
msim Package Design Document

Lindsey Dietz

11-6-2013

1 Background

A major difficulty in making inference about general linear mixed models (GLMMs) has been
computational. To overcome numerical difficulties, alternative methods for inference have been
proposed. The first is the use of Laplace approximation which is utilized within the R package
lme4. The second is a form of likelihood evaluation which may be in the form of Monte Carlo, nu-
merical integral approximation, or variational approximations. Jiang (1998) proposed the method
of simulated moments (MSM) which will be the focus of the project.

MSM is methodology which is computationally feasible and consistent. In applying the usual
method of moments, one first identifies a set of sufficient statistics. A set of estimating equations
is obtained by equating sample moments of the sufficient statistics to their expectations. Such ex-
pectations typically involve integrals, the highest dimension of which equals the number of sources
of random effects. Expectations are then simulated. Finally, parameters are estimated by an ap-
propriate optimization algorithm to solve the nonlinear system of equations.

This limited scope package will seek to implement the MSM for a logistic mixed model and the
Poisson-normal model. In the future, it may be expanded to include other exponential families as
well as more capabilities for users.

2 Method of Simulated Moments (MSM)

The general methodology for MSM will not be discussed in detail. The goal of this version of the
package is to implement logistic mixed model example discussed in section 2.1 of Jiang (1998) and
to expand this to allow a user to input their own data. The example and implementation will be
discussed in detail in the following sections.

2.1 Logistic Mixed Model Methodology

Let Yij be a Bernoulli response with logit(P (yij = 1)|ξ1, ..., ξm) = µ+ σξi, for i = 1, ...,m indepen-
dent subjects, with j = 1, .., ni (possibly correlated) measurements per subject. This implies that

Yij = 1 with probability exp(µ+σξi)
1+exp(µ+σξi)

.

The density for a single observation is

f(yij |µ, σ, ξ1, ..., ξm) =

[
exp(µ+ σξi)

1 + exp(µ+ σξi)

]yij [1

1 + exp(µ+ σξi)

]1−yij

=
[exp(µ+ σξi)]

yij

1 + exp(µ+ σξi)

= exp {yij(µ+ σξi)− log[1 + exp(µ+ σξi)]}

1

Thus, the density for each subject is

f(yi|µ, σ, ξ1, ..., ξm) =

ni∏
j=1

exp {yij(µ+ σξi)− log[1 + exp(µ+ σξi)]}

= exp {yi·(µ+ σξi)− ni log[1 + exp(µ+ σξi)]}

where yi· =
∑ni

j=1 yij .

Therefore, the sufficient statistics are (y1·, ..., ym·) for parameters (µ, σ).
Now we can use the method of moments to find estimates of first and second moments of the
sufficient statistic. The system of equations we need to solve are

1

m

m∑
i=1

yi· = E

(
1

m

m∑
i=1

yi·

)
= E(Y1·)

1

m

m∑
i=1

y2
i· = E

(
1

m

m∑
i=1

y2
i·

)
= E(Y 2

1·)

E(Yi·) = 1
m

∑m
i=1

∑ni
j=1E(E(Yij |ξi)) = niE

(
exp(µ+σξi)

1+exp(µ+σξi)

)

E(Y 2
i·) =

1

m

m∑
i=1

E(E(Y 2
i· |ξi))

=
1

m

m∑
i=1

E

E

 ni∑
j=1

Yij

2

|ξi




=
1

m

m∑
i=1

E

V ar


ni∑
j=1

Yij |ξi

+ E


ni∑
j=1

Yij |ξi


2

=
1

m

m∑
i=1

E

[
n

exp(µ+ σξi)

[1 + exp(µ+ σξi)]2
+ n2 exp(µ+ σξi)

2

[1 + exp(µ+ σξi)]2

]
= E

[
ni

exp(µ+ σξi)

[1 + exp(µ+ σξi)]2
+ ni

2 exp(µ+ σξi)
2

[1 + exp(µ+ σξi)]2

]
= niE

[
exp(µ+ σξi)

1 + exp(µ+ σξi)

]
+ ni(ni − 1)E

[
exp(µ+ σξi)

2

[1 + exp(µ+ σξi)]2

]

Let hµ,σ(x) = exp(µ+σx)
1+exp(µ+σx) .

