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Abstract

Histograms are a common graphical representation of the distribution of a data set. They are
particularly useful for collecting very large data sets into a binned form for easier data storage and
analysis. The HistogramTools R package augments the built-in support for histograms with a
number of methods that are useful for analyzing large data sets. Specifically, methods are included
for serializing histograms into a compact Protocol Buffer representation for sharing between dis-
tributed tasks, functions for manipulating the resulting aggregate histograms, and functions for
measuring and visualizing the information loss associated with histogram representations of a data
set.
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1 Introduction

Histograms have been used for over a century (Pearson 1895) as a compact graphical representa-
tion of a distribution of data. Support for generating histograms is included in almost all statistical
software, including R. However, the growth in large-scale data analysis in R with the MapReduce
(Dean and Ghemawat 2008) paradigm has highlighted the need for some extensions to the his-
togram functionality in R(R Core Team 2012) for the collection, transmission, and manipulation
of larged binned data sets.

Much previous work on histograms (Sturges 1926; Scott 1979) involves identifying ideal break-
points for visualizing a data set. Our context is different; we use histograms as compact repre-
sentations in a large MapReduce environment, and need to merge histograms from subsets of the
data to obtain a histogram for the whole data set. In this case, the challenges are engineering
challenges, rather than visualization challenges. For example, how do we efficiently store large
numbers of histograms generated frequently by real-time monitoring systems of many thousands
of computers? How can we aggregate histograms generated by different tasks in a large scale
computation? If we chose very granular bucket boundaries for our initial data collection pass, how
can we then reshape the bucket boundaries to be more relevant to the analysis questions at hand?

2 Histogram Bin Manipulation

2.1 Trimming Empty Buckets from the Tails

When generating histograms with a large number of fine-grained bucket boundaries, the resulting
histograms may have a large number of empty consecutive buckets on the left or right side of the
histogram. The TrimHistogram function can be used to remove them, as illustrated in Figure 1.

> hist.1 <- hist(runif(100,min=2,max=4), breaks=seq(0,6,by=.2), plot=FALSE)

> hist.trimmed <- TrimHistogram(hist.1)

> length(hist.1$counts)

[1] 30

> sum(hist.1$counts)

[1] 100

> length(hist.trimmed$counts)

[1] 10
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> sum(hist.trimmed$counts)

[1] 100

> par(mfrow=c(1,2))

> plot(hist.1)

> plot(TrimHistogram(hist.1), main="Trimmed Histogram")
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Figure 1: Effect of the TrimHistogram function.

2.2 Adding/Merging Histograms

If histograms (for different data sets) have the same bucket boundaries, it is possible to add them
together to obtain the histogram for the combined data set by aggregating the counts values with
the AddHistograms function illustrated in Figure 2.

> hist.1 <- hist(c(1,2,3,4), plot=FALSE)

> hist.2 <- hist(c(1,2,2,4), plot=FALSE)

> hist.sum <- AddHistograms(hist.1, hist.2)

AddHistograms accepts an arbitrary number of histogram objects to aggregate as long as they
have the same bucket boundaries.

> hist.1 <- hist(c(1,2,3), breaks=0:9, plot=FALSE)

> hist.2 <- hist(c(1,2,3), breaks=0:9, plot=FALSE)

> hist.3 <- hist(c(4,5,6), breaks=0:9, plot=FALSE)

> hist.sum <- AddHistograms(hist.1, hist.2, hist.3)

> hist.sum

$breaks

[1] 0 1 2 3 4 5 6 7 8 9

$counts

[1] 2 2 2 1 1 1 0 0 0
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Figure 2: Effect of the AddHistograms function.

