and sizeNext can be transformed, many of the utility
functions assume no transformations in columns in the original data frame pertaining to fertility.
Transformations can be formally called in various parts of the package and appropriate F matrices
built that account for these transformations.

3 The basics: building an IPM

First, the user must install IPMpack from CRAN using install.packages("IPMpack") and then
load IPMpack into an R session (library(IPMpack)) (see help files for problems with installation
or loading).

> library(IPMpack)

>

Next, the user must input demographic data. As mentioned above, most functions of IPMpack
require a data file with at minimum columns called size, sizeNext, surv, where ‘size’ is size
at time t, ‘sizeNext’ is size one census later, and ‘surv’ is a series of 0s and 1s, indicating if the
individual survived or not. In the case of ‘size’ and ‘sizeNext’, data can be transformed (e.g., onto
a log scale), if appropriate via functions built into IPMpack. For the purpose of learning how to
use IPMpack, the user can either use his/her own data (adjusted to have the appropriate headings,
as aforementioned), or generate them with a function built into IPMpack:

4

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

0 2 4 6 8 10

0
2

4
6

8
10

Size at t

S
iz

e
at

 t+
1

Figure 1: Size at t and size at t+1

> dff <- generateData()

A quick check indicates that this contains sensible (fictional) information:

> head(dff)

size sizeNext surv covariate covariateNext fec stage stageNext

1 7.267703 NA 0 1 1 7.732534 continuous continuous

2 3.053200 5.193752 1 0 0 0.000000 continuous continuous

3 4.881485 3.404703 1 1 1 0.000000 continuous continuous

4 3.268669 NA 0 1 0 0.000000 continuous continuous

5 5.106905 NA 0 0 0 1.876586 continuous continuous

6 4.629183 3.055377 1 1 0 0.000000 continuous continuous

for simplicity, no discrete covariates are included in this first example. Figure 1 (p. 5) is
produced by the following code:

> plot(dff$size, dff$sizeNext, xlab = "Size at t", ylab = "Size at t+1")

IPMpack is written in object-oriented code, using S4 objects. This means that extra object
classes are used by IPMpack, with methods assigned to those classes that do particular things to
specific objects. An example for those familiar with R is the plot function. When applied to two
vectors, it produces an x-y plot, but when applied to a fitted linear regression, it provides a series

5

of diagnostic plots. In other words, the ‘plot’ method is object-specific and does different things
to objects of class ‘numeric’ and objects of class ‘lm’.

IPMpack contains defined classes for growth, survival and fertility objects, and associated
methods that allow the user to build IPM objects. In addition, this object-oriented structure in
IPMpack uses methods from IPM objects to calculate life expectancy, passage times, and other
population estimates of interest. The advantage of object-oriented programming is its flexibility:
for example, the same machinery can be applied to suites of underlying regression forms and the
user can take advantage of pre-existing highly generalized R functions, such as predict. The
needs of any particular dataset may require different object and method definitions. Towards the
end of this vignette we also describe how to define a new class and a new method (e.g., a new
growth object for a specific life-history structure, and a new growth method applicable to plotting
information from that object).

As an example, let us first define objects built as simple polynomial regressions from the
generated data. The source code of generateData will confirm that the survival data is built
around a polynomial logistic regression relating size at t to survival from t to t +1, and the growth
data is built around a polynomial regression relating size at t to size at t +1. To make growth and
survival objects that reflect this, the user must implement:

> gr1 <- makeGrowthObj(dataf = dff, Formula = sizeNext~size+size2)

> sv1 <- makeSurvObj(dff, Formula = surv~size+size2)

In both these functions, the argument Formula contains formulas of the type used in linear or
logistic regressions in R, built around the possible defined range of transforms of size currently
available (size2 which is size2, size3 which is size3, and logsize which is log(size). Currently
further transforms of size are not possible. This function can also be used to fit models that
include a single discrete covariate (e.g., light environment, age, etc) as long as this exists in the
dataf in a column named covariate. For instance, the user could model the population dynamics
according to size + covariate or size + logsize*covariate, etc. For more complex analyses,
other covariates (time since fire, precipitation, etc) can be fitted as long as they exist within
dataf. For the growth model, possibilities for the response variable in the Formula are: sizeNext
meaning that the reponse variable is size at the next census time, or incr meaning that the
response variable is the size increment that has accrued between the two census times (common
among tree demographic studies), and logincr meaning that the response variable is the log of
the size increment that has acrrued between the two census intervals.

Glancing at the source code will confirm that all these functions simply fit a linear regression
relating size at t+1 or increment to size at t and covariates for growth, as for survival. The survival
and growth objects created have a slot called ‘fit’ that holds the regression and a slot ’sd’ that
holds the variance around the regression.

> gr1

An object of class "growthObj"

Slot "fit":

Call:

lm(formula = Formula, data = dataf)

Coefficients:

(Intercept) size size2

-0.240498 0.934316 -0.007884

Slot "sd":

[1] 1.034007

6

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

0 2 4 6 8

0
2

4
6

8
10

Growth

Size at t

S
iz

e
at

 t+
1

●●●

●

●

●
●

●

●
●●

●

●●●

●

●

●

●

●●

●
●
●●

●
●

●

●●

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival

Size at t

S
ur

vi
va

l t
o

t+
1

Figure 2: Growth and survival objects

Note that before building growth or survival objects in IPMpack, careful model assessement and
comparison are recommended, using all the usual regression tools available in R (plotting the fitted
lm or glm to check for patterns of residuals, outliers etc). IPMpack also contains two functions
that allow the user to check these two relationships against the data used for them in order to
explore goodness of fit and effect of mesh size, shown in Figure 2 (p. 7).

> par(mfrow = c(1, 2), bty = "l", pty = "m")

> p1 <- picGrow(dff, gr1)

> p2 <- picSurv(dff, sv1, ncuts = 30)

To build a demographic model describing survival and growth transitions from these objects, the
user can use the function makeIPMPmatrix, i.e.:

> Pmatrix <- makeIPMPmatrix(nBigMatrix = 50,

minSize = -5, maxSize = 35,

growObj = gr1, survObj = sv1,

correction = "constant")

7

	Introduction to Integral Projection Models
	Getting started: setting up the data for IPMpack
	The basics: building an IPM
	Incorporating discrete stages
	Discretely varying environments
	More generally varying environments
	Parameter uncertainty in a constant environment
	Building your own objects and methods