Then we see that E(Yi·) = nihµ,σ(ξ) and E(Y 2
i·) = nihµ,σ(ξ) + ni(ni − 1)h2

µ,σ(ξ).

2

Thus, the system of equations becomes:

1

m

m∑
i=1

yi·
ni

= E(hµ,σ(ξ))

1

m

m∑
i=1

(y2
i· − yi·)

ni(ni − 1)
= E(h2

µ,σ(ξ))

Now, we generate ξi ∼ N(0, 1) for i = 1, ...,K and use these to generate estimates for the right
sides of the system of equations.

1

m

m∑
i=1

yi·
ni

=
1

K

K∑
i=1

hµ,σ(ξi)

1

m

m∑
i=1

(y2
i· − yi·)

ni(ni − 1)
=

1

K

K∑
i=1

h2
µ,σ(ξi)

The solution to these equations can be found by a Newton-Raphson procedure according to Jiang
(1998). We will utilize this and another possible method in implementation. We will utilize

the optimization abilities of R to solve for parameters of the squared Euclidean norm of the the
equations. This amounts to the minimization of

[
1

m

m∑
i=1

yi·
ni
− 1

K

K∑
i=1

hµ,σ(ξi)

]2

+

[
1

m

m∑
i=1

(y2
i· − yi·)

ni(ni − 1)
− 1

K

K∑
i=1

h2
µ,σ(ξi)

]2

2.2 Poisson Normal Model Methodology

Let Yij be a Poisson response with log(λi)|(ξ1, ..., ξm) = µ + σξi, for i = 1, ...,m independent sub-
jects, with j = 1, .., ni (possibly correlated) measurements per subject.

The density for a single observation is

f(yij |λi, ξ1, ..., ξm) =
λ
yij
i e−λi

yij !

= exp{yij log(λi)− λi − log(yij !)}
= exp{yij(µ+ σξi)− eξi − log(yij !)}

Thus, the density for each subject is

f(yi·|µ, σ, ξ1, ..., ξm) =

ni∏
j=1

exp{yij(µ+ σξi)− eξi − log(yij !)}

= exp{yi·(µ+ σξi)− nieξi −
ni∑
j=1

log(yij !)}

3

where yi· =
∑ni

j=1 yij .

Therefore, the sufficient statistics are (y1·, ..., ym·) for parameters (µ, σ).
Now we can use the method of moments to find estimates of first and second moments of the
sufficient statistic. The system of equations we need to solve are

1

m

m∑
i=1

yi· = E

(
1

m

m∑
i=1

yi·

)
= E(Y1·)

1

m

m∑
i=1

y2
i· = E

(
1

m

m∑
i=1

y2
i·

)
= E(Y 2

1·)

E(Yi·) = 1
m

∑m
i=1

∑ni
j=1E(E(Yij |ξi)) = niE(exp(µ+ σξi))

E(Y 2
i·) =

1

m

m∑
i=1

E(E(Y 2
i· |ξi))

=
1

m

m∑
i=1

E

E

 ni∑
j=1

Yij

2

|ξi




=
1

m

m∑
i=1

E

V ar


ni∑
j=1

Yij |ξi

+ E


ni∑
j=1

Yij |ξi


2

=
1

m

m∑
i=1

E
[
ni exp(µ+ σξi) + n2

i exp(µ+ σξi)
2
]

= E
[
ni exp(µ+ σξi) + ni

2 exp(µ+ σξi)
2
]

= niE [exp(µ+ σξi)] + n2
iE
[
exp(µ+ σξi)

2
]

Let hµ,σ(x) = exp(µ+ σx).
Then we see that E(Yi·) = nihµ,σ(ξ) and E(Y 2

i·) = nihµ,σ(ξ) + n2
ih

2
µ,σ(ξ).