$density

[1] 0.2222222 0.2222222 0.2222222 0.1111111 0.1111111 0.1111111

[7] 0.0000000 0.0000000 0.0000000

$mids

[1] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5

$xname

[1] "Merge of 3 histograms"

$equidist

[1] TRUE

attr(,"class")

[1] "histogram"

2.3 Merging Buckets

We may want a version of a histogram with fewer buckets, to save storage or to produce better
plots. The MergeBuckets function takes a histogram and a parameter for the number of adjacent
buckets to merge together and returns a new histogram with different bucket boundaries, as
illustrated in Figure 3.

> overbinned <- hist(c(rexp(100), 1+rexp(100)), breaks=seq(0, 10, by=.01), plot=FALSE)

> better.hist <- MergeBuckets(overbinned, adj=30)
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Histogram of c(rexp(100), 1 + rexp(100))
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Figure 3: Effect of the MergeBuckets function.

2.4 Subsetting Histograms

The SubsetHistogram function takes a histogram and a new minimum and maximum bucket
boundary and returns a new histogram with a subset of the buckets, as illustrated in Figure 4.

> hist.1 <- hist(runif(100, min=0, max=10), breaks=seq(from=0, to=10, by=.5), plot=FALSE)

> hist.2 <- SubsetHistogram(hist.1, minbreak=2, maxbreak=6)
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Figure 4: Effect of the SubsetHistogram function.
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2.5 Intersecting Histograms

The IntersectHistograms function takes two histograms with identical bucket boundaries and
returns a histogram of the intersection of the two. Each bucket of the returned histogram contains
the minimum of the equivalent buckets in the two provided histograms.

> hist.1 <- hist(runif(100))

> hist.2 <- hist(runif(100))

> hist.3 <- IntersectHistograms(hist.1, hist.2)
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Figure 5: Effect of the IntersectHistograms function.

2.6 Scaling Histograms

The ScaleHistogram function takes a histogram and a numeric value to scale each bucket bound
by. This can be used, e.g. to normalize the histogram area to a desired value, as illustrated in
Figure 6.

> hist.2 <- ScaleHistogram(hist.1, 1/sum(hist.1$counts))

3 Histogram Distance Measures

This package provides a number of metrics for computing a distance measure for two histograms.
At the moment, only bin-by-bin similarity measures are supported meaning that the two his-
tograms must have exactly the same bucket boundaries. The attributes of the different distance
measures are described in (Rubner, Tomasi, and Guibas 2000).

3.1 Minkowski Distance

The Minkowski distance of order p between two histograms can be computed with the minkowski.dist
function.
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Figure 6: Effect of the ScaleHistogram function.

> h1 <- hist(runif(100), plot=FALSE)

> h2 <- hist(runif(100), plot=FALSE)

> minkowski.dist(h1, h2, 1)

[1] 40

> minkowski.dist(h1, h2, 2)

[1] 17.08801

> minkowski.dist(h1, h2, 3)

[1] 14.61853

> # Verify the implementation:

> p <- 3

> #dist(t(matrix(c(h1$counts, h2$counts), nrow=2)), "minkowski", p=p)

> # Or, alternatively:

> (sum(abs(h1$counts - h2$counts)^p))^(1/p)

[1] 14.61853

3.2 Histogram Intersection Distance

The histogram intersection distance (Swain and Ballard 1991) between two histograms can be
computed with the intersect.dist function.

> intersect.dist(h1, h2)

[1] 0.2

If histograms h1 and h2 do not contain the same number of counts, then this metric will not
be symmetric.
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3.3 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (Kullback 1997) between two histograms can be computed with
the kl.divergence function.

> kl.divergence(h1, h2)

[1] 0.1198669

3.4 Jeffrey Divergence

The jeffrey.divergence function computes the Jeffrey divergence between two histograms (Puzicha,
Hofmann, and Buhmann 1997).

> jeffrey.divergence(h1, h2)

[1] 0.06210845

4 Quantiles and Cumulative Distribution Functions

When histograms are used as a binned data storage mechanism to reduce data storage cost,
information about the underlying distribution is lost. We can however approximate the quantiles
and cumulative distribution function for the underying distribution from the histogram.

The Count, ApproxMean, and ApproxQuantile functions are meant to help with this, but note
that they will only be accurate with very granular histogram buckets. They would rarely be
appropriate with histogram buckets chosen by the default algorithm in R.

> hist <- hist(c(1,2,3), breaks=c(0,1,2,3,4,5,6,7,8,9), plot=FALSE)

> Count(hist)

[1] 3

> ApproxMean(hist)

[1] 1.5

> ApproxQuantile(hist, .5)

50%

1.5

> ApproxQuantile(hist, c(.05, .95))

5% 95%

0.6 5.1

The HistToEcdf function takes a histogram and returns an empirical distribution function
similar to what is returned by the ecdf function on a distribution.

> h <- hist(runif(100), plot=FALSE)

> e <- HistToEcdf(h)

> e(.5)

[1] 0.51

> par(mfrow=c(1,2))

> plot(h)

> plot(HistToEcdf(h))

> par(mfrow=c(1,1))
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Figure 7: Histogram and CDF Created with HistToEcdf

5 Error estimates in CDFs approximated from histograms

When constructing cumulative distribution functions from binned histogram data sets there will
usually be some amount of information loss. We can however come up with an upper bound for
the error by looking at two extreme cases. For a given histogram h with bucket counts Ci for
1 ≤ i ≤ n and left-closed bucket boundaries Bi for 1 ≤ i ≤ n + 1, we construct two data sets. Let
X be the (unknown) underlying data set for which we now only have the binned representation h.
Let Xmin be the data set constructed by assuming the data points in each bucket of the histogram
are all equal to the left bucket boundary. Let Xmax be the data set constructed by assuming the
data points in each bucket of the histogram are at the right bucket boundary. Then FX is the true
empirical CDF of the underlying data, and FXmin(x) ≥ FX(x) ≥ FXmax(x).

Xmin =
(

(Bi)
Ci
k=1 : 1 ≤ i ≤ n

)
Xmax =

(
(Bi+1)Ci

k=1 : 1 ≤ i ≤ n
)

The package provides two different distance metrics to measure the difference between empirical
cumulative distribution functions FXmin and FXmax . These distances serve as upper-bounds for
the amount of error between the true empirical distribution function FX of the unbinned data and
an ECDF calculated from the binned data.

5.1 Kolmogorov-Smirnov Distance of the Cumulative Curves

The first metric provided by the package is the two-sample Kolmogorov-Smirnov distance between
Xmin and Xmax. In other words, it the largest possible distance between cumulative distribution
functions that could be represented by the binned data. This metric is more formally defined as

sup
x
|FXmax(x)− FXmin(x)|
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This function is also occasionally called the maximum displacement of the cumulative curves
(MDCC).

> x <- rexp(1000)

> h <- hist(x, breaks=c(0,1,2,3,4,8,16,32), plot=FALSE)

> x.min <- rep(head(h$breaks, -1), h$counts)

> x.max <- rep(tail(h$breaks, -1), h$counts)

> ks.test(x.min, x.max, exact=F)

Two-sample Kolmogorov-Smirnov test

data: x.min and x.max

D = 0.601, p-value < 2.2e-16

alternative hypothesis: two-sided

> KSDCC(h)

[1] 0.601

The KSDCC function accepts a histogram, generates the largest and smallest empirical cumula-
tive distribution functions that could be represented by that histogram, and then calculates the
Kolmogorov-Smirnov distance between the two CDFs. This measure can be used in cases where
expanding the binned data into x.min and x.max explicitly to calculate distances using e.g. ks.test
directly would not be feasible. Figure 8 illustrates geometrically what value is being returned.
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Figure 8: Sorted raw data (column 1), Histograms (column 2), CDF with KSDCC (column 3)