Thus, the system of equations becomes:

1

m

m∑
i=1

yi·
ni

= E(hµ,σ(ξ))

1

m

m∑
i=1

(y2
i· − yi·)
n2
i

= E(h2
µ,σ(ξ))

Now, we generate ξi ∼ N(0, 1) for i = 1, ...,K and use these to generate estimates for the right
sides of the system of equations.

4

1

m

m∑
i=1

yi·
ni

=
1

K

K∑
i=1

hµ,σ(ξi)

1

m

m∑
i=1

(y2
i· − yi·)
n2
i

=
1

K

K∑
i=1

h2
µ,σ(ξi)

The solution to these equations can be found by a Newton-Raphson procedure according to Jiang
(1998). We will utilize this and another possible method in implementation. We will utilize

the optimization abilities of R to solve for parameters of the squared Euclidean norm of the the
equations. This amounts to the minimization of

[
1

m

m∑
i=1

yi·
ni
− 1

K

K∑
i=1

hµ,σ(ξi)

]2

+

[
1

m

m∑
i=1

(y2
i· − yi·)
n2
i

− 1

K

K∑
i=1

h2
µ,σ(ξi)

]2

3 Bootstrap Bias Correction

In practice, these estimates can be rather slow to converge to the true parameter values and im-
plementation indicates a large bias in practice. There also could be selection bias by the authors
in the examples presented in their papers. In order to alleviate some of this bias, we have im-
plemented a parametric bootstrap bias-correction method which in practice has usually produced
more reasonable results than the original MSM estimates. The algorithm is as follows:

1. Use MSM to produce an estimates of θ = (µ, σ); call this θ̂

2. Simulate data from the logistic mixed model using θ̂ as the value for the parameter

3. Use MSM on the simulated data to produce an estimate of θ̂; call this θ̂(b) where b = 1, ..., B

4. We assume θ̂ − θ ≈ θ̂ − θ̂(b) thus, θ ≈ 2θ̂ − θ̂(b); calculate θ̃(b) = 2θ̂ − θ̂(b)

5. Repeat steps 2-4 B times

6. Average the B estimates, θ̂boot =
1

B

B∑
b=1

θ̃(b) to give ”bias-corrected” estimates of θ; compute

standard errors, se(θ̂boot) =

√
1

B−1

∑B
b=1[θ̃(b) − θ̂boot]2

B

5

3.1 Logistic Mixed Model Practical Implementation

Step 1: Produce simulated data
This step is only necessary when real data is not available. The supporting function sim.data.fun

will first simulate independent ξi ∼ N(0, 1), i = 1, ...,m random variables. It will then take the
true values of µ and σ provided by the user and transform the standard normal variables via the
linear transformation logit(yij) = µ+σξi. Then a random draw from Bin(1, (inv.logit(yij)) will be
done for each i and j using the rbinom{stats} and inv.logit functions. sim.data.fun will return
the matrix of yij as well as yi· =

∑n
j=1 yij . If real data is used, it must be provided in a matrix

of 0’s and 1’s where the subjects correspond to rows and the repeated observations correspond to
columns. The functions can only currently support equal numbers of observations for each subject
and cannot handle missing values.

Step 2: Run the MSM

Step 2a
The central function of the package is msim which is a wrapper for all the contributing functions.
In order to properly run the function, once must provide number of subjects, mand the number
of observations per subject, nwhich must correspond exactly to the data. One must also provide
K which is the number of simulations used to calculate the expectations from the right sides of
the estimating equations as discussed above in the methodology section. The default for K is set
at 1000. nsim is the number of simulations for MSM to run. The default is set at 1000. The fi-
nal estimates of the parameters are calculated by averaging the runs over the number of simulations.