5.2 Earth Mover’s Distance of the Cumulative Curves

The “Earth Mover’s Distance” is like the Kolmogorov-Smirnof statistic, but uses an integral to
capture the difference across all points of the curve rather than just the maximum difference. This
is also known as Mallows distance, or Wasserstein distance with p = 1.
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The value of this metric for our histogram h is∫
R
|FXmax(x)− FXmin(x)|dx,

Figure 9 shows the same e.c.d.f of the binned data represented in the previous section, but with
the yellow boxes representing the range of possible values for any real e.c.d.f. having the same
binned representation. For any distribution X with the binned representation in h, the e.c.d.f
F (X) will pass only through the yellow boxes. The area of the yellow boxes is the Earth Mover’s
Distance.
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Figure 9: Sorted raw data (column 1), Histograms (column 2), CDF with EMDCC (column 3)

> x <- rexp(100)

> h1 <- hist(x, plot=FALSE)

> h2 <- hist(x, breaks=seq(0,round(max(x) + 1),by=0.1), plot=FALSE)

> KSDCC(h1)

[1] 0.7

> KSDCC(h2)

[1] 0.11

> EMDCC(h1)

[1] 0.125

> EMDCC(h2)

[1] 0.0125

So, using this metric, the second lower example with more granular histogram bins produces
an ECDF with reduced worst case error bounds compared to the one with default buckets, as
expected.

11



6 Visualization

6.1 Average Shifted Histograms

Average shifted histograms are a simple device for taking a collection of m histograms each with
uniform bin width h, but with bin origins offset/shifted (Scott 2009).

Given the focus of this package on large data sets, a HistToASH function is provided to produce
the average shifted histogram from a single histogram assuming the underlying dataset is no longer
available in unbinned form. The next plot shows the original density histogram of the overlaid
with the average shifted histogram with smoothing parameter 5.

> x <- runif(1000, min=0, max=100)

> h <- hist(x, breaks=0:100, plot=F)

> plot(h,freq=FALSE, main="Histogram of x with ASH superimposed in red")

> # Superimpose the Average Shifted Histogram on top of the original.

> lines(HistToASH(h), col="red")

[1] "ash estimate nonzero outside interval ab"

Histogram of x with ASH superimposed in red
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6.2 Log-scale Histograms

Many histograms encountered in databases, distributed systems, and other areas of computer
science use log-scaled bucket boundaries and may still contain counts that vary exponentially.

Examples of such data sets include the size or age of files stored, or the latency enountered
by read requests. Such histograms can be read into R using the methods of this package, but the
default plotting functionality is not very useful.

For example, Figure 10 shows the default plot output for the histogram of read sizes observed
when building a FreeBSD kernel. Neither the density histogram (left) nor the frequency histogram
(middle) make it easy to understand the distribution. In contract, the log ECDF produced by the
PlotLog2ByteEcdf function makes it easy to see that about 20% of the reads were of 64 bytes or
smaller, and that the median read size was well under a kilobyte.
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Figure 10: Example Log Log Histogram Data

7 Efficient Representations of Histograms

Consider an example histogram of 100 random data points. Figure 11 shows the graphical repre-
sentation and list structure of R histogram objects.

> myhist <- hist(runif(100))

This histogram compactly represents the full distribution. Histogram objects in R are lists
with 6 components: breaks, counts, density, mids, name, and equidist.

If we are working in a parallel environment and need to distribute such a histogram to other
tasks running in a compute cluster, we need to serialize this histogram object to a binary format
that can be transferred over the network.

7.1 Native R Serialization

R includes a built-in serialization framework that allows one to serialize any R object to an Rdata
file.
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[1] TRUE

attr(,"class")

[1] "histogram"

Figure 11: Example Histogram

> length(serialize(myhist, NULL))

[1] 543

This works and is quite convenient if the histogram must only be shared between tasks running
the R interpreter, but it is not a very portable format.

7.2 Protocol Buffers

Protocol Buffers are a flexible, efficient, automated, cross-platform mechanism for serializing struc-
tured data (Pike, Dorward, Griesemer, and Quinlan 2005; Google 2012). The RProtoBuf package
(Francois, Eddelbuettel, and Stokely 2012) provides an interface for manipulating protocol buffer
objects directly within R.