When true.mu and true.sigma are provided, standard error estimates are calculated using

√
(θ̂−θ)2
n

where θ is the true value for each parameter. When no value is provided for either parameter (mean-
ing the package only lets you enter both or neither at this point), the standard errors are computed

by

√
1

n−1

∑n
i=1(θ̂i−θ̄)2
n =

√
s
n where s is the sample standard deviation.

Step 2b
msm will call solver.sim in each iteration of the nsim runs. In each run, the starting random
seed will be incremented by 1 in order to draw a new random sample for the estimation procedure.
There are 3 methods which could be used to solve the nonlinear system of equations discussed in
the methodology section. The exact arguments are seen in the following section.

Step 3: Run the bootstrap correction
boot.msm utilizes the estimates produced from msm in order to hopefully eliminate some of the bias
in the MSM estimates. Currently, the running time for the function is fairly long, and the default
is 10 which seems small, but seems to produce better estimates in simulations.

6

4 Central Functions

4.1 msm

msm(family="binomial", nsim=1000,K=100,m=NULL,n=NULL,y.i=NULL,start=c(0,1), set.seed=NULL,

true.mu=NULL, true.sigma=NULL,method="nleqslv")

Summary

Function to produce averaged estimates of multiple runs of method of simulated moments.

Formal arguments

family- Exponential family to draw from; currently only accepts ”binomial”

nsim- Number of simulations of MSM estimates; default is 1000

K-Number of values used to produce one Monte Carlo estimate for MSM; default is 100

m-Index of i (number of subjects); default is NULL

n-Index of j (number of observations per subject); default is NULL

y.i-Sums over j of the yij , produced by simulate.fun or provided by user; default is NULL

start- Vector of starting values for (µ, σ); default values are (0,1)

method- One of (”multiroot”,”optim”,”nleqslv”); default is multiroot. This determines the
solver utilized within the MSM. If multiroot is selected, the function will use the multiroot{rootSolve}
function. If optim is selected, the function will use the optim{base} function to minimize the
Euclidean norm of the system. If nleqslv is chosen, nleqslv{nleqslv} will solve the system
of equations using the Newton method.

Return Values

mu- Averages nsim estimates of µ

mu.se- Averages nsim estimates of root mean squared error µ

sigma- Averages nsim estimates of σ

sigma.se- Averages nsim estimates of root mean squared error σ

sigma2- Averages nsim estimates of σ2 based on squaring σ̂

sigma2.se- Averages nsim estimates of root mean squared error σ2

7

4.2 boot.msm

boot.msm(msm.est, boot.sim=10, family="binomial",nsim=1000,K=100, m,n,start=c(0,1))

Formal arguments

msm.est- A list of estimates produced by msm() function

boot.sim- Number of bootstraps to perform; default is 10

family- Exponential family to draw from; currently only accepts ”binomial”

nsim- Number of simulations of MSM estimates; default is 1000

K-Number of values used to produce one Monte Carlo estimate for MSM; default is 100

m-Index of i (number of subjects); default is NULL

n-Index of j (number of observations per subject); default is NULL

start- Vector of starting values for (µ, σ); default values are (0,1)

method- One of (”multiroot”,”optim”,”nleqslv”); default is multiroot. This determines the
solver utilized within the MSM. If multiroot is selected, the function will use the multiroot{rootSolve}
function. If optim is selected, the function will use the optim{base} function to minimize the
Euclidean norm of the system. If nleqslv is chosen, nleqslv{nleqslv} will solve the system
of equations using the Newton method.

Return Values

boot.mu- Averages boot.sim estimates of µ

boot.mu.mse- Averages boot.sim estimates of root mean squared error µ

boot.sigma- Averages boot.sim estimates of σ

boot.sigma.mse- Averages boot.sim estimates of root mean squared error σ

boot.sigma2- Averages boot.sim estimates of σ2 based on squaring σ̂

boot.sigma2.mse- Averages boot.sim estimates of root mean squared error σ2

8

5 Supporting Functions

5.1 Inverse-Logit function

inv.logit(x)

Summary

This function is used for calculation of the Inverse-Logit function:

f(x) =
ex

1 + ex

Formal Arguments

x- real-valued argument (scalar or vector)

Return Values

The value of the function will be returned in corresponding scalar or vector form.

5.2 Simulating Binomial Data function

sim.data.fun(m=NULL,n=NULL,true.mu=NULL,true.sigma=NULL,set.seed=NULL)

Summary

This function will simulate the data for the logit-normal model.

logit(yij) = µ+ σξi

where ξi ∼ N(0, 1).

Formal Arguments

m-Index of i (number of subjects); default is NULL

n-Index of j (number of observations per subject); default is NULL

true.mu-True value of µ; default is NULL

true.sigma-True value of σ; default is NULL

set.seed- Random seed start value for reproducibility; default is NULL

Return Values

Two objects are returned by the function:

y- a matrix of generated yij of dimension m× n

y.i- a vector of

n∑
j=1

yij of length m

9

5.3 Solving MSM equations for logit-normal data function

solver.sim(K=100, m,n,y.i,start=c(0,1), set.seed=NULL, true.mu=NULL,

true.sigma=NULL,method="nleqslv")

Summary

Function to simulate one set of MSM estimates.

Formal Arguments

K- Number of values to produce one MSM; default is 100

m-Index of i (number of subjects); default is NULL

n-Index of j (number of observations per subject); default is NULL

y.i- Sums over j of the yij , produced by sim.data.fun or provide by user

start- Vector of starting values for (µ, σ); default values are (0,1)

set.seed- Random seed start value for reproducibility; default is NULL

true.mu- True value of µ; default is NULL

true.sigma- True value of σ; default is NULL

method- One of (”multiroot”,”optim”,”nleqslv”); default is nleqslv. This determines the solver
utilized within the MSM. If multiroot is selected, the function will use the multiroot{rootSolve}
function. If optim is selected, the function will use the optim{base} function to minimize the
Euclidean norm of the system. If nleqslv is chosen, nleqslv{nleqslv} will solve the system
of equations using the Newton method.

Return Values

par.1.mu- Estimate of µ

mu.mse- Estimate of the mean squared error σ2 based on the true value provided for µ

par.1.sigma- Estimate of σ

par.1.sigma2- Estimate of σ2 based on squaring σ̂

sigma2.mse- Estimate of the mean squared error σ2 based on the true value provided for σ

10

6 Dependencies

The current version of the package is dependent on other R packages. These include:

• nleqslv: the function nleqslv is the main method to solve the nonlinear system of equations

• rootSolve: the function multiroot is a backup method used to solve the nonlinear system of
equations

• lme4: this is only used within the vignette.

The goal of the final product, or possibly a next version of the product, is to remove all but essential
dependencies. Ideally, the only dependencies would be the base and stats packages, however, the
necessary nonlinear equation solution function may have already been optimized for use in this
setting.

References

Jiang, J. (1998). Consistent Estimators in Generalized Linear Mixed Models. Journal of the
American Statistical Association, 93, 720–729.

Jiang, J. and Zhang, W. (2001). Robust estimation in generalized linear mixed models. Biometrika,
88, 753–765.

11

	Background
	Method of Simulated Moments (MSM)
	Logistic Mixed Model Methodology
	Poisson Normal Model Methodology

	Bootstrap Bias Correction
	Logistic Mixed Model Practical Implementation

	Central Functions
	msm
	boot.msm

	Supporting Functions
	Inverse-Logit function
	Simulating Binomial Data function
	Solving MSM equations for logit-normal data function

	Dependencies