Of the 6 elements stored in an R histogram object, we only need to store three in our serial-
ization format since the others can be re-computed. This leads to the following simple protocol
buffer definition of the breaks, counts, and name of a histogram:

syntax="proto2";

package HistogramTools;

message HistogramState {

repeated double breaks = 1;

repeated int32 counts = 2;

optional string name = 3;

}

The package provides as.Message and as.histogram methods for converting between R his-
togram objects and this protocol buffer representation.

In addition to the added portability, the protocol buffer representation is significantly more
compact.

> hist.msg <- as.Message(myhist)

Our histogram protocol buffer has a human-readable ASCII representation:
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> cat(as.character(hist.msg))

breaks: 0

breaks: 0.1

breaks: 0.2

breaks: 0.30000000000000004

breaks: 0.4

breaks: 0.5

breaks: 0.60000000000000009

breaks: 0.70000000000000007

breaks: 0.8

breaks: 0.9

breaks: 1

counts: 16

counts: 6

counts: 12

counts: 12

counts: 10

counts: 4

counts: 5

counts: 11

counts: 8

counts: 16

name: "runif(100)"

But it is most useful when serialized to a compact binary representation:

> length(hist.msg$serialize(NULL))

[1] 131

This protocol buffer representation is not compressed by default, however, so we can do better:

> raw.bytes <- memCompress(hist.msg$serialize(NULL), "gzip")

> length(raw.bytes)

[1] 90

We can then send this compressed binary representation of the histogram over a network or
store it to a cross-platform data store for later analysis by other tools. To recreate the original R
histogram object from the serialized protocol buffer we can use the as.histogram method.

> uncompressed.bytes <- memDecompress(raw.bytes, "gzip")

> new.hist.proto <- P("HistogramTools.HistogramState")$read(uncompressed.bytes)

> length(uncompressed.bytes)

[1] 131

The resulting histogram is the same as the original; it was converted to a protocol buffer,
serialized, compressed, then uncompressed, parsed, and converted back to a histogram.

> plot(myhist)

> plot(as.histogram(new.hist.proto))
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8 Applications

8.1 Filesystem Workload Characterization with DTrace

The DTrace framework Cantrill, Shapiro, Leventhal et al. (2004) provides a scalable method of
dynamically collecting and aggregating system performance data on Unix systems. The Read-

HistogramsFromDtraceOutputFile Parses the text output of the DTrace command to convert the
ASCII representation of aggregate distributions into R histogram objects.

8.2 Binning Large Data Sets with Map-Reduce

Many large data sets in fields such as particle physics and information processing are stored in
binned or histogram form in order to reduce the data storage requirements (Scott 2009).

There are two common patterns for generating histograms of large data sets with MapReduce.
In the first method, each mapper task can generate a histogram over a subset of the data that is
has been assigned, and then the histograms of each mapper are sent to one or more reducer tasks
to merge.

In the second method, each mapper rounds a data point to a bucket width and outputs that
bucket as a key and ’1’ as a value. Reducers then sum up all of the values with the same key and
output to a data store.

In both methods, the mapper tasks must choose identical bucket boundaries even though they
are analyzing disjoint parts of the input set that may cover different ranges, or we must implement
multiple phases.

Figure 12 illustrates the second method described above for histogram generation of large data
sets with MapReduce.

This package is designed to be helpful if some of the Map or Reduce tasks are written in R, or
if those components are written in other languages and only the resulting output histograms need
to be manipulated in R.

9 Summary

The HistogramTools package presented in this paper has been in wide use for the last several years
to allow engineers to read distribution data from internal data stores written in other languages.
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Figure 12: Diagram of MapReduce Histogram Generation Pattern

Internal production monitoring tools and databases, as well as the output of many MapReduce
jobs have been used.
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